
A Scalable Software-Based Self-Test Methodology for
Programmable Processors

Li Chen*, Srivaths Ravi†, Anand Raghunathan†, Sujit Dey*
*Dept. of ECE, University of California at San Diego

La Jolla, CA
{lichen,dey}@ece.ucsd.edu

†NEC Laboratories America, Inc.
Princeton, NJ

{sravi,anand}@nec-labs.com

ABSTRACT
Software-based self-test (SBST) is an emerging approach to

address the challenges of high-quality, at-speed test for complex
programmable processors and systems-on chips (SoCs) that contain
them. While early work on SBST has proposed several promising
ideas, many challenges remain in applying SBST to realistic em-
bedded processors. We propose a systematic scalable methodology
for SBST that automates several key steps. The proposed method-
ology consists of (i) identifying test program templates that are well
suited for test delivery to each module within the processor, (ii)
extracting input/output mapping functions that capture the control-
lability/observability constraints imposed by a test program tem-
plate for a specific module-under-test, (iii) generating module-level
tests by representing the input/output mapping functions as virtual
constraint circuits, and (iv) automatic synthesis of a software self-
test program from the module-level tests. We propose novel RTL
simulation-based techniques for template ranking and selection,
and techniques based on the theory of statistical regression for ex-
traction of input/output mapping functions. An important advantage
of the proposed techniques is their scalability, which is necessitated
by the significant and growing complexity of embedded processors.

To demonstrate the utility of the proposed methodology, we
have applied it to a commercial state-of-the-art embedded proces-
sor (Xtensa™ from Tensilica Inc.). We believe this is the first prac-
tical demonstration of software-based self-test on a processor of
such complexity. Experimental results demonstrate that software
self-test programs generated using the proposed methodology are
able to detect most (95.2%) of the functionally testable faults, and
achieve significant simultaneous improvements in fault coverage
and test length compared with conventional functional test.
Categories and Subject Descriptors
B.8.1 [Performance and Reliability]: Reliability, Testing, and
Fault-Tolerance
General Terms
Reliability, Measurement, Experimentation, Algorithms
Keywords
Microprocessor, manufacturing test, at-speed test, software-based
self-test, test program, scalability

1. INTRODUCTION
The IC industry has witnessed an ever-lasting tug-of-war

among test methodologies such as functional test, scan test, and
built-in self test (BIST) [1]. Scan test offers a systematic methodol-
ogy with short turn-around times for high-complexity ICs. Func-
tional test, on the other hand, is known to detect speed-defects and
other untargeted faults, and continues to be relied upon for testing
the performance of high-speed devices such as microprocessors,
which cannot tolerate the performance degradation induced by the
insertion of scan chains. While BIST addresses the issue of at-

speed test, the hardware overheads are even higher than scan.
The key challenge in functional test is whether the process of

generating high-coverage functional tests can be made scalable and
applied at low turn-around times and non-recurring engineering
(NRE) costs. The lack of scalability in traditional functional test is
caused by the massive manual test writing effort required for gen-
erating high-coverage test programs. One approach to automate the
test writing process is to use randomized instruction sequences
[2][3][4]. Since the test generation process is not guided by any
particular fault model, achieving high fault coverage may require a
large number of instructions. For realistic processors, this translates
to not only prohibitively long test application times, but also long
fault simulation times for fault grading.

Linking instruction-level tests with low-level fault models,
Software-Based Self-Test (SBST) has been introduced as a promis-
ing technique for testing high-performance microprocessors [5][6].
Based on a divide-and-conquer approach, SBST first generates test
patterns for specific modules (sub-circuits) within the processor,
targeting structural faults within the module. Processor instructions
are then used as a vehicle for delivering the patterns to module
inputs and collecting test responses from module outputs. The re-
sult is a test program consisting of processor instructions. During
test application, SBST employs a self-test scheme wherein the
processor simply executes the test program at-speed from the on-
chip memory. A low-speed structural tester is used to load and
unload the on-chip memory. The use of a similar self-test scheme
has been recently reported on the Intel Pentium 4 processor [4].
Applications of SBST to the testing of path delay faults, intercon-
nect crosstalk faults, and fault diagnosis have been developed in
[7][8][9], respectively. An enhancement of SBST using determinis-
tic tests for arithmetic modules has been studied in [10], whereas
[11] focuses on the application of SBST to processor control sub-
systems.

SBST aims to generate high-coverage tests that can be applied
at-speed using low-cost testers. It achieves this goal by combining
the fault-driven nature of gate-level test generation and the at-speed
test delivery mechanisms inherent in functional tests. Gate-level
test generation is performed only for individual circuit blocks,
avoiding scalability problems. A key requirement of SBST is that,
since module tests must be delivered functionally using instruc-
tions, they must satisfy instruction-imposed constraints.

To make SBST a scalable solution in the face of increasing
processor complexity, each of the above steps must be automated
using efficient techniques. In general, previous approaches to per-
form the steps involved in SBST suffer from high complexity. For
a large processor, it is virtually impossible to extract module-level
constraints manually. Automated constraint extraction methods
have been proposed in [12][13], in which constraints imposed by
the hardware environment surrounding a module can be extracted
from the RTL description. However, structural constraints cannot
be directly used in SBST, as they are only a subset of instruction-
imposed functional constraints. Moreover, from a practical point of
view, the complexity of any structural-analysis-based constraint-
extraction method increases drastically as the design complexity
increases. An alternative approach is to extract constraints using
formal verification techniques such as symbolic simulation [14].
Given extracted constraints, an automated test program synthesis
method was proposed in [15] based on a backtrack-based search
algorithm similar to that used in sequential ATPG.
1.1 Paper overview and contributions

While initial work on SBST has proposed several promising
ideas, realizing the potential of SBST requires a systematic meth-
odology and automation tools. In this work, we propose a compre-
hensive methodology for SBST that consists of scalable methods to
automate the key steps. We identify the following key steps in-

This work was supported by the MARCO/DARPA Gigascale Silicon
Research Center (GSRC) and a summer internship at NEC Laboratories
America, Inc.

Permission to make digital or hard copies of all or part of this work for
personal or classroom use is granted without fee provided that copies are
not made or distributed for profit or commercial advantage and that
copies bear this notice and the full citation on the first page. To copy
otherwise, or republish, to post on servers or to redistribute to lists,
requires prior specific permission and/or a fee.
DAC 2003, June 2-6, 2003, Anaheim, California, USA.
Copyright 2003 ACM 1-58113-688-9/03/0006… $5.00.

33.1

548

volved in generating a software self-test program: (1) constructing
instructions or instruction sequences (test program templates) that
can be used as delivery mechanisms for a given module-under-test
(MUT), (2) extracting constraints imposed by instructions on the
MUT, (3) performing module-level test generation subject to the
said constraints, and (4) translating module-level test patterns to
software self-test programs.

For the selection of high-quality test program templates, we
propose novel techniques based on functional (RTL) HDL simula-
tion to predict the controllability and observability that a given
template will provide for a specified module in the processor. Con-
straint extraction is performed in our methodology through the
derivation of input/output mapping functions for the MUT. We
have developed efficient techniques based on the theory of statisti-
cal regression to formulate mapping functions based on traces de-
rived from functional simulation. Unlike conventional constraint
extraction techniques, which are based on structural analysis
[12][13], our techniques require only a simulatable functional
model of the processor, impose no restriction on the HDL coding
style, and are fully automated without requiring a knowledge of the
processor architecture. We perform module-level test generation
under the extracted constraints using the concept of virtual con-
straint circuits (VCCs), which was first proposed in [16]. We pro-

pose a novel utilization of VCCs such that the test patterns gener-
ated can be directly plugged in to the settable fields in the test pro-
gram template, greatly simplifying the automated generation of test
programs. To demonstrate the utility of the proposed methodology,
we have applied it to a commercial state-of-the-art embedded proc-
essor (the Xtensa™ from Tensilica Inc.) with promising results. To
the best of our knowledge, this is the first practical demonstration
of SBST on a processor of such complexity.

The rest of this paper is organized as follows. In Section 2, we
outline the overall SBST methodology and describe the automation
of its key steps. The experimental methodology and results are
presented in Section 3. We summarize our ideas and draw conclu-
sions in Section 4.

2. METHODOLOGY
Figure 1 shows the proposed SBST methodology, in which a

self-test program can be automatically generated from only (a) a
simulatable RTL description of the processor, and (b) the instruc-
tion set architecture (ISA) specification.

The first step in the proposed methodology involves partition-
ing the processor into a set (M) of modules-under-test (MUTs).
This partitioning is done automatically through logic cone tracing
techniques. While MUTs can be arbitrary sub-circuits, we choose
combinational logic blocks as MUTs so that module-level con-
strained test generation can be easily handled by commercial ATPG
tools. Step 2 systematically constructs a comprehensive set of test
program templates (T), which will be used for the rest of the analy-
sis. Test program templates (described in Section 2.1) are se-
quences of instructions used for test delivery, with fields in the
instructions left settable whenever possible (e.g., source/destination
registers, data operands, etc.). An instance of a template is created
by assigning specific values to the settable fields.

For each module m ∈ M, steps 3a-b determine the test pro-
gram templates that are best suited to deliver tests to m. Step 3a
computes a controllability/observability based testability metric
Mm,t (for each template t ∈ T), using a novel X-based simulation
approach described in Section 2.2. Next, step 3b generates a ranked
list of templates (Tm) for module m, based on the metric Mm,t.

The best template t is removed from the ranked list Tm and
considered for further analysis in Steps 4–7. The objective of these
steps is to construct a software self-test program using instances of
template t that maximizes the detection of faults in m. Step 4 en-
ables efficient test generation by abstracting the rest of the proces-
sor (all logic other than the MUT) through the use of mapping
functions. Mapping functions compactly capture the behavior of the
processor for the given template. Input mapping functions express
the relationship between settable fields in the test program template
and inputs of the MUT. Output mapping functions specify the logi-
cal and temporal conditions under which the outputs of the MUT
are observable.

We solve the challenging task of extracting the input/output
mapping functions using novel techniques based on functional
simulation and statistical regression analysis (Step 4). Step 4a gen-
erates several instances of template t by assigning random values to
the settable fields. Steps 4b-c extract the input mapping function by
(i) simulating the template instances to obtain traces at inputs of the
module m, and (ii) using regression analysis to construct the map-
ping function that captures the relationship between the settable
fields in t and the inputs of m. It bears mentioning that, the use of
regression allows us to take a black-box approach that is agnostic to
the actual physical structure (implementation) of the processor.
Further, we circumvent the computationally hard problem of ab-
stracting exact mapping functions from the structural description of
a processor by designing statistically correct mapping functions.
Steps 4d-e similarly determine the output mapping functions, by
injecting X values at the MUT outputs and observing the propaga-
tion (if any) to the specified template destinations.

The mapping functions determined in Step 4 are converted
into virtual constraint circuits (Step 5). Module-level test genera-
tion is performed on a composite circuit that consists of the MUT
sandwiched between the input and output virtual constraint circuits
(Step 6). The test vectors resulting from Step 6 specify the values
of settable fields in the test program template t, which are used in
Step 7 to synthesize targeted software self-test programs for mod-
ule m. The test programs thus generated are cross-compiled to a
memory image, and fault simulated (Step 8) to update the set of
faults detected in the entire processor. If acceptable fault coverage
on m has not yet been achieved, we update the ranked list of tem-

Generate virtual constraint circuits

Instruction Set
Architecture (ISA)Processor RTL

Generate ranked list of templates Tm

Y

N

NY

Pick m ∈ M

∀ t ∈ T: X-based simulation to
compute controllability/observability metrics

Set of test program
templates: T

Set of
MUTs: M

Choose best ranked template t ∈ Tm

More t in Tm?

More m in M?

Acceptable fault coverage?

Y

N

MUT Partitioning
Extract candidate test
program templates

Template
Ranking

Regression analysis to derive
Input mapping

Simulate template instances
to obtain traces at inputs of m

Derivation
of Mapping
Functions

Simulate template instances
With X injection at outputs of m

Input/output mapping functions

U
p
d
a
te

 s
e
t
o
f
u
n
d
e
te

ct
e
d
 f
a
u
lts

,
R

e-
ra

n
k

re
m

a
in

in
g
 t
e
m

p
la

te
s

in
 T

m

SW self-test
programs

1 2

3a

3b

4b

4c

4d

5

6

7

9

Generate instances of t by assigning
random values to settable fields in t

Regression analysis to derive
Output mapping 4e

4a

Constrained test generation

8
Test program memory image

Processor-level fault simulation

Test program synthesis,
cross-compilation

Template field assignments

Generate virtual constraint circuits

Instruction Set
Architecture (ISA)Processor RTL

Generate ranked list of templates Tm

Y

N

NY

Pick m ∈ M

∀ t ∈ T: X-based simulation to
compute controllability/observability metrics

Set of test program
templates: T

Set of
MUTs: M

Choose best ranked template t ∈ Tm

More t in Tm?

More m in M?

Acceptable fault coverage?

Y

N

MUT Partitioning
Extract candidate test
program templates

Template
Ranking

Regression analysis to derive
Input mapping

Simulate template instances
to obtain traces at inputs of m

Derivation
of Mapping
Functions

Simulate template instances
With X injection at outputs of m

Input/output mapping functions

U
p
d
a
te

 s
e
t
o
f
u
n
d
e
te

ct
e
d
 f
a
u
lts

,
R

e-
ra

n
k

re
m

a
in

in
g
 t
e
m

p
la

te
s

in
 T

m

SW self-test
programs

1 2

3a

3b

4b

4c

4d

5

6

7

9

Generate instances of t by assigning
random values to settable fields in t

Regression analysis to derive
Output mapping 4e

4a

Constrained test generation

8
Test program memory image

Processor-level fault simulation

Test program synthesis,
cross-compilation

Template field assignments

Figure 1. Overview of the proposed software-based self-test

methodology

549

plates (Step 9), and use the best-ranked template to target any re-
maining undetected faults in m. We repeat Steps 3-8 on remaining
modules in the processor until satisfactory processor-level fault
coverage is achieved, or all modules have been targeted.

We describe the details of the proposed methodology in the
subsequent sub-sections. Section 2.1 describes the generation of
candidate test program templates. Section 2.2 details the evaluation
and ranking of templates. Section 2.3 formulates the derivation of
input/output mapping functions. Sections 2.4 and 2.5 examine the
tasks of constrained test generation and test program synthesis,
respectively.
2.1 Extracting candidate test program templates

The state of a processor may be affected by an instruction that
was executed an arbitrary number of cycles ago. Thus, it is virtually
impossible to exhaust all possible test program templates, even if
we are able to enumerate all permutations of instructions within a
fixed number of cycles. Fortunately, not all templates are needed in
order to achieve an acceptable coverage. Our goal is to generate a
set of representative test program templates that can be used as
basic building blocks for constructing effective self-test programs.

We classify test program templates into single-instruction tem-
plates and multi-instruction templates.

Single-instruction templates are built around one key instruc-
tion that is capable of delivering patterns to, and capturing re-
sponses from, the MUT. In a pipelined processor, this is the case
when no pipeline forwarding is taking place. An example single-
instruction template is shown in Figure 2(a), for which the key
instruction is shown in bold on Line 4. The symbols enclosed in
angled brackets (“<>”) are defined as settable fields, whose values
are to be set when the template is instantiated. The key instruction
contains references to registers a<r>, a<s>, and a<t>, where <r>,
<s>, and <t> are settable fields containing register indices. The
template also contains peripheral instructions for aiding the execu-
tion of the key instruction. On Lines 1 and 2, two load instructions
are used to set the contents of registers a<s> and a<t>, which are
source registers in the key instruction. On Line 5, a store instruc-
tion is used to store the content of the destination register a<r> to a
response location in memory, which is to be observed after the
execution of the test program. We systematically construct a set of
single-instruction test program templates by enumerating all in-
structions from the instruction set. To prevent pipeline forwarding,
we precede the key instruction with a sufficient number of NOPs.

Multi-instruction templates can be constructed systematically
in a similar manner, by including additional supporting instructions
(e.g., to trigger pipeline forwarding). An example multi-instruction
is shown in Figure 2(b), where a supporting instruction is added on
Line 6. The underlined field, a<s>, is responsible for triggering
pipeline forwarding. Note that the relative position of the support-
ing instruction(s) with respect to the key instruction can be varied
in different templates to cover all pipeline forwarding cases.
2.2 Template evaluation and ranking

As mentioned above, the space of all candidate templates is
quite large. The objective of template evaluation is to efficiently
short-list templates that are most promising for a given MUT. In
order to facilitate efficient evaluation of test program templates, we
developed a fast ranking mechanism that (a) uses X-based simula-
tion to evaluate the controllability and observability that a template
provides to the inputs (outputs) of a MUT, (b) ranks templates
based on quantified testability metrics that capture the potential of a
template to maximize fault coverage improvements, (c) removes
templates that cannot serve as useful test delivery mechanisms, and
(d) includes a dynamic update policy, that uses feedback from fault
simulation to choose templates based on the current set of unde-

tected faults in a module. The use of X-based simulation in the
ranking formulation allows us to leverage off fast commercial HDL
simulators, making the scheme applicable to any processor.

We now describe how the observability metric OBSm
t is com-

puted for a given module m and a template t. Let O1, O2, O3 … . On
be the n output ports of a module m and t1, t2, t3 … . tr be r instances
of the template t obtained by assigning random values to the
settable fields. Then, we construct an r x n Boolean matrix F as
follows:

Fi,j = 1, if and only if, an ‘X’ value injected at Oj during the
application of ti gets propagated to an observable destination.

Thus, each row in the F matrix corresponds to a template in-
stance, while each column corresponds to a module output port. By
injecting an X value at Oj, when the key instruction of the template
is active in the pipeline stage containing the MUT, we can monitor
the subsequent propagation of the X value to an observable destina-
tion (e. g., the general purpose register whose contents are subse-
quently written to the memory). Using the F matrix, we can formu-
late the observability metric OBSm

t by observing that
• The potential of a template in observing Oj depends on the

fraction of the r instances for which a 1 entry appears in the F
matrix.

• The potential for improvement in fault coverage by observing
output Oj depends on the number of undetected faults in the
input logic cone of Oj (denoted by S(Oj)).
Equation 1 given below incorporates the above observations in

defining OBSm
t as the sum of the likelihoods of template t observ-

ing a response at Oj,, weighted by the fault coverage improvement
potential S(Oj).

∑ ∑
= =





=

n

j

r

i

ij
j

t
m r

FOSOBS
1 1

*)([1]

The metric for controllability (CONTm

t) is similarly defined.
Let I1, I2, I3 … . Ip be the p input ports of a module m and t1, t2, t3
… . tr be r instances of the template t obtained by assigning an X
value to one settable field, while assigning random values to the
remaining settable fields. Then, we construct an r x p Boolean ma-
trix G as follows:

Gi,j = 1, if and only if, an ‘X’ value assigned to any one
settable field during the application of ti gets propagated to the
MUT input Ij.

Equation 2 given below defines the controllability metric
CONTm

t as the weighted sum of the likelihoods of the template t
controlling all the inputs Ij,, weighted by the fault coverage im-
provement potential S(Ij). Here, S(Ij) denotes the undetected faults
in the transitive fan-out cone extending from Ij to the outputs of m.

∑ ∑
= =






=

p

j

r

i

ij
j

t
m r

GISCONT
1 1

*)([2]

The product of CONTm

t and OBSm
t yields the metric Mm,t used

to rank the remaining templates for a given module m. Note that
this ranking is dynamically refined in Step 9 by updating S(Ij) and
S(Oj) to include only those faults in module m that remain unde-
tected after fault simulating the already derived test programs.
2.3 Deriving input/output mapping functions

Figure 3 illustrates the process of deriving the input mapping
functions resulting from the use of a sample test program template t
for a MUT m. Module m has four inputs: i1 … i4 and the template
has six settable fields (<val1>,<val2>,<r>,<s>,<t>,<resp>).
Based on the template, we first construct a set of N training test
programs (ttp1… ttpN) by assigning random values to settable fields.
The training test programs should be distinguished from the final
test program used for detecting faults, since they are only used for
deriving the mapping functions. We simulate the execution of all
training test programs on the processor using an HDL simulator.
During the HDL simulation, we capture the simulation trace at the
inputs of m, when the key instruction in t is active in m. For exam-
ple, the simulation trace in Figure 3 shows that the sequence of
values observed at MUT input i2 for the training test programs ttp1,
ttp2, … ttpN is 5343, FF31, … EE0A (in hexadecimal format).

The next task is to determine the input mapping function that
captures the relationship between the settable fields of the template
and inputs of the MUT. The exact mapping may be a Boolean func-
tion of arbitrary complexity. For example, the entire logic of the

(a)

1 load a<s>, <val1>
2 load a<t>, <val2>
3 nop; nop; nop; nop
4 add a<r>, a<s>, a<t>
5 store a<r>, <resp>

1 load a<s>, <val1>
2 load a<t>, <val2>
3 load a<u>, <val3>
4 load a<v>, <val4>
5 nop; nop; nop; nop;
6 sub a<s>, a<u>, a<v>
7 add a<r>, a<s>, a<t>
8 store a<r>, <resp>

(b)
Figure 2. Test program templates

550

processor in the input logic cone of the MUT is one instance of the
mapping function. In practice, a close approximation to this map-
ping may be derived without any loss of accuracy (fault coverage),
while resulting in significant simplification. We next show how to
derive highly compact, yet accurate mapping functions using the
theory of statistical regression.

Regression analysis refers to the process of determining a
function that best fits a set of data observations obtained [17]. In
order to accommodate the potentially wide range of mapping func-
tions that may occur in practice, we attempt to derive mapping
functions at both the word-level and the bit-level. Deriving a word-
level mapping function involves expressing the input of a MUT (I)
as a function of variables X1… Xm, which may represent the settable
fields in the test program template, as well as polynomial terms
involving the settable fields. In other words, we express a mapping
function for I as follows.

mm XXXI~ 22110 αααα ++++ [3]

Regression analysis tools that are widely available [17] can be

employed to derive estimates of the coefficients in the mapping
function (∝0,∝1 … .∝m). Regression is performed using the data
values for Xi’s in the training test programs and the corresponding
values for I in the HDL simulation trace, while minimizing the error
of the fit.

Consider, for example, the MUT input i4 shown in Figure 3.
The general mapping function seen in Equation 3 is defined to in-
clude all first-order and second-order polynomial terms involving
the settable fields (<val1>, <val2>, <val1>*<val2>, <val1>2,
<val2>2). Figure 3 shows that, for MUT input i4, the desired map-
ping function determined by regression is <val1> + <val2>.

While the use of regression analysis is effective in establishing
word-level correspondences, it fails when the actual mapping func-
tion is a relational operator, Boolean function, or involves bit-level
manipulation of the settable fields. Since the space of such func-
tions is exponentially large in the cumulative number of bits in the
settable fields, we use a pre-defined library of candidate binary
mapping functions (that output 1/0) defined over the settable field
input space. These functions cover all the standard relational opera-
tors between any two settable fields (<, > , =, ≠, ≥ , ≤), and, all Boo-
lean functions defined over any two bits in the settable field space.
For each input bit of the MUT, we consider each candidate library
function, and compute difference between the values evaluated by
the candidate function and the actual values returned in simulation.
For example, if the simulation trace records values of (1,1,1,1,0) for
i2[0] (the first bit of i2), while the mapping function given by
(<val1>[0] AND <val2>[1]) evaluates to (0,0,1,1,1), the differ-
ence in evaluated and expected outputs is captured by (1⊕ 0, 1⊕ 0,
1⊕ 1, 1⊕ 1, 0⊕ 1) = (1,1,0,0,1). In other words, the likelihood of
error in estimation due to the use of this mapping function is 0.6.
The candidate function associated with the least likelihood of error
is returned as the bit-level mapping function for that input bit.

Bit-by-bit error estimates are also obtained for the word-level
mapping function determined using regression. The mapping func-

tion that results in minimum error for a given bit determines the
mapping function used for that bit. Since each bit is considered
independently, in general, a mix of word-level and bit-level func-
tions may be used even within a single word.

Similarly, output mapping functions can be derived to encap-
sulate the propagation of an error at the outputs of a MUT to ob-
servable locations (e.g., registers that are stored to memory in the
test program template). If an error appearing at a MUT output can
propagate to an observable location, we consider this output to be
observable. In order to decide the observability of a MUT output,
we inject an X value at the MUT output during the HDL simulation
of the training test programs to see if an X value propagates to the
observable destination. Since this binary outcome (observ-
able/otherwise) is again contingent on the values assigned to the
settable fields in the template, we use the regression analysis tech-
niques detailed above to determine the output mapping function.
2.4 Constrained test generation

Given instruction-imposed constraints, we perform con-
strained test generation based on the concept of virtual constraint
circuits (VCCs) introduced in [16]. We propose a utilization of
VCCs that not only enforces the instruction-imposed constraints (as
abstracted by the mapping functions) during test generation, but
also facilitates the translation from module-level test patterns to
instruction-level test programs.

In [16], VCCs were proposed to enable the generation of mod-
ule-level tests under the constraints imposed by the hardware
environment surrounding the MUT. We modified the concept of
VCCs to enable the modeling of instruction-imposed constraints
(Figure 4). To generate tests for MUT m under constraints imposed
by test program template t, we first insert a VCC on the input side
of the MUT. The generation of the VCC is automated, since it sim-
ply implements the mapping functions between settable fields in t
and inputs of m (as described in Section 2.3). The constraints on the
inputs of m are described implicitly by the mapping functions. If
the mapping function for a particular input port is unknown, we
wire it to X’s (unknown values) in the VCC. This results in a con-
servative estimation of coverage during module-level test genera-
tion. In practice, we observed the loss of coverage due to unknown
mapping functions to be small. The test generator is free to assign
any patterns to the inputs of the VCC, which are the relevant
settable fields in t. Enforced by the logic in the VCC, any patterns
appearing at the inputs of the MUT are guaranteed to satisfy the
instruction-imposed constraints. Similarly, on the output side of the
MUT, we insert another VCC that embodies the output mapping
functions.

During constrained test generation, the test generator sees the
circuit including m and the two VCCs, as shown in Figure 4. The
goal of test generation is to detect faults in m. Thus, faults from the
VCCs are removed from the fault list during test generation. The
patterns generated by the test generators are directly in terms of
values assigned to the settable fields in t. Thus, they can be easily
translated into test programs, as will be seen in Section 2.5.
2.5 Test program synthesis

Given test patterns Pm,t generated for MUT m under the con-
straints imposed by test program template t, Figure 5 shows the
generation of the corresponding test program, TPm,t.

In Step 1, we identify values assigned to settable fields in t
from the test patterns produced by the test generator. These are the

Simulateable
model

of processor

HDL
Simulator

Randomizing
settable fields

load a<s>, <val1>
load a<t>, <val2>
nop; nop; nop; nop
add a<r>, a<s>, a<t>
store a<r>, <resp>

Test program template t

 i1 i2 i3 i4
ttp1 0 5343 3 5E49
ttp2 0 FF31 7 1FFE
... … … … …
ttpN 0 EE0A C CD01

Simulation Trace for MUT m

load a4, ef04
load a14, 3920
add a6, a4, a14
store a6, resp

load a8, ff31
load a12, 0012
add a5, a8, a12
store a5, resp

load a3, 3534
load a12, 2915
nop;nop;nop;nop
add a4, a3, a12
store a4, FF12

Training test programs
ttp1 ... ttpN

Input mapping functions
i1 = 0
i2 = {val1[11:0],val1[15:12]}
i3 = <s>
i4 = <val1> + <val2>

Regression analysis

Figure 3. Deriving input/output mapping functions

o1Module-
Under-Test:

m

i1
i2
i3
i4 o2

VCC
<val1>

<s>

Constrained
inputs to m

Settable fields
in template t

Observable
destination of m

VCC

All outputs
of m

Circuit as seen by test generator

Figure 4. Constrained test generation using VCCs

551

settable fields affecting the inputs of m. In Step 2, we assign pseu-
dorandom values to other settable fields in t in order to increase the
collateral coverage in other MUTs. In Step 3, we parse the test
program template t, identifying the positions of settable fields. In
Step 4, we generate test program TPm,t by filling the values as-
signed to settable fields into their corresponding placeholders in t.
The resulting test program TPm,t guarantees to apply test patterns
Pm,t to m.

3. EXPERIMENTAL RESULTS
We applied the proposed SBST methodology to the Xtensa

processor from Tensilica Inc.[18]. We present an overview of the
processor in Section 3.1. The remaining subsections describe the
experimental setup and results for the derivation of mapping func-
tions, constrained test generation, and test program synthesis.
3.1 Overview of the Xtensa processor

The Xtensa is a commercial configurable and extensible RISC
processor with 5 pipeline stages and 81+ core instructions [18]. A
typical configuration of Xtensa, synthesized using Synopsys De-
sign Compiler [19], contains 412574 collapsed stuck-at-faults and
5248 sequential elements.

We present experimental results in the context of a large logic
module, called EX1, which was systematically extracted from the
Xtensa processor. To extract EX1, we started from the 32-bit pipe-
line registers storing the results of the Execution stage (EX). We
then traced the logic cones leading to these registers until we
reached either a memory element or a primary input. The resulting
logic is referred to as EX1. By construction, EX1 has one 32-bit
output port, and 81 input ports corresponding to 335 bits. EX1 con-
tains the basic building blocks for completing arithme-
tic/relational/logical operations, such as an adder, comparator, the
AND/OR/XOR logic, and a funnel shifter. In addition, it contains
numerous muxes for channeling data signals and control logic for
interpreting control signals. Finally, it contains a set of muxes and
control logic used for pipeline forwarding. The size of EX1, in
terms of the number of faults, is 24962. EX1 is particularly chal-
lenging due to its numerous data and control inputs, and due to the
mix of datapath and control logic that it contains. In addition, the
highly optimized hardware design and complex control logic of the
Xtensa processor make it challenging to manually understand the
link between instructions and the control signals of EX1.
3.2 Simulation-based mapping function extraction

By enumerating the core instructions in the Xtensa instruction
set [18], we generated 42 test program templates, corresponding to
4 load instructions, 4 store instructions, 17 arithmetic/logical in-
structions, 7 move instructions, and 10 shift instructions. For each
template, a pool of 1281 training test programs (template instances)
was created. Using the simulation framework provided in the
Xtensa software suite [18], we simulated the execution of the train-
ing test programs using the commercial HDL simulation tool Mod-
elSim [20]. On a SUN Fire 280R server with two 900-MHz UltraS-
PARC processors and 4GB RAM, the typical CPU time required
for simulating all training test programs for one template is 37.8

1 The confidence in the accuracy of the mapping functions increases as the
number of training test programs increases. In this case, we found 128 train-
ing programs to be sufficient for deriving correct mapping functions.

seconds. For each training program, the simulation trace at the
inputs of EX1 was captured when the key instruction was in the EX
stage. In case a key instruction was stalled in the EX stage, the
capturing was performed after the stall cleared.

We first extracted the output mapping functions for EX1. Ac-
cording to the results of X-based simulation, the outputs of EX1
can be observed in all but 8 test program templates, corresponding
to the 8 load/store instructions. That is because the result of EX1 is
not used for load/store instructions. These 8 test program templates
can thus be discarded.

For the remaining 34 test
program templates, we extracted
input mapping functions from
the simulation trace. Table 1
shows the fraction of input bits
of the MUT that are modeled
using mapping functions that fall into the categories of Constant
(the value of an input is constant due to the constraints imposed by
the template), One-to-One (an identity, shift, rotate, or byte re-
ordering relates a single settable field to a single MUT input), and
General (more general functions were required).
3.3 Constrained test generation

For each template, we generated an RTL description of the
VCCs in RTL Verilog, based on the extracted mapping functions.
We synthesized the RTL description into a gate-level netlist using
Synopsys Design Compiler. The gate-level description of the VCCs
were then combined with that of EX1 and given to a commercial
ATPG tool (Flextest from Mentor Graphics [21]) for constrained
test generation. On a SUN Enterprise 250 server with two 296-
MHz UltraSPARC-II processors and 512MB RAM, the CPU time
taken by ATPG was 283.79 seconds. The results of test generation,
in terms of the number of faults detected and number of patterns
generated, are shown in Table 2 and plotted in Figure 6. In Table 2,
Column 1 shows the order in which the templates were considered.
Column 2 shows the names of the templates. Columns 3 and 4
show the number of faults detected and the number of test patterns
generated under each template. Note that the faults are disjoint, as
faults detected under previously considered templates were dropped
when a new template was being processed. Out of 24962 faults in
EX1, a total of 18535 faults were detected by 288 test patterns.

The results of constrained ATPG correspond to a fault cover-
age of 74.3%. However, it is important to note that the coverage on
functionally testable faults is much higher, as some of the remain-
ing faults are functionally untestable. To identify functionally
untestable faults, we performed constrained ATPG under a set of
relaxed constraints that are independent of the selection of test
program templates. In particular, EX1 contains several multiplexers
whose select signals must satisfy one-hot encoding constraints. The
fault coverage obtained under these constraints is 81.8%, which is a
loose upper bound of the functionally achievable fault coverage.
Hence, a fault coverage of 74.3% for all faults translates into a fault
coverage of at least 90.1% for functionally testable faults.

3. Test program template t

1. Test patterns
Pm,t

<val1> <s>
ef12 10
0200 3
1ac0 8

<val1> <s> <val2> <t> <r>
ef12 10 1002 7 8
0200 3 029a 2 12
1ac0 8 9213 9 3

2. Assignment to settable fields
load a10, ef12
load a7, 1002
nop; nop; nop; nop
add a8, a10, a7
store a8, ff12
load a3, 0200
load a2, 029a
nop; nop; nop; nop
add a12, a3, a2
store a12, ff16
...

4. Final test program
TPm,t

load a<s>, <val1>
load a<t>, <val2>
nop; nop; nop; nop
add a<r>, a<s>, a<t>
store a<r>, <resp>

Figure 5. Test program synthesis

Table 1. Mapping functions
 % bits
Constant 48.9%
One-to-one 31.0%
General 20.1%

Table 2. Results of constrained ATPG
 Temp #Det #Pat Temp #Det #Pat Temp #Det #Pat

1 add 5672 29 13 or 416 11 25 src_ssa8l 0 0
2 add.n 0 0 14 xor 1024 13 26 sll 175 5
3 addx2 211 7 15 moveqz 877 7 27 srl 0 0
4 addx4 153 4 16 movgez 0 0 28 sra 9 2
5 addx8 149 4 17 movltz 0 0 29 mov.n 0 0
6 addi 32 6 18 movnez 0 0 30 abs 53 8
7 addi.n 0 0 19 extui 3853 82 31 neg 0 0
8 sub 334 5 20 srli 1925 34 32 addmi 0 0
9 subx2 0 0 21 srai 1113 19 33 movi 288 4

10 subx4 0 0 22 slli 209 25 34 movi.n 166 6
11 subx8 0 0 23 src_ssr 17 5
12 and 1859 12 24 src_ssa8b 0 0 Total 18535 288

0
1000
2000
3000
4000
5000
6000

ad
d

ad
dx

2

ad
dx

4

ad
dx

8

ad
di

su
b

an
d or xo
r

m
ov

eq
z

ex
tu

i

sr
li

sr
ai sl
li

sr
c_

ss
r sl
l

sr
a

ab
s

m
ov

i

m
ov

i.n

0
20
40
60
80

120
100

#Pat#Det

#Det #Pat

0
1000
2000
3000
4000
5000
6000

ad
d

ad
dx

2

ad
dx

4

ad
dx

8

ad
di

su
b

an
d or xo
r

m
ov

eq
z

ex
tu

i

sr
li

sr
ai sl
li

sr
c_

ss
r sl
l

sr
a

ab
s

m
ov

i

m
ov

i.n

0
20
40
60
80

120
100

#Pat#Det

#Det #Pat

Figure 6. Results of constrained ATPG

552

3.4 Test program synthesis
We developed a prototype tool in Perl to synthesize test pro-

grams given the test patterns generated using constrained ATPG.
On the Sun Enterprise 250 server, the CPU time for generating the
test program was 1.45 seconds. Table 3 shows the comparison be-
tween the synthesized software-based self-test program (column
SBST) and a functional test program (column Functional). The
functional test program was generated by enumerating all instruc-
tions and assigning pseudorandom values to their operands. For
each instruction, a set of 128 pseudorandom operand assignments
was used. Peripheral instructions were also added for controllability
and observability purposes, as in the case of SBST.

In Table 3, Rows 1 and 2 show the program size in terms of
the number of instructions and the number of bytes, respectively.
This does not include the reset and termination code inserted by the
compiler before and after the main program. Row 3 shows the exe-
cution time of the test program in terms of the number of processor
cycles, again excluding the reset/termination code. Row 4 shows
the CPU time taken for fault simulating the test program at the
processor level (using Mentor Flextest on the Sun Enterprise 250
server). The reset/termination code is included here since it con-
tributed marginally to the fault coverage. Row 5 shows the fault
coverage measured on EX1 after dropping all known functionally
untestable faults from consideration (this is a lower bound on the
actual fault coverage with respect to functionally testable faults).

The program sizes of SBST and random functional test are
close, even though random functional test exercises each instruc-
tion 128 times while SBST applies only 288 ATPG patterns over
all instructions. The reason is that the random functional test was
written manually in assembly and was thus more compact, whereas
SBST programs were generated automatically using test program
templates and a cross-compiler. Many instructions in SBST can in
fact be collapsed together, resulting in much smaller test programs.

For SBST, the fault coverage exceeds the fault coverage pro-
jected by module-level constrained ATPG (90.1%) due to the addi-
tion of the reset/termination code, as well as the collateral coverage
resulting from the peripheral instructions used for delivering the
tests. Overall, the software self-test programs resulting from the
proposed methodology achieve a coverage of at least 95.2% on
functional testable faults.

It can be seen that SBST achieves a high fault coverage much
faster than random functional test. This corresponds to a shorter test
loading time, smaller memory requirement, shorter test application
time, and a much shorter fault simulation time. In random func-
tional test, processor-level fault simulation is required to evaluate
the coverage of the test program. The fault simulation time can be
prohibitively long due to the complexity of the processor and the
length of the test program. SBST can reduce fault simulation time
not only by reducing test length, but also by reducing design com-
plexity: given accurate output constraints, module-level ATPG can
be used to give an accurate projection of the fault coverage. In this
case, processor-level fault simulation is only needed if one intends
to evaluate the collateral coverage on other modules.

SBST enables the generation of functional tests in a determi-
nistic manner. In the cases when pseudorandom tests must be used
(e.g., to reduce the on-chip memory required for storing determinis-
tic patterns, or to detect unmodeled faults), SBST can be used in
conjunction with random tests in the following ways: (a) In tradi-
tional functional test that uses randomized instructions, without any
human knowledge of the architecture, a uniform instruction mix is
usually used, resulting in inefficient test programs [2]. In SBST, the
results of constrained ATPG can be used as a guideline for deter-
mining an efficient instruction mix for pseudorandom tests (e.g.,
see Figure 6). (b) In scan test, random tests need to be topped-off
with deterministic tests. In functional test, SBST provides, for the
first time, a scalable mechanism for topping-off random tests with
deterministic tests targeted at hard-to-detect structural faults.

The proposed methodology applies not only to stuck-at faults,

but also to other fault models, such as bridging faults and transis-
tor-level faults. Furthermore, the same simulation-based approach
for extracting constraints can be extended for extracting multi-
timeframe constraints, enabling deterministic test generation for
performance-related faults at the functional level [7].

4. CONCLUSIONS
For today’s high-speed microprocessors, functional test con-

tinues to be relied upon for catching speed defects undetected by
scan tests. However, traditional functional test lacks scalability and
cannot be used to target low-level structural faults. Software-based
self-test (SBST) has been previously proposed as a promising ap-
proach for tackling this problem. In this work, we propose a com-
prehensive systematic methodology for SBST and automate its key
steps.

We demonstrate the scalability of the proposed method by ap-
plying it to the Tensilica Xtensa™ embedded processor. Our ex-
periments show that, at the module level, extracted instruction-
imposed constraints are close to the true constraints, and that the
test patterns generated under these constraints can detect most, if
not all, functionally testable faults. Software self-test programs
generated using the proposed methodology result in simultaneous
improvements in test length and fault coverage compared with
traditional functional test. We believe that the proposed SBST
methodology is an important step towards realizing the potential of
SBST for realistic programmable processors.

5. REFERENCES
[1] D. Wu et al., “Can scan achieve the quality level we are looking for?”

Panel session, Proc. Intl. Test Conf., Baltimore, MD, Oct 2002, pp.
1194-1199.

[2] J. Shen and J. A. Abraham, “Native mode functional test generation
for processors with applications to self test and design validation,”
Proc. Intl. Test Conf., Washington DC, Oct. 1998, pp. 990-999.

[3] K. Batcher and C. Papachristou, “Instruction randomization self test
for processor cores,” Proc. 17th IEEE VLSI Test Symp., Dana Point,
CA, April 1999, pp. 34 – 40.

[4] P. Parvathala, K. Maneparambil, and W. Lindsay, “FRITS – A micro-
processor functional BIST method,” Proc. Intl Test Conf., Baltimore,
MD, Oct 2002, pp. 590-598.

[5] L. Chen and S. Dey, "DEFUSE: A Deterministic Functional Self-Test
Methodology for Processors," Proc. 18th IEEE VLSI Test Symp.,
Montreal, Canada, May 2000, pp. 255-262.

[6] L. Chen and S. Dey, “Software-based self-testing methodology for
processor cores,” IEEE Trans. Computer-Aided Design, vol.20, no.3,
March 2001, pp. 369-380.

[7] W.-C. Lai, A. Krstic, and K.-T. Cheng, “On testing the path delay
faults of a microprocessor using its instruction set,” Proc. 18th VLSI
Test Symp., Montreal, Canada, May 2000, pp. 15-20.

[8] L. Chen, X. Bai, and S. Dey, "Testing for interconnect crosstalk de-
fects using on-chip embedded processor cores," J. Electronic Testing:
Theory and Applications, vol.18, (no.4), August 2002, pp. 529-538.

[9] L. Chen and S. Dey, "Software-based diagnosis for processors," Proc.
39th Design Automation Conf., New Orleans, LA, June 2002, pp. 259-
262.

[10] N. Kranitis, D. Gizopoulos, A. Paschalis, Y. Zorian, “Instruction-
based self-testing of processor cores,” Proc. 20th VLSI Test Symp.,
Monterey, CA, April 2002, pp. 223-228.

[11] S. Almukhaizim, P. Petrov, and A. Orailoglu, "Low-cost, software-
based self-test methodologies for performance faults in processor con-
trol subsystems," IEEE Custom Integrated Circuits Conf., San Diego,
CA, May 2001, pp. 263-266.

[12] P. Vishakantaiah, J. Abraham, and M. Abadir, "Automatic test knowl-
edge extraction from VHDL (ATKET)," Proc. 29th Design Automa-
tion Conf., Anaheim, CA, June 1992, pp. 273-278.

[13] R. Tupuri, A. Krishnamachary, and J. Abraham, "Test Generation for
Gigahertz Processors Using an Automatic Functional Constraint Ex-
tractor," Proc. 36th Design Automation Conf., New Orleans, LA, June
1999, pp. 647-652.

[14] W.-C. Lai, Embedded Software-Based Self-Test for System-on-a-Chip
Design, PhD thesis, Univ. California at Santa Barbara, March 2002.

[15] W.-C. Lai, A. Krstic, and K.-T. Cheng, “Test program synthesis for
path delay faults in microprocessor cores,” Proc. Int. Test Conf., At-
lantic City, NJ, Oct. 2000, pp. 1080-1089.

[16] R. Tupuri and J. Abraham, "A Novel Functional Test Generation
Method for Processors using Commercial ATPG," Proc. Intl. Test
Conf., Washington, DC, Nov. 1997, p.743-752.

[17] W.N. Venables and B.D. Ripley, Modern Applied Statistics with S-
PLUS, Springer-Verlag, 1998.

[18] http://www.tensilica.com/xtensa_overview_handbook.pdf, Xtensa™
Microprocessor Overview Handbook, Tensilica Inc, August 2001.

[19] Design Compiler™ , Synopsys Inc., http://www.synopsys.com
[20] Modelsim™ , Model Technologies Inc., http://www.model.com
[21] FlexTest™ , Mentor Graphics Corp., http://www.mentor.com

Table 3. Comparison of SBST and functional test
 SBST Functional
Program size [instructions] 7602 9169
Program size [bytes] 20373 25066
Program Execution time [cycles] 27248 41844
Fault simulation time [hours] 27.5 41.3
Fault cov. on func. testable faults 95.2% 85.3%

553

	Main Page
	DAC'03
	Front Matter
	Table of Contents
	Author Index

