

Abstract

As System On a Chip (SoC) designs become more like
Programmable Heterogeneous Multiprocessors (PHMs), the
highest levels of design will place emphasis on the custom design
of elements that were traditionally associated with systems in the
large. We motivate how schedulers that make dynamic, data-
dependent decisions at run-time will be key design elements in
PHM SoCs. Starting from a fundamental model, the role schedulers
play in PHMs is developed. Model-based scheduling is introduced
as an approach to designing schedulers that optimize a PHM’s
performance. Due to the complexity of the PHM design space,
convergence on optimal design requires high-level modeling and
simulation. In model-based scheduling, high-level models of
scheduling decisions result in actual design elements that appear in
real systems. Experiments for a simple two-processor PHM that
does a mix of image and text compression are included. Results
show the effectiveness of model-based scheduling.

Categories and Subject Descriptors

C.4 [

Performance of Systems

]:

Modeling techniques, Performance
attributes.

I.6.5 [

Simulation and Modeling

]: Model Development
—

Modeling Methodologies.

General Terms.

Performance, Design.

Keywords.

Computer-Aided Design, Performance Modeling,
System Modeling, Schedulers, Heterogeneous Multiprocessors.

1. Introduction

Enabling the potential of billion-transistor systems-on-chip
(SoC) designs will necessitate a quantum leap in design
methodology. As computation leaves the desktop and ubiquitous
computing becomes a reality, performance-based design of
concurrent software executing on concurrent hardware will be the
future. Resultant devices will be space-constrained and will
simultaneously interact with humans, the physical world, and other
computers. They will include increasingly sophisticated software
functionality that cannot be designed using approaches that were
intended to meet only the challenges of purely reactive, embedded
systems. The central challenge in future computer design is
defining new design elements, programmer’s views, simulation
foundations, and languages that permit the designer to model and
manipulate how the interaction and co-operation of multiple
programmable elements affect system performance.

Many agree that future SoC designs will be heterogeneous
multiprocessors [1], while network-on-a-chip communication

suggests relatively coarse-grained design elements communicating
asynchronously in a data-dependent manner. Instruction Set
Simulator (ISS) models do not allow exploration of a such a broad
and complex design space. Rather, high-level modeling and
simulation must define new design elements that capture the
interactions of software executing

on

 and

across

 concurrent
programmable resources, capture how software loads resources,
capture performance of data-dependent execution, and not over-
restrict the design space. Further, new forms of design trade-offs
must be invented and supported for these new design elements, for
example, trading-off scheduling decisions for numbers and types of
processing resources.

We introduce the concept of SoCs as

Programmable
Heterogeneous Multiprocessors

 (PHMs), emphasizing that not only
will individual processors be programmable, but the system formed
by the interaction of the processors must also be considered
programmable. We present the role of custom schedulers as design
entities. For instance, such schedulers decide in a data-dependent
manner which thread executes next or which packet is transferred
next. We consider the design of a scheduler’s functionality to be
based upon a reduced-detail model of the characteristics of the
remainder of the PHM with which the scheduler interacts. We refer
to this approach as

model-based scheduling.

Because the schedulers
are developed to models using simulation at design time, yet still
make dynamic, data-dependent decisions at run-time, model-based
scheduling is a mix of static and dynamic decision-making. We
motivate and illustrate through an example how aspects of system
modeling determined at design time can lead to more effective run
time scheduling decisions.

2. Scheduler Relationships

Schedulers co-ordinate the interaction and execution of multiple
elements in a computer system, thus their design is central to
maximizing the performance of a PHM. In our Modeling
Environment for Software and Hardware (MESH), schedulers are
design elements. Unlike the role of commercial operating systems
or real-time schedulers, our schedulers can be simple decision-
making entities, selecting which thread will execute next or which
packet will be sent next. Because these decisions are customized to
the way the anticipated applications will execute on characteristics
of the underlying hardware, our schedulers are modeling elements
that are literally on the boundary between high-level models and
actual system elements. They provide the means to capture
concurrent model interactions, and serve to resolve the
computational work being consumed by the software in the system.

2.1 Reactive and Interactive Relationships

We begin by developing properties of schedulers as layered
relationships. In a synchronous FSM design, the external
environment is modeled as a testbench (TB) that conceptually
shares the same clock with the FSM. The TB exercises inputs and
reads outputs of the FSM in synchrony with the FSM. The
scheduling of the system is constrained as a

reaction

 within a fixed

Permission to make digital or hard copies of all or part of this work for
personal or classroom use is granted without fee provided that copies are not
made or distributed for profit or commercial advantage and that copies bear
this notice and the full citation on the first page. To copy otherwise, or
republish, to post on servers or to redistribute to lists, requires prior specific
permission and/or a fee.
DAC 2003, June 2-6, 2003, Anaheim, California, USA.
Copyright 2003 ACM 1-58113-688-9/03/0006...$5.00.

 Schedulers as Model-Based Design Elements
in Programmable Heterogeneous Multiprocessors

JoAnn M. Paul, Alex Bobrek, Jeffrey E. Nelson, Joshua J. Pieper, Donald E. Thomas

Electrical and Computer Engineering Department
Carnegie Mellon University
Pittsburgh, PA 15213 USA

{jpaul, abobrek, jnelson, jpieper, thomas} @ ece.cmu.edu

408

25.3

number of time ticks to timed data values presented by the TB. The
FSM may be implemented either in hardware or in processor
systems with static, data-independent schedules and response
times. What is important is the fixed response time of the FSM as it
reacts to data that is presented to it by its environment.

In Figure 1, a request/
acknowledge signal between an
FSM and TB enables a data-
dependent, self-timed form of
computing [2]. The classic
handshaking signals enable the
FSM to have computation times
which vary with the values of
the data it receives. Thus the
FSM no longer reacts to the TB,
but now

interacts

 with it. The
clock reference no longer controls the timing of the system as a
whole; computation completion time is now data-dependent.

There are three key observations that can be made from this
example. The first is that the simple handshaking protocol between
the two machines is a layer of scheduling that exists

above

 them,
providing services

to

 them. The scheduling layer does not contain
the FSM and TB in a component-like fashion as if it were some
higher-level description of them. Secondly, the overall
performance of the system is dependent on the scheduling decision
between the FSM and TB (however simple in this case), the actual
data values, and the execution times resulting from the separate
clock speeds.

Third, because more complex interactions between the FSM and
the TB are allowed, the FSM can take on processor-like properties.
As a programmed processing element (PE) the FSM block can
now defer interaction with the TB should it choose to perform, for
instance, additional local processing between requests to the TB.
The FSM/PE may even be a multithreaded system where local
tasks compete for the FSM/PE resource with tasks that process the
interaction with the TB. In such a case there are overlapping
schedulers, the req/ack and the multithreaded FSM/PE scheduler.
Thus, complex local scheduling decisions in the FSM/PE also
contribute to the overall system performance.

2.2 Heterogeneous Multiprocessing

A very general version of a
PHM is shown in Figure 2. The
FSMs of Figure 1 are now labeled
as processing elements (PE),
acknowledging their
programmable nature. System I/O
is co-coordinated to the TB, which
also maintains the timing
reference for the system as clktb.
Each PE in the system may have a
separate clock. Processing
elements interact by a
conceptually global, coordinating
control mechanism, labeled,
“scheduling and arbitration” (SA).
In Figure 1, point-to-point
interfaces resolve the scheduling
between two elements. By contrast the SA of Figure 2 permits
arbitrary numbers of elements to be co-coordinated using
scheduling elements distributed across the PEs. As in Figure 1, the
SA is conceptually layered onto the PEs of the system. It co-
ordinates, but does not contain the system resources. Due to this
relationship and unlike the traditional hardware design elements,

design elements of a PHM are heterogeneous and layered. They
interact in complex ways as overlapping scheduling and
programming domains compete for shared system resources. For
effective performance design of the system of Figure 2, model
complexity must be reduced in a meaningful way that does not
miss these interactions.

3. Schedulers as Design Elements

Schedulers are important elements of a programmable,
concurrent design; they must be modeled and developed in
conjunction with other design elements for effective design of
PHMs. They, in effect, manifest the global system control flow
across system resources, i.e. distributed control flow. Schedulers
are layered abstractions. The layering provides the basis for the
global extent of the performance impacts of local scheduling
decisions; schedulers reside on individual processing resources,
even if they logically co-operate in a global context. Models of
high-level, machine-specific, data-dependent scheduling decisions
lead to performance optimization.

3.1 Intra- and Inter-Resource Scheduling

In Figure 3, the layered multithreading view
of MESH is shown for a single resource in a
multi-resource system such as a single PE of
Figure 2. At the top of the slice is a dynamic
number of unrestricted software threads
(labeled as logical threads Th

Li1

…Th

Lin

).
These are interleaved for execution on the
resource labeled as a physical thread, Th

Pi

, by a
scheduler U

Pi

 which resides on Th

Pi

. U

Pi

threads determine intra-resource timing of
software executing on hardware by selecting
which thread to execute and determining how long it is permitted
to execute before the next resource is interleaved in the simulation.
Thus, software execution is modeled in both a data and resource
dependent manner. U

Li

 threads can also logically group resources
for inter-resource scheduling as shown by the dashed oval going
off of the figure. This permits M threads to be dynamically mapped
to N resources, e.g., a pthread scheduler. This layer between the
resource and software models brings together physically timed
resource models and self-timed, (logically) interacting dynamic
software threads [3].

In MESH, the intra-resource physical timing of software
executing on hardware is done by using designer-instrumented
“consume call” annotations that indicate computational
complexity of software regions. The resource thread (Th

Pi

)
provides a computing budget to the U

Pi

scheduler at a specified
rate. The U

Pi

scheduler allows its threads to execute until that
resource budget is consumed. At this point, other resource threads
may execute similarly. If the resource budget or the rate of its
execution (based on physical time) is increased, the resource
power is increased; more state is advanced by that resource relative
to other resources in the system. Thus, the state advancement per
unit time (performance) is dependent on resource budgets and
rates, software complexity as modeled by consume calls,
scheduling state, and inter-resource, concurrent interactions.

Layering is what distinguishes MESH from other approaches.
Software is inherently different from hardware [4]; intuitively
software is layered onto hardware. Component views capture static
forms of scheduling [5]. Other approaches that seek to capture
performance modeling for hardware/software co-design are
focused on the resolution of different timing models [6], but do not
capture software, schedulers and hardware as layered design

 Figure 1 Asynchronous FSM-
TB Interactions

FSM

TB
D

at
a

In
pu

ts

D
ata O

utputs

clk1 clk2

req/

req/

ack

ack

PE1

clk1

PE2

clk2

PE3

clk3

PEn

clkn
 Figure 2 General PHM
clktb

T
e
s
t
b
e
n
c
h

I/O

I/O

I/O

I/O

Scheduling and A
rbitration

 Figure 3
A Slice of the

Layering

ThPi

UPi

ThLi1 ThLin…

……
ULi

409

elements that lead to performance effects. We have done prior
work in MESH, showing how the design space of a network
processor with software, hardware and scheduling decisions allow
for more abstract, high level modeling to capture the design space
that might otherwise only be captured in a detailed ISS [3].

The model of the layered, intra-resource scheduling of Figure 3
is represented in the PHM model of Figure 4. The scheduler on the
processor modeled as physical thread Th

P1

, is shown highlighted
in the gray box as scheduler U

P1

. The schedulers, U

P1

, U

P2

,…
U

Pn

, make decisions about which software threads are executed on
the individual resources. Importantly, they can do so either naïvely
or by more machine-specific forms of decision making.

Dynamic decisions made
when one or more threads are
eligible to execute on a given
processor must be made with
respect to some context. When
the context is purely local and
machine-unspecific, naïve
scheduling decisions such as
round-robin strategies result.
Scheduling decisions made in
the context of additional system
information, both static and
dynamic, can have great impact
on overall system performance
[7]. Inter-resource scheduling
creates a design layer above
that of the software executing
on an individual processor.

For large PHM systems
designers will have design-time
system-specific information which will allow for more effective
local, dynamic scheduling decisions to be made in the context of
the way a resource interacts with the rest of the system. This forms
the basis of effective inter-resource scheduling in a PHM and thus
the basis of distributed global control in a PHM.

3.2 Model-Based Schedulers

When simulation-based techniques are utilized at design time,
inter-resource, data-dependent optimizations can be derived. Local
resources can utilize high-level functional models of, and possibly
state from, all or a portion of the remainder of the PHM to make
data-dependent dynamic scheduling decisions. These models lead
to scheduler functionality that resides on the actual resources in the
system. The actual scheduling decisions are made dynamically, i.e.
at run time; the scheduler functionality is derived from design time
models. We define this approach as

model-based scheduling.

The functional models of the scheduling decisions are designed

in the context of machine-specific high-level models of the
remainder of the PHM system, its data-dependent scenarios, and
the way the system will be exercised. A key question faced by
designers of model-based schedulers is how much system
information is required to make effective scheduling decisions.
Since the complexity of computing a scheduling decision and the
amount of information needed clearly impacts the time it takes to
make a scheduling decision, designers must strike a balance
between too little and too much information. MESH facilitates the
development of model-based schedulers that strike this balance.

4. Illustration

Our illustration will show how model-based scheduling
decisions can impact the overall performance of a PHM. We
consider a simple multimedia system consisting of two

heterogeneous processors (a Mitsubishi M32R and an ARM) to
handle a mixture of image and text compression applications. The
image compression algorithm includes a wavelet transform and
zerotree quantization. The wavelet step transforms the image into a
series of frequency sub-bands. Zerotree quantization then selects
data to discard using control-intensive algorithms. Text
compression is performed using the gzip program [8] that looks for
redundant data patterns in plaintext, mainly stressing memory
bandwidth and latency.

Due to their unique characteristics, each processor in this system
can execute the three tasks at different rates relative to one another.
For example, the M32R contains a multiply-accumulate (MAC)
instruction commonly found in DSP processors that make it better
suited for performing wavelet transforms. While both processors
are equally adept at quantization, the ARM is approximately twice
as fast at gzip text compression, and the M32R is approximately
twice as fast at the wavelet transform.

4.1 Scheduling Trade-offs

In order to maximize the performance of this heterogeneous
system, we examine several schedulers: static (U

S

), system load-
aware (U

LA

), and system architecture-aware (U

AA

). Figure 5
shows relationships between the scheduling strategies; all use the
dotted lines, other lines differentiate strategies. The static
scheduler performs the wavelet transform tasks only on the M32R
while the quantization and text compression tasks are executed on
the ARM (solid black lines). This naïve strategy may perform well
for known mixtures of image and text data inputs, but corner cases
exist where the system performance suffers.

To keep the system resources utilized, each processor’s
scheduler must be aware of the system load and be able to schedule
any task type on any resource. The load-aware schedulers (U

LA

,
gray bus and arrows) of each resource monitor the status of all
three task queues, selecting the next job based on the queue
occupation. When a queue size is backed up, the schedulers will
map jobs onto inappropriate resources (wavelet transform on ARM
or text compression on M32R) to maintain high performance.

Even though the U

LA

 schedulers can make decisions based on
pending tasks, they are not aware of how adept a given processor is
at handling each task. The U

LA

 scheduler is not designed around
the individual processor’s capabilities; it is not a model-based
scheduler. However, the architecture-aware scheduler (U

AA

,
dashed line and gray bus and arrows) has performance information
for the M32R and ARM. The U

AA

scheduler can be thought of as a
superset of the U

LA

 scheduler where each local scheduler on the
M32R and ARM maintains a model of the remaining processing
time of the other resources (dashed line between processors). This
model is used to determine if mapping a packet onto an idle
inappropriate resource, rather than waiting for the faster processor,
would result in a lower overall latency. When the queue sizes reach

ThP1

 Figure 4 Inter-resource
Scheduling in a PHM

clktb

T
e
s
t
b
e
n
c
h

I/O
UP1

ThL1i...

ThP2

I/O
UP2

ThL2i...

ThPn

I/O
UPn

ThLni...

ThP3

I/O
UP3

ThL3i...

Scheduling &
 A

rbitration

 Figure 5 Flow Relationships For All Schedulers

M32R

ARM

TB

B
us

Raw
Image
Queue

Quantization
Queue

Text
Queue

410

a certain threshold, the U

AA

 scheduler defaults to the U

LA

behavior of taking all packets. While the U

AA

 scheduler is a
model-based scheduler, the U

AA

 and U

LA

 schedulers also overlap.
To provide a basis for comparison, we constructed a cycle

accurate instruction set simulator for the combined system. The
ISS consists of the GNU ARM and M32R simulators [8],
connected via shared memory. The two processors run in lockstep
with time advancing one cycle at a time. Scheduling strategies
used in the ISS are identical to those used in the MESH.

4.2 High-level Thread Relationships

The image/text compression system was also modeled using the
thread relationships in MESH as shown in Figure 6.

Physical threads Th

P1

, Th

P2

 and Th

P3

 model the high-level, rate-
based interleaving of the processor resources. Th

P1

 models the
testbench resource, Th

P2

 models the M32R and Th

P3

 models the
ARM. In addition to resolving computation consumption to
resource power, U

P2

 and U

P3

 also make decisions about which of
three possible threads execute on the resource they reside on, i.e.,
the Th

Lij

 on processor i. The threads represent the wavelet
transform, quantization, and text compression functionality for
each processor. U

P2

 and U

P3

 conceptually form the global, logical
scheduling context, U

L1

, which arises from the co-operation of
local scheduling decisions on individual processor resources.

We developed three separate sets of U

P2

 and U

P3

 schedulers,
showing the effectiveness of model-based scheduling: static (U

S

),
system load-aware (U

LA

), and system architecture-aware (U

AA

).

4.3 Experiments

The testbench inputs compression packets at a Poisson rate to
the system in order to explore a wide variety of data dependent
effects. Performance was measured while changing the image to
text packet ratio as well as varying the packet size. Results are the
greatest system throughput at a fixed maximum latency.

Figure 7 compares the performance of the U

S

 and U

LA

schedulers in ISS and MESH simulation environments while the

ratio of text to image jobs is varied. The U

LA

 scheduler improves
performance of jobs with high amount of text content because it
allows for the M32R to take on text compression jobs in the
absence of images. The MESH results match well with their ISS
counterparts showing that MESH is able to accurately simulate the
system while abstracting much of the hardware detail.

We explored the design space further by considering a scenario
of image and text input files of widely varying sizes with a fixed
ratio. A third, model-based scheduler, U

AA

, intelligently schedules
jobs on inappropriate resources sooner. The U

AA

 scheduler showed
a minimum improvement of 9%, average improvement of 19%,
and maximum improvement of 40% in the number of kilobytes
processed per million ISS cycles as compared to the U

LA

scheduler. Even in this simple example, the interactions between
resources and schedulers were very complex; analytical solutions
were not feasible. ISS-level simulations with full software models
are impractical for exploration of future, more complex designs.
Significantly, while MESH supports reduced detail, high-level
models it also provides the basis for new design elements such as
model-based schedulers that appear in real systems.

5. Conclusion

By developing the role of schedulers in PHMs, we motivate how
they may be optimized for dynamic, data-dependent execution
over a set of resources and an intended application space. Model-
based schedulers were introduced as elements in high-level models
of PHMs. Significantly, they can also result in actual design
elements that appear in systems. They allow for customization of
the dynamic, data-dependent local scheduling decisions that
individual processors make. The customization can be thought of
as high-level models of physical properties of the machine with
which the processor interacts. MESH was shown to provide
efficient exploration of the effectiveness of scheduling decisions
on overall system performance. Our experiments for a simple two-
processor PHM that does a mix of image and text compression
illustrate the effectiveness of considering model-based schedulers
as design elements that must be explored at the high-level along
with high-level models of concurrent software executing on
concurrent hardware in PHMs.

6. Acknowledgements

This work was supported in part by ST Microelectronics,
General Motors, an NSF Graduate Research Fellowship, and the
National Science Foundation under Grant 0103706. Any opinions,
findings, and conclusions or recommendations expressed in this
material are those of the authors and do not necessarily reflect the
views of the NSF.

7. References

[1] “Are Single-Chip Multiprocessors in Reach?”,

IEEE Design
& Test

, Jan - Feb 2001.
[2] C.L. Seitz. “System Timing.”

Introduction to VLSI Systems

.
C. Mead, L. Conway. Reading, MA: Addison-Wesley, 1980.

[3] A.S. Cassidy, J.M.Paul, D.E.Thomas.“Layered, Multi-
Threaded, High-Level Performance Design.

DATE

 2003
[4] B. Grattan, G. Stitt, F. Vahid. “Codesign-extended applica-

tions.”

CODES

2002.
[5] F. Gharsalli, S. Meftali, F. Rousseau, A. Jerraya. “Automatic

generation of embedded memory wrapper for multiprocessor
SoC,”

DAC

2002.
[6] K. Richter, R. Ernst. “Event model interfaces for heteroge-

neous system analysis,”

DATE

2002.

[7] D. Skillcorn, D. Talia. Models and Languages for Parallel
Computation,

ACM Computing Surveys.

1998

.

[8] http://www.gnu.org

 Figure 6 High-Level Thread Relationships in MESH

ThP1 ThP2 ThP3

UP1 UP2 UP3

ThL11
ThL21

ThL22 ThL23 ThL31
ThL32 ThL33

UL1

0

0.2

0.4

0.6

0.8

1

1.2

1.4

1.6

1.8

0.0% 12.5% 25.0% 37.5% 50.0% 62.5% 75.0% 87.5% 100.0%

Percentage of Image Content in Processed Packets

U_LA ISS

U_LA MESH

U_S ISS

U_S MESH

 Figure 7 US and ULA Schedulers, ISS and MESH Models

411

	Main Page
	DAC'03
	Front Matter
	Table of Contents
	Author Index

