
Compiler-Generated Communication for Pipelined FPGA
Applications∗

Heidi E. Ziegler,
†

Mary W. Hall, and Pedro C. Diniz
University of Southern California / Information Sciences Institute

4676 Admiralty Way, Suite 1001
Marina del Rey, CA 90292

{ziegler, mhall, pedro}@isi.edu

ABSTRACT
In this paper, we describe a set of compiler analyses and an
implementation that automatically map a sequential and
un-annotated C program into a pipelined implementation,
targeted for an FPGA with multiple external memories. For
this purpose, we extend array data-flow analysis techniques
from parallelizing compilers to identify pipeline stages, re-
quired inter-pipeline stage communication, and opportuni-
ties to find a minimal program execution time by trading
communication overhead with the amount of computation
overlap in different stages. Using the results of this analy-
sis, we automatically generate application-specific pipelined
FPGA hardware designs. We use a sample image processing
kernel to illustrate these concepts. Our algorithm finds a so-
lution in which transmitting a row of an array between pipe-
line stages per communication instance leads to a speedup of
1.76 over an implementation that communicates the entire
array at once.

Categories and Subject Descriptors
B.6.3 [Design Aids]: Automatic synthesis; J.6 [Computer
Applications]: Computer-aided design (CAD)

General Terms
Hardware Design, Performance

Keywords
Pipelining, Parallelizing compiler analysis techniques, Syn-
thesis techniques for configurable computing, High-level and
architectural synthesis, Rapid prototyping, FPGAs

∗This work is funded by the National Science Foundation
(NSF) under Grant CCR-0209228 and the Defense Ad-
vanced Research Project Agency under contract number
F30603-98-2-0113.†H. Ziegler is funded by a Boeing Satellite Systems Doctoral
Scholars Fellowship.

Permission to make digital or hard copies of all or part of this work for
personal or classroom use is granted without fee provided that copies are
not made or distributed for profit or commercial advantage and that copies
bear this notice and the full citation on the first page. To copy otherwise, to
republish, to post on servers or to redistribute to lists, requires prior specific
permission and/or a fee.
DAC 2003, June 2–6, 2003, Anaheim, California, USA.
Copyright 2003 ACM 1-58113-688-9/03/0006 ...$5.00.

1. INTRODUCTION
The use of pipelined execution is an effective method to

improve the throughput of a program. FPGA-based com-
puting machines offer a unique opportunity for the realiza-
tion of custom pipelining structures, matching the defini-
tion of the pipeline to the application requirements in terms
of pipeline stage definitions, computation that can be over-
lapped, the data and rates at which it can be communicated
as well as the communication placement within the pipeline
stages.

The complexity and sophistication of pipelined execution
make automatic tools that can analyze sequential applica-
tions and derive pipelined implementations extremely desir-
able. In this paper, we describe a set of compiler analy-
ses to derive, from a sequential algorithm description, the
components of a pipelined design, i.e., task parallelism and
communication requirements. We use as a foundation par-
allelizing compiler analyses for array data-flow analysis [3,
6], which we extend to recognize pipelining opportunities
and derive communication requirements, for use in mapping
to FPGA systems. In the Design Environment for Adap-
tive Computing TechnOlogy (DEFACTO) [8], we combine
these analyses with behavioral synthesis tools to automati-
cally synthesize application-specific pipelines onto a target
FPGA-based architecture. The work described in this paper
makes the following specific contributions:

• It defines new analyses for characterizing the task par-
allelism and communication requirements for use in
mapping sequential programs to systems of configurable
logic.

• It describes an implementation of the analyses and
code transformations required to automatically design
and synthesize pipelines tailored to sequential program
characteristics.

• It presents experimental results for a machine vision
application excerpt (MVIS) which demonstrate the use
and performance potential of these techniques on an
FPGA-based architecture.

The paper is organized as follows. In section 2 we describe
the problem we are addressing along with an example that
illustrates the approach. Section 3 describes the compiler
analysis in more detail. We present the execution times for
four communication schemes in section 4. In section 5 we
survey related work and conclude in section 6.

610

35.3

C

Communication and Pipeline Analysis

Code Transformations

SUIF to VHDL

Behavioral Synthesis and Estimation

Design Space Exploration

Logic Synthesis / Place & Route

Good Design? No

Yes

Configuration Bit Stream

Figure 2: DEFACTO Compilation Flow

2. MOTIVATION AND BACKGROUND
The problem we address in this paper is automatically

mapping an application onto an asynchronous pipeline, exe-
cuting on a configurable architecture [16]. Mapping a pipe-
lined application involves identifying a set of pipeline stages
and the associated communication. The compilation goal is
to minimize overall execution time, while meeting the stor-
age and computing capacity constraints of the system. We
exploit the parallelism in the application without the use of
any programmer inserted pragmas or directives.

The compiler approach described in this paper, although
generic in the sense of mapping a set of communicating pipe-
line stages to a configurable architecture, has focused on ap-
plications whose computations are specified by sequences of
loop nests with intervening statements. These loop nests,
not necessarily perfectly nested, compute over array data
structures, affine index access functions, defined as linear
functions of loop index variables, and constant loop bounds.
For the current implementation, we do not map to hardware
computations with pointer accesses. Under these assump-
tions, we have been able to apply our compiler analysis ap-
proach to digital image and signal processing kernels and
other regular array computations of interest.

2.1 Example
We illustrate the mapping of MVIS, depicted in Figure 1(a).

The code is structured as two loop nests. In this example,
pipeline stage s1 corresponds to the computation in the first
loop nest, stage s2 to the second loop nest. S1 computes the
peak array; s2 reads peak and computes the arrays feature x
and feature y as output. We determine that we must com-
municate the whole array peak from the producer s1 to the
consumer s2, one row at a time.

3. COMPILER ANALYSIS
The compiler analysis described in this paper is built upon

an automatic parallelization system that is part of the Stan-
ford SUIF compiler [1]. Figure 2 depicts the set of compiler
analyses implemented specifically for DEFACTO.

The DEFACTO system-level compiler takes an un-annota-
ted, sequential program and applies a set of communica-
tion and pipeline analyses based on array data-flow analy-
sis. Previous work on array data-flow analysis has largely
focused on identifying loops whose iterations can execute in

parallel. This is called data parallelism, since the same code
is executed in parallel on different data. In this paper, we
extend and develop array data-flow analysis that supports
pipelining of independent computations, or task parallelism.
These extended analyses are incorporated into the communi-
cation and pipeline analysis phase and include the following:

• Determining which data must be communicated.

• Determining the possible granularities at which data
may be communicated.

• Determining the corresponding communication place-
ment points within the program.

Then code transformations are applied to reflect the re-
sults of the analysis and the SUIF intermediate format is
converted into behavioral VHDL. Estimates from the behav-
ioral synthesis phase are used to evaluate each of the possible
granularity solutions in the design space exploration phase;
a good design can then be passed onto the logic synthesis
and place and route phase.

3.1 Analysis Background
Analyzing communication requirements involves charac-

terizing the relationship between data producers and con-
sumers. This characterization can be thought of as a data-
flow analysis problem. In compiler terminology, data-flow
analysis is the compile-time reasoning about the run-time
flow of data values through the program. For decades, data-
flow analysis has been used to guide a host of compiler op-
timizations and has even been incorporated into high-level
synthesis tools. For the most part, the analysis has been re-
stricted to scalar variables. Data structures, such as arrays,
are treated as a single entity.

Unfortunately, scalar data-flow analysis is too imprecise
when optimizing designs that access multi-dimensional ar-
ray variables, such as commonly occur in multimedia algo-
rithms. To be effective, the analysis must track accesses to
individual array elements. For this purpose, we draw on
solutions from parallelizing compiler technology to derive
array data-flow analysis information. Our compiler uses a
specific array data-flow analysis, reaching definitions anal-
ysis [2], to characterize the relationship between array ac-
cesses in different pipeline stages [11]. Reaching definitions
are variable values that are not killed, i.e., not redefined,
at another definition point occurring in the data flow from
predecessor program points (p ∈ pred(s)) to the current pro-
gram point s. Definitions occurring at the current program
point form a gen(s) set. We typically talk about program
points as being basic blocks. While in our system we also cal-
culate reaching definitions at the basic block level, we per-
form a hierarchical analysis that ultimately derives reaching
definitions at the level of pipeline stages. For the purposes
of deriving communication requirements, the analysis only
retains reaching definitions information when a definition in
one pipeline stage reaches a use in another pipeline stage.
Reaching definitions, γ(s), are defined by a set of simulta-
neous equations represented by Equation 1.

γ(s) = gen(s) ∪ (∪p∈pred(s)γ(p)) ∩ ¬killed(s) (1)

We combine reaching definitions information and array
data-flow analysis for data parallelism [3] with task paral-
lelism and pipelining information and capture it in an anal-
ysis abstraction called a Reaching Definition Data Access

611

#define IMAGE 32
int u[IMAGE][IMAGE];
int peak[IMAGE][IMAGE];
int feature x[IMAGE][IMAGE];
int feature y[IMAGE][IMAGE];
int th, uh1, uh2;

/* stage s1. Apply SOBEL Operator */
for(x = 0; x < IMAGE-3; x++){

for(y = 0; y < IMAGE-3; y++){
1. uh1= -3*u[x][y] - · · · ;
2. uh2= 3*u[x][y] + · · · ;
3. peak[x][y] = (uh1 + uh2);

}
}

/* stage s2. Find Features - threshold */
for(x = 0; x < IMAGE-3; x++){

for(y = 0; y < IMAGE-3; y++){
4. if(peak[x][y] > th){
5. feature x[x][y] = x;
6. feature y[x][y] = y;

} else {
7. feature x[x][y] = 0;
8. feature y[x][y] = 0;

}
}

}

(a) Machine Vision Kernel

RDADw,s1 (peak) =

�
0 ≤ d1 ≤ 29
0 ≤ d2 ≤ 29

〈1, 2〉 〈x, y〉 {3} ∅
�

RDADr,s2 (peak) =

�
0 ≤ d1 ≤ 29
0 ≤ d2 ≤ 29

〈1, 2〉 〈x, y〉 {4} {3}
�

RDADw,s2 (feature x) =

�
0 ≤ d1 ≤ 29
0 ≤ d2 ≤ 29

〈1, 2〉 〈x, y〉 {5, 7} ∅
�

RDADw,s2 (feature y) =

�
0 ≤ d1 ≤ 29
0 ≤ d2 ≤ 29

〈1, 2〉 〈x, y〉 {6, 8} ∅
�

(b) Array Data-Flow Analysis

Total Array-sized Communication

CEDs1→s2(peak) = 〈 0 ≤ d1 ≤ 29
0 ≤ d2 ≤ 29

0 0 〉

Row-sized Communication

CEDs1→s2(peak) = 〈 d1 = x
0 ≤ d2 ≤ 29

x x 〉

Element-sized Communication

CEDs1→s2(peak) = 〈 d1 = x
d2 = y

y y 〉

Best Communication

CEDs1→s2(peak) = 〈 d1 = x
0 ≤ d2 ≤ 29

x x 〉

(c) Possible Communication Schemes

architecture a main of main is
signal dataValid1 : boolean;
signal gotData0 : boolean;
signal dPass0 : Arr060000002;

begin
p0: process

variable peak : Arr022;
variable uh1, uh2 : SIGNED INT 32;
variable dPass0local : Arr060000002;
variable edge0ready : boolean;
variable calcDoneInner : boolean;
variable calcDone : boolean;

begin
main loop: loop

FOR x IN 0 to 28 loop
wait until clk’event;
if (gotData0) then

unSetSignal(dataValid1);
end if;
unSetVariable(edge0ready);
unSetVariable(calcDoneInner);

calc loop: loop
if (edge0ready & NOT calcDone) then

FOR y IN 0 to 28 loop
wait until clk’event;
uh1 := -3 * u(x*32+y) - ..;
uh2 := 3 * u(x*32+y) + ..;
peak(x*32+y) := uh1 + uh2;
dPass0local(y) := peak(x*32+y);

end loop;
−− send a row of peak
dPass0 <= dPass0local;
setSignal(dataValid1);
setVariable(calcDoneInner);

end if;
wait until clk’event;
exit calc loop when calcDoneInner;

end loop calc loop;
end loop;
setVariable(calcDone);

end loop main loop;
end process p0;

p1: process
variable peak : Arr022;
variable feature x : Arr022;
variable feature y : Arr022;
variable th : SIGNED INT 32;
variable calcDoneInner : boolean;
variable calcDoneOuter : boolean;
variable dPass0local : Arr060000002;

begin
main loop: loop

wait until clk’event;
FOR x IN 0 to 28 loop

wait until clk’event;

calc loop: loop
wait until clk’event;
if (dataValid1) then

setSignal(gotData0);
−− receive a row of peak
dPass0local := dPass0;

end if;
wait until clk’event;
if (gotData0) then

FOR y IN 0 to 28 loop
wait until clk’event;
peak(x*32+y) := dPass0local(y);
if (th < peak(x*32+y)) then

feature x(x*32+y) := x;
feature y(x*32+y) := y;

else
feature x(x*32+y) := 0;
feature y(x*32+y) := 0;

end if;
end loop;
setVariable(calcDoneInner);

end if;
exit calc loop when calcDoneInner;

end loop calc loop;

end loop;
end loop main loop;

end process p1;
end a main;

(d) VHDL Output

Figure 1: MVIS Kernel Analysis.

612

Descriptor (RDAD). RDADs are a fundamental extension
of Data Access Descriptors (DADs) [6], which were origi-
nally proposed to detect the presence of data dependences
either for data parallelism or task parallelism, but DADs do
not capture sufficient information to automatically generate
communication when dependences exist. For this purpose,
we have extended DADs to capture reaching definitions in-
formation. Second, we have developed RDADs in an exist-
ing array data-flow analysis implementation, described by
Amarasinghe [3], that derives more precise array sections
than that of the DAD definition. For example, it can repre-
sent array regions that have holes and some nonlinear array
regions. Finally, we have added a tuple containing the dom-
inant induction variable (DIV) for each dimension, ordered
according to the array traversal order [6]. A dominant in-
duction variable is defined as the loop index variable that
is changing the fastest in a given access expression. In the
DAD analysis, the dominant induction variables were used
to calculate the traversal order. We relax the DAD restric-
tion on traversal orders in order to increase the opportunity
for pipelining and then use the dominant induction vari-
ables to aid in selecting communication placement. A full
discussion of how we combine standard scalar reaching defin-
tions and array data-flow analysis with task parallelism and
pipelining information is beyond the scope of this paper.

We present the RDAD definition in the next section and
the definition of another abstraction that captures specific
communication requirements between pipeline stages, the
Communication Edge Descriptor (CED), in section 3.3. We
also show how RDADs are used by the compiler to automat-
ically calculate CEDs in section 3.4.

3.2 RDAD Description
Reaching Definition Data Access Descriptors (RDADs)

summarize information about the read and write accesses
for array variables in the high-level algorithm description.
Such RDAD sets are derived hierarchically by analysis at
different program points, i.e., on a statement, basic block,
loop and procedure level. Since we map each nested for

loop or intervening statements to a pipeline stage, we also
associate RDADs with pipeline stages. Loop variables are
normalized before calculating the set of associated RDADs.

Definition 1. A Reaching Definition Data Access De-
scriptor, RDAD(A), defined as a set of 5-tuples 〈 α | τ | δ
| ω | γ 〉, describes the data accessed in the m-dimensional
array A at a program point s, where s is either a basic block,
a loop or pipeline stage. α is an array section describing the
accessed elements of array A represented by a set of integer
linear inequalities. τ is the traversal order of α, a vector of
length ≤ m, with array dimensions from (1, · · · , m) as ele-
ments, ordered from slowest to fastest accessed dimension.
A dimension traversed in reverse order is annotated as i.
An entry may also be a set of dimensions traversed at the
same rate. δ is a vector of length m and contains the dom-
inant induction variable for each dimension. ω is a set of
definition or use points for which α captures the access in-
formation. γ is the set of reaching definitions. We refer to
RDADr,s(A) as the set of tuples corresponding to the reads
of array A and RDADw,s(A) as the set of writes of array
A at program point s. Since writes do not have associated
reaching definitions, for all RDADw,s(A), γ = ∅.

In the following, we use the notation f(RDAD(A)), when
selecting a tuple, f , on which to perform an operation. For

example, to select the array section α, we write α(RDAD(A)).
For this example, we show the calculated RDADs in Fig-

ure 1(b). The compiler determines that an access to array
peak, in statement 3, writes the entire array, as described by

α(RDADw,s1(peak)) =

�
�
�
�

0 ≤ d1 ≤ 29
0 ≤ d2 ≤ 29

�
�
�
�
.

A read access to peak in statement 4 is described by
RDADr,s2(peak). Similarly, the arrays feature x and fea-
ture y are written in statements 5, 6, 7, and 8. For all array
accesses in the program, we capture the vector τ = 〈1, 2〉,
indicating that dimension 1, the row dimension, varies more
slowly than dimension 2. Similarly, we capture the domi-
nant induction variables in δ = 〈x, y〉, where x is the DIV
corresponding to the row dimension access expression for
each RDAD and also the enclosing loop in the nest with
loop index variable x. Reaching definitions are retained in
RDADs only if they reach outside of a pipeline stage. In the
MVIS example, we have one reaching definition, from state-
ment 3 to 4, from RDADw,s1 (peak) to RDADr,s2(peak).
We will show how these RDADs are used to calculate the
specific communication between the two pipeline stages in
section 3.4 and define the Communication Edge Descriptor
next.

3.3 CED Description
We define another abstraction, the Communication Edge

Descriptor, to describe the communication requirements on
each edge connecting two pipeline stages.

Definition 2. A Communication Edge Descriptor (CED),
CEDsi→sj (A), defined as a set of 3-tuples 〈 α | λ | ρ 〉,
describes the communication that must occur between two
pipeline stages si and sj. α is the array section, represented
by a set of integer linear inequalities, that is transmitted on
a per communication instance. λ and ρ are the communica-
tion placement points in the send and receive pipeline stages
respectively.

3.4 Determining Communication Requirements
After calculating the set of RDADs for a program, we use

the reaching definitions information to determine between
which pipeline stages communication must occur. To gen-
erate communication between pipeline stages si and sj we
consider each pair of write and read RDAD tuples, Ri and
Rj , where the definition point ω(Ri) is among the reaching
definitions in γ(Rj). The communication requirements, i.e.,
placement and data, are related to the granularity of com-
munication. We calculate a set of valid granularities, based
on the comparison of traversal order information from the
communicating pipeline stages, and then evaluate the exe-
cution time for each granularity in the set. Once we identify
the best granularity, we then calculate the specific communi-
cation placement and array data section to be communicated
and form a CED. The algorithm is shown in Figure 3.

To calculate the valid set of granularities, the function
calcV alidGran(Ri, Rj), shown in Figure 3, returns β, a vec-
tor of length ≤ m, with array dimensions from (1, · · · , m)
or ∅ as elements, ordered from slowest to fastest accessed
dimension. The fastest moving, non-empty dimension of β
represents the smallest possible communication granularity.
The calcV alidGran function pairwise compares the input
traversal order vectors starting from the slowest moving di-
mension; if two entries are identical, the corresponding βk

is assigned the same value. Once a non-matching pair of
entries is detected, all remaining entries in β are set to ∅.

613

function calcValidGran(Ri, Rj)
for k = 1 to m {
if τk(Ri) = τk(Rj)
βk = τk(Ri)

else βk · · ·βm = ∅; break; }
return β;

function findCommPlace(β, Ri, Rj)
/* initial condition: communicate whole array */
minT ime = execT imesi + execT imesj +

commTimesi→sj (β0) - overlapT imesi→sj (β0)
minDim = 0;
for k = 1 to length(β) {
minT imek = execT imesi + execT imesj +
commTimesi→sj (βk) - overlapT imesi→sj (βk)

if (minT imek ≤ minT ime) then {
minT ime = minT imek ; minDim = βk; }

}
return (λ = δminDim(Ri), ρ = δminDim(Rj));

/* Communication Edge Calculation Algorithm */
∀si,∀sj , i �= j ∈ Stages, ∀A ∈ Arrays,
∀Ri ∈ RDADw,si (A), Rj ∈ RDADr,sj (A),

/* check if definition of A in Ri reaches Rj */
if (ω(Ri) ∩ γ(Rj) �= ∅) then {
/* calculate communication placement */
β = calcV alidGran(Ri, Rj);
{λ, ρ} = calcCommPlace(β, Ri, Rj));

/* calculate communicated data */
α = α(Ri,λ) ∩ α(Rj,ρ);

}
Figure 3: Communication Edge Calculation

The function findCommPlace(β, Ri, Rj) returns the com-
munication placement for the send and receive pipeline stages.
The first step in this function is to identify the granularity
which yields the minimum execution time. The time input
to this calculation includes the MonetTM synthesis estimates
for individual pipeline stage execution, the known communi-
cation time and the time during which computation overlap
occurs for a pair of stages at a particular communication
granularity. If βk is a set, we calculate one execution time
for the whole set since communication for each entry would
be mapped to the same placement points as discussed below.

From the communication granularity, the communication
placement is determined by mapping the array dimension
from minDim to its associated dominant induction variable
in each stage. The communication will occur inside the loop
corresponding to the selected dominant induction variable.
Based on the array sections accessed in Ri,λ and Rj,ρ, sub-
sets of Ri and Rj , respectively, accessed within the pipeline
stages, we may also need to perform code transformations,
such as peeling, to align the communication. For a βk that
is a set, each dimension is mapped to the same dominant
induction variable and thus the same communication place-
ment points.

We also address multiple definitions reaching a single read
access. If the definitions are generated within the same pipe-
line stage, we place the send primitives at the control flow
meet point just after the definition points. If multiple defi-
nitions are generated in different stages, we place additional
logic at the receive point, where the control flow meet point
occurs for these definitions. Finally, we calculate the inter-
section of α(Ri,λ) and α(Rj,ρ). Intersection on array sec-

tions is defined as merging the sets of integer linear inequal-
ities and if a solution exists, simplifying the linear inequality
set [3].

3.5 Code Generation
Once the compiler has inserted the communication prim-

itives, the SUIF code is translated into behavioral VHDL,
shown in Figure 1(d). For presentation, some of the syn-
chronization details have been abstracted away.

4. EXPERIMENTAL RESULTS
4.1 Implementation Status and Methodology

In this experiment, we evaluate our communication anal-
yses by comparing four different communication schemes.
The vector β = 〈1, 2〉 indicates that both a row-sized or an
element-sized transmission are valid for MVIS, and we can
always communicate the whole array, either on or off-chip,
in one transmission. In Array Off-chip, s1 completes its to-
tal calculation and then communicates the array peak to s2

via external memory. There is no pipelining in this scheme,
and additional overhead for the memory accesses; reads take
7 ns and writes 0.1 ns but are pipelined so that there is one
memory access per clock cycle. The scheme Array On-chip
is similar, except the array is communicated on-chip. In
Row, once s1 has produced a row of peak, the row is com-
municated immediately to s2. S2 consumes the data, such
that this computation is overlapped with s1’s computation
of the next row. Similarly, in Element, s1 communicates
each element as it is produced. There is maximum com-
putation overlap in Element. For each instance of on-chip
communication, independent of amount of data communi-
cated, commTime is approximately two cycles. The CEDs
for these schemes are shown in Figure 1(c).

For each scheme, we compile the behavioral VHDL with
MonetTM and simulate in ModelSimTM to obtain the total
execution time. All behavioral VHDL with the exception of
the Array Off-chip scheme were generated automatically.

4.2 Results
Figure 4 shows the MVIS execution times for four com-

munication schemes. As expected, when accessing external
memory, with no computation overlap, as in Array Off-chip,
we see the largest program execution time. When we com-
pare the Array On-chip and Row, we see that there is a 1.76
speedup due to the computation overlap gained from stages
s1 and s2 executing in parallel. The overhead for communi-
cating one element at a time, in Element, is not amortized
over the computational overlap. The Element scheme there-
fore does not yield a minimal execution time.

For MVIS, we choose minDim = 1, since a row-sized
transmission, described by

α(CEDs1→s2(peak)) =

�
�
�
�

d1 = x
0 ≤ d2 ≤ 29

�
�
�
�
,

yields a minimal execution time. We calculate the corre-
sponding communication placement points, λ = ρ = x. The
send primitives are placed inside the enclosing x loop body,
just after loop y in si and the receive primitives are placed in-
side the enclosing x loop body, just before loop y in sj . The
CED for the Best Communication is shown in Figure 1(c)
and the communication points are shown in (d).

5. RELATED WORK
Previous work on array data flow analysis [6, 14, 3] fo-

cused on data dependence analysis but not at the level of

614

0

100

200

300

400

Element Row Array On-chip Array Off-chip
Communication Scheme

n
s

Figure 4: Communication Results

precision required to derive communication requirements for
our platform. Parallelizing compiler communication analy-
sis techniques [4, 12] exploited data parallelism.

In [5] Arnold created a software environment to program
a set of FPGAs connected to a workstation. [9] focused on
compiling for a tightly coupled hybrid FPGA and RISC ar-
chitecture; Callahan and Wawrzynek [7] used a VLIW-like
compilation scheme for the GARP project; both works ex-
ploit intra-loop pipelined execution techniques. Goldstein
et al. [10] describes a custom device that implements an
execution-time reconfigurable fabric. Weihardt and Luk [15]
describes a set of program transformations to map the pipe-
lined execution of loops with loop-carried dependences onto
custom machines.

The approach taken in this paper differs from previously
mentioned efforts. Our approach takes un-annotated se-
quential programs and maps them into a pipelined execution
scheme without programmer intervention. Unlike concur-
rent languages, our approach neither relies on nor exploits
concurrent specification behavior. Instead of focusing on
intra-loop pipelining techniques that optimize resource uti-
lization, we focus on increased throughput through task par-
allelism coupled with pipelining, which we believe is a natu-
ral match for image processing data intensive and streaming
applications.

6. CONCLUSION
In this paper, we describe how parallelizing compiler tech-

nology can be adapted and integrated with hardware syn-
thesis tools, to automatically derive, from sequential C pro-
grams, pipelined implementations for systems with multiple
FPGAs and memories. We describe our implementation of
these analyses in the DEFACTO system, and demonstrate
this approach with a case study, a machine vision applica-
tion. We presented experimental results, derived automat-
ically by our system. We illustrate how these analyses can
improve application performance, as evidenced by the 1.76
speedup we gain over a non-pipelined implementation. Cur-
rent work focuses on integrating these analyses with auto-
mated design space exploration for a single loop [13] and par-
titioning pipelined implementations over multiple FPGAs.

7. REFERENCES
[1] The Stanford SUIF compilation system. Public

Domain Software and Documentation,
http://suif.stanford.edu.

[2] A. Aho, R. Sethi, and J. Ullman. Compilers
Principles, Techniques, and Tools. Addison-Wesley
Publishing, 1988.

[3] S. Amarasinghe. Parallelizing Compiler Techniques
Based on Linear Inequalities. PhD thesis, Dept. of
Electrical Engineering, Stanford University, Jan 1997.

[4] S. Amarasinghe and M. Lam. Communication
optimization and code generation for distributed
memory machines. In Proc. ACM Conf. Programming
Languages Design and Implementation, pages
126–138, Albuquerque, 1993.

[5] J. Arnold. The Splash 2 software environment. In
Proc. IEEE Symp. FPGAs for Custom Computing
Machines, pages 88–93, 1993.

[6] V. Balasundaram and K. Kennedy. A technique for
summarizing data access and its use in parallelism
enhancing transformations. In Proc. ACM Conf.
Programming Languages Design and Implementation,
pages 41–53, 1989.

[7] T. Callahan and J. Wawrzynek. Adapting software
pipelining for reconfigurable computing. In Proc. Intl.
Conf. Compilers, Architectures and Synthesis for
Embedded Systems, pages 57–64, Nov 2000.

[8] P. Diniz, M. Hall, J. Park, B. So, and H. Ziegler.
Bridging the gap between compilation and synthesis in
the DEFACTO system. In Proc. 14th Workshop
Languages and Compilers for Parallel Computing,
Lecture Notes in Computer Science. Springer-Verlag,
2001.

[9] M. Gokhale and J. Stone. Napa C: compiling for a
hybrid RISC/FPGA architecture. In Proc. IEEE
Symp. FPGAs for Custom Computing Machines,
pages 126–135, 1998.

[10] S. Goldstein, H. Schmit, M. Moe, M. Budiu,
S. Cadambi, R. Taylor, and R. Laufer. PipeRench: a
coprocessor for streaming multimedia acceleration. In
Proc. 26th Intl. Symp. Comp. Arch., pages 28–39,
1999.

[11] M. Hall, S. Amarasinghe, B. Murphy, S. Liao, and
M. Lam. Detecting coarse-grain parallelism using an
interprocedural parallelizing compiler. In Proc. Ninth
Intl. Conf. Supercomputing, pages 1–26, 1995.

[12] S. Hiranandani, K. Kennedy, and C.-W. Tseng.
Preliminary experiences with the FortranD compiler.
In Proc. Seventh Intl. Conf. Supercomputing,
Portland, Nov 1993.

[13] B. So, M. Hall, and P. Diniz. A compiler approach to
fast design space exploration in FPGA-based systems.
In Proc. ACM Conf. Programming Languages Design
and Implementation, pages 165–176, June 2002.

[14] C.-W. Tseng. Compiler optimizations for eliminating
barrier synchronization. In Proc. Fifth Symp.
Principles and Practice of Parallel Programming,
volume 30(8) of ACM SIGPLAN Notices, pages
144–155, 1995.

[15] M. Weinhardt and W. Luk. Pipelined vectorization for
reconfigurable systems. In Proc. IEEE Symp. FPGAs
for Custom Computing Machines, pages 52–62, 1999.

[16] H. Ziegler, B. So, M. Hall, and P. Diniz. Coarse-grain
pipelining on multiple FPGA architectures. In Proc.
IEEE Symp. FPGAs for Custom Computing
Machines, April 2002.

615

	Main Page
	DAC'03
	Front Matter
	Table of Contents
	Author Index

