
Architecture-Level Performance Evaluation of Component-
Based Embedded Systems

Jeffry T Russell, Margarida F Jacome
Electrical and Computer Engineering, University of Texas at Austin

jeffry@mail.utexas.edu, jacome@ece.utexas.edu

ABSTRACT
A static performance evaluation technique is proposed

to support early, architecture-level design space exploration
for component-based embedded systems. The novel
contribution is the use of a designer-specified evaluation
scenario to identify a characteristic subset of system
functionality that serves as a context for a rapid
performance evaluation between candidate architectures.
Fidelity is demonstrated with a case study that compares
performance estimates of several candidate architectures to
measurements from respective implementations.

Categories and Subject Descriptors
J.6 [Computer-aided engineering]: Computer-aided design;
B.8.2 [Perf. Analysis and Design Aids]: Software analysis.

General Terms
Performance, Design.

Keywords
Performance evaluation, architecture-level, design space
exploration, component-based, embedded system, scenario.

1. Introduction
A real-time embedded system interacts with its

environment constrained by a set of timing deadlines. Some
constraints are considered “hard”, while others are “soft”,
meaning the timing deadlines may be violated in the
context of a trade-off like cost, e.g. an MPEG decoder may
miss an occasional video frame. A performance evaluation
for these systems focuses on whether timing constraints are
met, which requires an analysis of all system functionality
to find the worst case functional paths.

In contrast to real-time systems, this paper considers a
class of embedded systems for which performance is a
figure of merit. Performance is still important, but it is a
perceived quality of the system, rather than a necessary
condition for a correct design. Thus, as compared to real-
time embedded systems, the design approach differs in that
performance is a distinguishing figure of merit among

feasible designs and comparison between such designs is
based on a typical case subset of functionality.

Component-based designs are beneficial in terms of
shorter development cycles, reduced cost, and better main-
tainability [4][14]. Component-based embedded systems
favor architectures consisting of predefined subsystems,
packaged as components, rather than custom-specified sub-
systems. Hardware components such as CPUs or memories
provide structural resources, software components provide
pure functionality, and some components, such as I/O
controllers, provide functionality bundled with resources.

For example, consider the embedded system design of a
TCP interface using components such as high-performance
CPUs and memories. Though technically a soft real-time
system, with a 3 second default packet timeout [3], a
practical approach may assume that the components allow
the protocol constraint to be easily satisfied and therefore
treats performance as figure of merit during design.

Furthermore, consider the use of a software component
that is a TCP protocol library. Such a component supports a
reliable communication link and therefore includes
exception handling and error recovery code that is not
activated during typical case operation. At a designer’s
discretion, an evaluation scenario would consider the
functional paths activated by the error-free exchange of a
64KB buffer, thereby removing from consideration many
feasible, yet atypical paths, related to error recovery.

Since components are often complex and include a
significant amount of functionality, a designer faces the
challenge of identifying the relevant, typical case subsets of
functionality, called evaluation scenarios. A performance
evaluation technique based on such an evaluation scenario
is useful for a rapid, comparative assessment of candidate
architectures during design space exploration.

This paper proposes a performance evaluation technique
to support architecture-level design space exploration of
component-based embedded systems that emphasizes
relative fidelity over accuracy of individual estimates.
Specifically, two key problems are addressed: (1) how to
define and extract an evaluation scenario, and (2) how to
evaluate the system performance based on a scenario.

The novel contribution of the proposed performance
evaluation is the use of a designer-specified scenario to set
the context for a rapid performance evaluation of distinct,
component-based candidate architectures.

Permission to make digital or hard copies of all or part of this work for
personal or classroom use is granted without fee provided that copies are
not made or distributed for profit or commercial advantage and that
copies bear this notice and the full citation on the first page. To copy
otherwise, or republish, to post on servers or to redistribute to lists,
requires prior specific permission and/or a fee.
DAC 2003, June 2-6, 2003, Anaheim, California, USA.
Copyright 2003 ACM 1-58113-688-9/03/0006…$5.00.

396

25.1

The approach focuses on an interactive definition of
evaluation scenarios through incremental refinement of a
functional specification to identify control flow paths
corresponding to typical case behaviors. This challenging
task is assisted by a semi-automated technique that can be
applied simultaneously to software and hardware
components. From each evaluation scenario, a pseudo-trace
is statically generated, and pertinent architecture features
are distilled into operation execution costs that are used to
estimate an execution time.
2. Related Work

Design space exploration research can be classified as
addressing aspects of representation, estimation, and explo-
ration algorithms [11]. Our proposed technique supports
estimation by providing a rapid performance evaluation of
component-based architectures suitable for use in an
existing framework that generates candidate architectures.

Many performance estimation techniques used in real-
time systems are based on a course-grained model in which
the atomic element is a software process. This work
considers a lower level of detail, e.g. instructions or
operations.

Within this scope of related work, the proposed
performance evaluation technique is novel in the sense that
it is an abstract, static model that reports a value for typical
case operation (sometimes called an average case).
Generally, static models have been used to determine
bounds on performance, and most estimates that return
typical values are based on dynamic models.

Static, abstract performance estimation models are
present in codesign methodologies to facilitate quick
computation, e.g. POLIS [15], COSYMA [1], and TOSCA
[1]. These environments rely upon a restricted specification
language, which is biased towards a custom-specified (or
generative) design approach, rather than the component-
based approach used in our technique.

Several performance estimation techniques use a more
detailed, static analysis model to conservatively estimate a
performance bound, e.g. the tool Cinderella [9] implements
a static analysis technique that implicitly considers all
possible execution paths to find the extreme basic block
execution counts. The execution time of each basic block is
derived from databook values.

Dynamic estimation techniques are essentially based on
a simulation of a system, from which performance is
measured, e.g. Ptolemy [10][16]. Such approaches are
poorly suited for design space exploration because of the
need to construct a virtual system, the hand coding of
abstract models, or the time required for simulation.

A few recent publications have similarly reported esti-
mates for a typical case based on a static model.
Gupta et al. proposed a static model generated by profiling
a program and relying on databook values to determine
operation costs [6]. Lahiri et al. focus on bus commun-
ication using a previously captured execution trace [8], but
do not consider other architecture features such as

variations in the configuration of busses and memories. The
abstract s-graph representation in POLIS can be used to
estimate typical values, where profiling is used to
determine the typical case path through the graphs [15].

Though these approaches operate on static models, they
all require an initial dynamic analysis to characterize the
functional paths. In contrast, our proposed technique assists
a designer in the specification of the evaluation scenario
using only static models.

3. Background
Component-based design is a common topic in recent

literature, but the term “component” usually implies a
software member and treats hardware as a fixed execution
platform [2][5][14]. This paper uses component to describe
hardware or software members whose specification is
fixed, though possibly parameterized. Our precise
definition of component is deferred until the features of
architecture representation are explained.
3.1 Representation Model

To support the proposed evaluation model, a minimal
representation model is described. An architecture is an
abstract representation of a design that is expressed as a
topology or configuration of subsystems. An architecture is
decomposed into two distinct, but related, topologies:
functional and structural.

In a functional architecture, subsystems specify
functionality and connections indicate flow of control
linkage. For convenience, a subsystem in the functional
architecture is called a module. The functional architecture
specifies a set of (possibly) concurrent, sequential
processes, where each process is specified by one or more
modules. We assume each module is organized as one or
more procedures, and each procedure is specified using an
imperative language, i.e. as a sequence of operations. The
operations are the primitives of functionality, and the level
of abstraction can vary form source code operations to
assembly instructions or their hardware counterparts. The
example functional architecture in Figure 1(a) demonstrates
a single software process specified with several modules.
The connections between the modules, the linkage, express
call/return control flow relationships. A module describing
a separate hardware process, labeled “I/O Functionality”, is
also shown. The important aspect of the functional
architecture is that flow of control can be followed between
modules and across the hardware-software interface.

The structural architecture consists of subsystems that
support execution of operations and connections that
represent communication paths. Primitive subsystems
represent the basic structural elements, simply called
elements. Other subsystems may represent hierarchical
aggregation. Limiting the taxonomy to the problem at
hand, some elements may provide an execution resource
and/or a storage resource (or neither). In general, elements
with multiple connections provide an interface between
these various communication paths. The structural

397

architecture in Figure 1(b) demonstrates a topology of
subsystems that consists of a CPU connected to multiple
memories and an I/O controller (IOC). The “CPU” is an
aggregation, indicated by the dashed box. Elements such as
the “bridge” and “memory controller” serve as interfaces.
Elements providing resources are marked with “E” for
execution and “S” for storage.
3.2 Functional Representation

Recall that system functionality is described as a set of
processes specified with a set of procedures organized as
modules. The underlying formalism to express procedure
functionality is a control flow graph (CFG) in which nodes
are operations and edges are potential flow of control.
Operations affect flow of control or modify variables
specified as operands.

The CFG is a common representation that can be easily
derived from an imperative source code specification such
as C or Verilog. A formal description of the CFG used in
the present technique is found in our previous work [12].
3.3 Resource Mapping

The two views of an architecture are related by a
mapping that associates operations in the functional
architecture with resources in the structural architecture.

 Every operation is mapped to an execution resource,
and operands, if present, are mapped to a storage resource.
Referring to Figure 1, the software modules are mapped to
the “core processor” execution resource, and the hardware
module is mapped to the “IOC” execution resource (a fixed
mapping). The mapping of operands to storage resources
varies from operation to operation, and in the example of
Figure 1, potential storage resources are the core processor
registers, DRAM 1, DRAM 2, or IOC registers. Different
mapping schemes are considered architecture variations.
3.4 Operation Cost Model

Emphasizing computational simplicity and memory
access, a basic model for the average execution cost for an
operation type, c , is used. There are three parts: core pro-
cessor time, instruction fetch time, and an optional memory
access time: meminstrcore cccc ++= , decomposed as:

 corecore τnc = , instrinstrinstr
rdinstr tmpc = , and

 mem
r/w

mem
r/wr/wmem tmpc =

where n is core processor cycle count, coreτ is core
processor cycle time, m is number words accessed and t is
the access time from a specific execution resource to a
particular storage resource. The superscript of a variable
indicates the storage resource, and the subscript indicates a
read or write access. Each external memory access compo-
nent cost exists for an individual operation with some
probability, p , which represents a cache miss for a read or
the likelihood that a write operation cannot be posted.

The core processor time is associated with an operation
through the execution resource mapping, and it includes
time to access any elements that execute at the core
processor rate, e.g. the time to access processor registers.
The cycle count is a databook value and the cycle time is a
component parameter.

Operations mapped to a processor execution resource
have an instruction fetch cost that accounts for the external
memory access time. Note that 0=m for fixed
functionality, e.g. for an IOC.

The optional memory access cost, mem
r/wt , is the access

time to a particular storage resource from an execution
resource and is derived from structural topology by
considering the storage resource mapping for each operand.
For example, in Figure 1, dram1

rt is the read access cost to
DRAM 1 memory from the core processor.

This abstract model for operation cost neglects
numerous details of individual operations, and assumes
independence between operations. We anticipate that more
sophisticated analysis techniques can be applied to basic
blocks to obtain a more accurate execution cost based on
micro-architecture details of the target processor.
3.5 Components

A component is a set of one or more subsystems and
associated connections, i.e. a fixed topology of subsystems,
that can be included in an architecture. Components are

DRAM 1
Operating System

Device Driver

CPU

Memory
Controller

Core
Processor

Bridge

PCI Bus

Internal Bus

IOC

I/O Functionality

Structural element

Aggregation

Functional module (software)

Structual connection

LEGEND

So
ftw

ar
e

H
ar

dw
ar

e

Memory
ControllerDRAM 2

(a) (b)
Functionality linkage

Functional module (hardware)

E S

S

E S

S
S

Indication of execution
or storage resource

E

Network Library

Application

Figure 1. A network interface described by the functional architecture (a) and structural architecture (b).

398

reusable, may be hardware and/or software, and are gen-
erally available from a library. A component may be de-
livered in many forms, e.g. software source code, an intel-
lectual property core for VLSI design, a synthesizable
hardware description language, or a discrete integrated
circuit. To clarify explanation, components are assumed to
have parameters that can be varied without affecting the
fixed topology, e.g. operating frequency or size of memory.
3.6 Architecture Explorations

Our approach assumes that the design space exploration
framework delivers candidate architectures for evaluation.
The candidate architecture is a configuration of
components that expresses both a structural architecture,
which provides the required physical resources, and a
functional architecture that fulfils the system behavior
requirements. Candidate architectures are determined by
the topology and number of subsystems as well as the
population of individual subsystems. The manner in which
individual components contribute to an architecture ranges
in complexity from a simple subsystem population to
instantiating a portion of topology containing several
subsystems. Minor architecture variations that do not affect
the topology are under control of the designer based on
changes to component parameters and the resource
mapping.

Figure 2 demonstrates several different candidate archi-
tectures. Within the single topology of Figure 2(a),
different components can populate a subsystem, e.g. the
CPU. Figure 2(b) is a more complex topology that uses an
additional physical memory on a separate bus. The
potential trade-off is lower cost with a single memory (a),
versus improved performance with a second memory
“close” to the IOC (b). The impact on system functionality
is also demonstrated by the inclusion of different IOCs with
the corresponding fixed functionality.

4. Scenario-Based Performance Evaluation
A key contribution of the proposed technique is the

application of an evaluation scenario to identify a
characteristic subset of functionality that serves as a basis
for a performance evaluation. Once a scenario is specified,
it is used to generate a pseudo-trace. The operation
execution costs are derived from the resource mapping,
from which a performance evaluation is calculated.
4.1 Identifying Characteristic Functionality

The functional architecture is incrementally refined into
the evaluation scenario through three levels of refinement
listed in Table 1. The first step establishes the total set of
system functionality, based on the candidate architecture.
The second step identifies a subset of the functional
specification and the start/end nodes for the scenario. The
last step is a detailed analysis of the functional specification
that results in an evaluation scenario [13]. The case study in
Section 5 quantitatively demonstrates the functional
architecture a designer needs to consider in each step.
4.2 Scenario Specification

Intuitively, an evaluation scenario corresponds to a walk
through the collection of CFGs that expresses the
functional architecture. The evaluation scenario was
introduced in the context of software programs in a
previous work [13]. Important details are summarized here.

To specify a scenario, the start and end nodes are
identified, and each control flow edge is annotated with the
number of times it is traversed in the walk. Only control
flow operations, i.e. those with multiple outbound edges,
need explicit annotation.

User understandable constraints are associated with
nodes and express dataflow facts, e.g. “a= 0” or “b<2”.
They are expressed in terms of the functional specification
and are interpreted according to the semantics of
operations. In this simplified explanation, edge annotations
are equivalent to constraining control operation
predicates [13].

The flow of scenario specification is shown in Figure 3.
At the start of detailed path analysis, the designer has
identified a set of CFGs to analyze, and provides the start
and end nodes of the scenario. To define a scenario, the

IOC
2

CPU

DRAM
2

IOC
1

CPU DRAM
1

(a)

(b)

Additional
memory

Dev Drvr 1

I/O Func. 1

OS

CPU 2
(66 MHz)

CPU 1
(33 MHz)

DRAM
1 Dev Drvr 2

OS

Different
implementations

of subsystem

Functionality
changes with IOC

I/O Func. 2

Figure 2. Variations from subsystems or topology.

Table 1. Identifying subset of system functionality.

Step
What is it?

How
formed?

How is designer
guided?

1: Functional
architecture
Set of CFGs

Design
exploration
framework

Component
specifications,
resource mapping

2: Identify relevant
subset
Subset of CFGs,
plus start and end
nodes

Problem
domain
identifies
interesting
behavior

Important system
goals,
understanding of
functional
specification.

3: Specify scenario
A control flow
walk on CFGs

Detailed
source code
analysis

Scenario
specification flow

399

designer needs to constrain all control operation predicates.
An initial pruning cycle analyzes the control dependences
between the start and end nodes and extracts predicate
constraints that are then applied to the CFG. Based on these
constraints, nodes are pruned from the CFG and data flow
facts are propagated. A pruned control operation is
considered constrained.

If the data flow fact propagation results in new
constraints on any control operations, then subsequent
automatic cycles continue until no new constraints are
found. If there are any control operations left to constrain,
a manual constraint cycle begins in which the designer
provides a constraint. Using this constraint, more
automatic constraint cycles are attempted. When all
control operation predicates are constrained, the
specification is complete.

Note that key metrics that demonstrate the efficacy of
this method are the number of control operation nodes
eliminated due to pruning (more is better), the number of
constraints found automatically from propagation of data
flow facts (more is better), and the number of manual
constraints supplied by the designer (fewer is better).
4.3 Pseudo-Trace Generation

The pseudo-trace is generated by the walk from the start
node to end node through the collection of CFGs as defined
by control flow edge annotations. Each regular operation
has only one outbound control flow, and each reachable
control operation is constrained to describe how to traverse
the edges. Sub-scenarios in a called function can be reused.
4.4 Operation Costs

The variables used in the cost model defined in Sec. 3.4
are determined from component properties, the architecture
features, and designer supplied values. Some variables are
simply databook values, such as the number of cycles to
execute a particular operation (n and coreτ).

Variables related to storage resource access are derived
from the topology of the structural architecture in
combination with databook values. For example, consider
the operation “A = M1 + B” from a software component
that is bound to the core processor in Figure 1. The

variables A and B are bound to register operations, and
variable M1 is a memory access bound to storage resource
DRAM 1. The register access time is “built in” to the
operation execution time. However, the memory access
time to DRAM 1 depends on the elements traversed in the
structural topology from the execution resource to the
storage resource: the CPU internal bus, the CPU memory
controller, and the DRAM 1, in this example.

Given that processor cores typically run an order of
magnitude faster than external bus transactions, the
configuration of busses and memories external to the
processor component tend have a dominant role in an
operation cost estimate.

The memory access cost for cached memory regions
depends dramatically on the average hit rate. This variable
in the cost model is supplied by the designer, an assump-
tion made in several other estimation techniques [1][15].

5. Case Study
The case study applies the proposed technique to a

performance evaluation of several candidate architectures
based on the system of Figure 1. Two sets of results are
reported: the effort to specify a scenario and a
demonstration of the fidelity of the performance evaluation
across different architectures.
5.1 Experiment Setup

The experiment considers a network interface based on
software components from the commercial operating
system VxWorks and standard integrated circuits, i.e.
hardware components. The CPU component contributes a
fixed topology with several subsystems (see Figure 1b). An
I/O controller component contributes to both the structural
architecture and the functional architecture.

Fixing the functional architecture, the two major
structural variations shown in Figure 2 are explored,
resulting in four different architectures. First, two different
CPU components that differ in core processor speed are
used, the Intel i960® RP (1X or 33 MHz core) and RD (2X
or 66 MHz core). This illustrates populating a subsystem
with different components as shown in Figure 2(a). Second,
different topologies of the structural architecture are
considered by adding a second storage resource (DRAM 2)
shown in Figure 2(b).
5.2 Scenario Specification

The steps of Table 1 are applied to identify a
characteristic subset of system functionality.

Step 1. The complex functional architecture is delivered
from the exploration framework. The designer specifies the
execution resource mapping by associating all software
modules to the core processor (the IOC mapping is fixed).

Operands are mapped to the appropriate registers and
the DRAM 1 storage resources, under the guidance of a
compiler, except that the shared memory between the
device driver and “I/O Functionality” is mapped to
DRAM 2 when it is present in the structural architecture.

Find initial
constraints

Constrain CFG

Prune nodes,
propagate facts

More
constraints

found?
YES

Designer
constraint

Any
predicates

left? YES

START

END

NO
NO

M
an

ua
l

 C
on

st
ra

in
t C

yc
le

Initial pruning due
to end nodes

Au
to

m
at

ic
 C

on
st

ra
in

t C
yc

le

Figure 3. Scenario specification flow.

400

Step 2. Beginning with the operating system func-
tionality (723 KB as object code), the contemplated
architecture variations lead the designer to focus on the
performance of the subset defined by the device driver
module (47 KB in size).

The problem domain indicates reception of a small
packet is a typical action for this system. The start and end
nodes for such a scenario are found using the software
documentation and examining the code using a program
slicing tool.

Step 3. The detailed analysis applies the algorithm of
Figure 3 to identify an evaluation scenario. The analysis
examines the device driver source code, packaged as a
single file specifying 14 procedures with 1,650 lines of
source code. Table 2 summarizes this analysis.

The scenario occurs across two processes: an interrupt
routine and the driver executing as a regular task. The
reported number of control operations in the CFGs
represents how many constraints need to be determined (17
and 13). Note that relatively few operations require
designer specified constraints (only 2).
5.3 Performance Evaluation

The number of operations in each pseudo-trace is also
listed Table 2. Most operations execute within the core
processor in a single cycle of coreτ = 30/15 ns, derived from
a databook depending on the 1X/2X CPU. Access times to
storage resources are found by analyzing the structural
topology, e.g. dram1

r/wt =4 coreτ and dram2
rt =12 coreτ . The de-

signer supplies effective cache miss rate, e.g. dram1
rp = 0.2.

The performance evaluation of four architectures, one
for each scenario process, is summarized in Table 3. These
results demonstrate the fidelity of the proposed technique.
That is, the relative performance estimates at an
architecture-level of abstraction track the observed
performance values across the architecture variations. We
observed the cost model to be biased towards under
estimation, and best suited to explore changes one

dimension at a time. The fidelity between the estimates is
more important than the accuracy of individual estimates,
as this guides selection of promising architectures.

6. Conclusion
A performance evaluation technique was proposed that

uses a static model, evaluates for a typical case, and is
abstract enough to support early, architecture-level design
space exploration. The evaluation scenario approach helps
filter a complex set of system functionality to a small, but
relevant, subset that serves as the context for performance
evaluation.

The case study demonstrates that this technique allows a
rapid performance evaluation of candidate architectures
that exhibits good fidelity.

7. REFERENCES
[1] W. Ye, et al., Fast timing analysis for hardware-software
cosynthesis, Proc 1993 Int Conf A. Allara, et al., System-level
performance estimation for sw and hw in the SEED project, Proc ICCD,
1998, pp 48-53.
[2] V. Basili, B. Boehm, COTS-Based Systems Top 10 List, Computer,
v 34, n 5, May 2001, pp 91-93
[3] R. Braden, Reqs.. for hosts…, Internet RFC 1122 , Oct 1989
[4] P. Brereton, D. Budgen, Component-based systems: a classification
of issues, Computer, v 33, n 11, May 2001, pp 54-62
[5] L. Friedrich, et al., A survey of configurable component-based
operating systems.. , IEEE Micro, v21, n3, May-June 2001
[6] T. Gupta, et al., Processor evaluation in an embedded systems design
environment, Proc. Conf VLSI Design, 2000
[7] J. Jahnke, Engineering component-based net-centric sys…, Proc.
ESEC, ACM SIGSOFT Eng Notes, v 26, n 5, Sept 2001
[8] K. Lahiri, A. Raghunathan, S. Dey, Fast performance analysis of
bus-based .. , ICCAD, 1999, pp 566-572.
[9] Y. Li, S. Malik, A. Wolfe, Performance estimation of embedded
software .., Trans Des Auto Elec. Sys, v4 n3, Jul, 1999
[10] J. Liu, et al., Software timing analysis using HW/SW cosimulation
and instr. set simulator, CODES, 1998, pp 65-69.
[11] F. Moya, J. Moya, J. Lopez, Evaluation of Design Space Exploration
Strategies, Proc 25th EUROMICRO Conf, 1999
[12] J. Russell, Program Slicing for Codesign, CODES, 2002.
[13] J. Russell, M. Jacome, Scenario-Based Software Char. as a
Contingency to Traditional Program Profiling, CASES 2002
[14] M. Sparling, Lessons learned through six years of component-based
development, Comm. ACM, v43, n10, Oct 2000
[15] K. Suzuki, A. Sangiovanni-Vincentelli, Efficient Software
Performance Estimation Methods …, DAC 1996
[16] B. Tabbara, et al., Fast hardware-software co-simulation using
VHDL models, DATE, 1999, pp 309-316.
[17] Comp. Design, pp 452-457

Table 2. Scenario and pseudo-trace summary.

Major Procedure: Interrupt
process

Driver
process

Module Size
Local procedure calls (sub-scenarios) 2 3
Support library calls 4 4
Nodes in local CFGs to be analyzed 177 123

Scenario Specification Summary
Control ops nodes (to be constrained) 17 13
 Automatic constraints found 4 10
 Pruned control operations 11 3
 Control ops manually specified 2 0

Pseudo-Trace Summary
Operations in pseudo-trace 196 451
 Derived from driver source 46 151
 Derived from support library 150 300

Table 3. Performance evaluation summary.
Execution time in microseconds.

DRAM 1 DRAM 2 Shared mem mapping:
CPU component: 1X 2X 1X 2X

Interrupt Estimate 38 32 38 32
Service Observed 34 27 35 27
Receive Estimate 72 55 78 60
Task Observed 79 60 98 80

401

	Main Page
	DAC'03
	Front Matter
	Table of Contents
	Author Index

