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ABSTRACT 
A static performance evaluation technique is proposed 

to support early, architecture-level design space exploration 
for component-based embedded systems. The novel 
contribution is the use of a designer-specified evaluation 
scenario to identify a characteristic subset of system 
functionality that serves as a context for a rapid 
performance evaluation between candidate architectures. 
Fidelity is demonstrated with a case study that compares 
performance estimates of several candidate architectures to 
measurements from respective implementations. 

Categories and Subject Descriptors 
J.6 [Computer-aided engineering]: Computer-aided design; 
B.8.2 [Perf. Analysis and Design Aids]: Software analysis. 

General Terms 
Performance, Design. 

Keywords 
Performance evaluation, architecture-level, design space 
exploration, component-based, embedded system, scenario. 

1. Introduction 
A real-time embedded system interacts with its 

environment constrained by a set of timing deadlines. Some 
constraints are considered “hard”, while others are “soft”, 
meaning the timing deadlines may be violated in the 
context of a trade-off like cost, e.g. an MPEG decoder may 
miss an occasional video frame. A performance evaluation 
for these systems focuses on whether timing constraints are 
met, which requires an analysis of all system functionality 
to find the worst case functional paths. 

In contrast to real-time systems, this paper considers a 
class of embedded systems for which performance is a 
figure of merit. Performance is still important, but it is a 
perceived quality of the system, rather than a necessary 
condition for a correct design. Thus, as compared to real-
time embedded systems, the design approach differs in that 
performance is a distinguishing figure of merit among 

feasible designs and comparison between such designs is 
based on a typical case subset of functionality. 

Component-based designs are beneficial in terms of 
shorter development cycles, reduced cost, and better main-
tainability [4][14]. Component-based embedded systems 
favor architectures consisting of predefined subsystems, 
packaged as components, rather than custom-specified sub-
systems. Hardware components such as CPUs or memories 
provide structural resources, software components provide 
pure functionality, and some components, such as I/O 
controllers, provide functionality bundled with resources. 

For example, consider the embedded system design of a 
TCP interface using components such as high-performance 
CPUs and memories. Though technically a soft real-time 
system, with a 3 second default packet timeout [3], a 
practical approach may assume that the components allow 
the protocol constraint to be easily satisfied and therefore 
treats performance as figure of merit during design.  

Furthermore, consider the use of a software component 
that is a TCP protocol library. Such a component supports a 
reliable communication link and therefore includes 
exception handling and error recovery code that is not 
activated during typical case operation. At a designer’s 
discretion, an evaluation scenario would consider the 
functional paths activated by the error-free exchange of a 
64KB buffer, thereby removing from consideration many 
feasible, yet atypical paths, related to error recovery. 

Since components are often complex and include a 
significant amount of functionality, a designer faces the 
challenge of identifying the relevant, typical case subsets of 
functionality, called evaluation scenarios. A performance 
evaluation technique based on such an evaluation scenario 
is useful for a rapid, comparative assessment of candidate 
architectures during design space exploration.  

This paper proposes a performance evaluation technique 
to support architecture-level design space exploration of 
component-based embedded systems that emphasizes 
relative fidelity over accuracy of individual estimates. 
Specifically, two key problems are addressed: (1) how to 
define and extract an evaluation scenario, and (2) how to 
evaluate the system performance based on a scenario.   

The novel contribution of the proposed performance 
evaluation is the use of a designer-specified scenario to set 
the context for a rapid performance evaluation of distinct, 
component-based candidate architectures.  
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The approach focuses on an interactive definition of 
evaluation scenarios through incremental refinement of a 
functional specification to identify control flow paths 
corresponding to typical case behaviors. This challenging 
task is assisted by a semi-automated technique that can be 
applied simultaneously to software and hardware 
components. From each evaluation scenario, a pseudo-trace 
is statically generated, and pertinent architecture features 
are distilled into operation execution costs that are used to 
estimate an execution time.  
2. Related Work 

Design space exploration research can be classified as 
addressing aspects of representation, estimation, and explo-
ration algorithms [11]. Our proposed technique supports 
estimation by providing a rapid performance evaluation of 
component-based architectures suitable for use in an 
existing framework that generates candidate architectures.  

Many performance estimation techniques used in real-
time systems are based on a course-grained model in which 
the atomic element is a software process. This work 
considers a lower level of detail, e.g. instructions or 
operations.  

Within this scope of related work, the proposed 
performance evaluation technique is novel in the sense that 
it is an abstract, static model that reports a value for typical 
case operation (sometimes called an average case).   
Generally, static models have been used to determine 
bounds on performance, and most estimates that return 
typical values are based on dynamic models. 

Static, abstract performance estimation models are 
present in codesign methodologies to facilitate quick 
computation, e.g. POLIS [15], COSYMA [1], and TOSCA 
[1]. These environments rely upon a restricted specification 
language, which is biased towards a custom-specified (or 
generative) design approach, rather than the component-
based approach used in our technique. 

Several performance estimation techniques use a more 
detailed, static analysis model to conservatively estimate a 
performance bound, e.g. the tool Cinderella [9] implements 
a static analysis technique that implicitly considers all 
possible execution paths to find the extreme basic block 
execution counts. The execution time of each basic block is 
derived from databook values. 

Dynamic estimation techniques are essentially based on 
a simulation of a system, from which performance is 
measured, e.g. Ptolemy [10][16].  Such approaches are 
poorly suited for design space exploration because of the 
need to construct a virtual system, the hand coding of 
abstract models, or the time required for simulation.  

A few recent publications have similarly reported esti-
mates for a typical case based on a static model. 
Gupta et al. proposed a static model generated by profiling 
a program and relying on databook values to determine 
operation costs [6]. Lahiri et al. focus on bus commun-
ication using a previously captured execution trace [8], but 
do not consider other architecture features such as 

variations in the configuration of busses and memories. The 
abstract s-graph representation in POLIS can be used to 
estimate typical values, where profiling is used to 
determine the typical case path through the graphs [15].  

Though these approaches operate on static models, they 
all require an initial dynamic analysis to characterize the 
functional paths. In contrast, our proposed technique assists 
a designer in the specification of the evaluation scenario 
using only static models. 

3. Background 
Component-based design is a common topic in recent 

literature, but the term  “component” usually implies a 
software member and treats hardware as a fixed execution 
platform [2][5][14]. This paper uses component to describe 
hardware or software members whose specification is 
fixed, though possibly parameterized. Our precise 
definition of component is deferred until the features of 
architecture representation are explained. 
3.1 Representation Model 

To support the proposed evaluation model, a minimal 
representation model is described. An architecture is an 
abstract representation of a design that is expressed as a 
topology or configuration of subsystems. An architecture is 
decomposed into two distinct, but related, topologies: 
functional and structural.  

In a functional architecture, subsystems specify 
functionality and connections indicate flow of control 
linkage. For convenience, a subsystem in the functional 
architecture is called a module. The functional architecture 
specifies a set of (possibly) concurrent, sequential 
processes, where each process is specified by one or more 
modules. We assume each module is organized as one or 
more procedures, and each procedure is specified using an 
imperative language, i.e. as a sequence of operations. The 
operations are the primitives of functionality, and the level 
of abstraction can vary form source code operations to 
assembly instructions or their hardware counterparts. The 
example functional architecture in Figure 1(a) demonstrates 
a single software process specified with several modules.  
The connections between the modules, the linkage, express 
call/return control flow relationships.  A module describing 
a separate hardware process, labeled “I/O Functionality”, is 
also shown. The important aspect of the functional 
architecture is that flow of control can be followed between 
modules and across the hardware-software interface. 

The structural architecture consists of subsystems that 
support execution of operations and connections that 
represent communication paths.  Primitive subsystems 
represent the basic structural elements, simply called 
elements. Other subsystems may represent hierarchical 
aggregation.  Limiting the taxonomy to the problem at 
hand, some elements may provide an execution resource 
and/or a storage resource  (or neither). In general, elements 
with multiple connections provide an interface between 
these various communication paths. The structural 
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architecture in Figure 1(b) demonstrates a topology of 
subsystems that consists of a CPU connected to multiple 
memories and an I/O controller (IOC). The “CPU” is an 
aggregation, indicated by the dashed box. Elements such as 
the “bridge” and “memory controller” serve as interfaces. 
Elements providing resources are marked with “E” for 
execution and “S” for storage.  
3.2 Functional Representation 

Recall that system functionality is described as a set of 
processes specified with a set of procedures organized as 
modules. The underlying formalism to express procedure 
functionality is a control flow graph (CFG) in which nodes 
are operations and edges are potential flow of control. 
Operations affect flow of control or modify variables 
specified as operands. 

The CFG is a common representation that can be easily 
derived from an imperative source code specification such 
as C or Verilog. A formal description of the CFG used in 
the present technique is found in our previous work [12].  
3.3 Resource Mapping 

The two views of an architecture are related by a 
mapping that associates operations in the functional 
architecture with resources in the structural architecture. 

 Every operation is mapped to an execution resource, 
and operands, if present, are mapped to a storage resource. 
Referring to Figure 1, the software modules are mapped to 
the “core processor” execution resource, and the hardware 
module is mapped to the “IOC” execution resource (a fixed 
mapping).  The mapping of operands to storage resources 
varies from operation to operation, and in the example of 
Figure 1, potential storage resources are the core processor 
registers, DRAM 1, DRAM 2, or IOC registers. Different 
mapping schemes are considered architecture variations. 
3.4 Operation Cost Model 

Emphasizing computational simplicity and memory 
access, a basic model for the average execution cost for an 
operation type, c , is used. There are three parts: core pro-
cessor time, instruction fetch time, and an optional memory 
access time: meminstrcore cccc ++= , decomposed as:  

 corecore τnc = ,   instrinstrinstr
rdinstr tmpc = ,   and  

  mem
r/w

mem
r/wr/wmem tmpc =   

where n  is core processor cycle count, coreτ  is core 
processor cycle time, m is number words accessed and t  is 
the access time from a specific execution resource to a 
particular storage resource. The superscript of a variable 
indicates the storage resource, and the subscript indicates a 
read or write access. Each external memory access compo-
nent cost exists for an individual operation with some 
probability, p , which represents a cache miss for a read or 
the likelihood that a write operation cannot be posted.  

The core processor time is associated with an operation 
through the execution resource mapping, and it includes 
time to access any elements that execute at the core 
processor rate, e.g. the time to access processor registers. 
The cycle count is a databook value and the cycle time is a 
component parameter. 

Operations mapped to a processor execution resource 
have an instruction fetch cost that accounts for the external 
memory access time. Note that 0=m  for fixed 
functionality, e.g. for an IOC. 

The optional memory access cost, mem
r/wt , is the access 

time to a particular storage resource from an execution 
resource and is derived from structural topology by 
considering the storage resource mapping for each operand. 
For example, in Figure 1, dram1

rt  is the read access cost to 
DRAM 1 memory from the core processor.  

This abstract model for operation cost neglects 
numerous details of individual operations, and assumes 
independence between operations. We anticipate that more 
sophisticated analysis techniques can be applied to basic 
blocks to obtain a more accurate execution cost based on 
micro-architecture details of the target processor. 
3.5 Components 

A component is a set of one or more subsystems and 
associated connections, i.e. a fixed topology of subsystems, 
that can be included in an architecture. Components are 
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Figure 1. A network interface described by the functional architecture (a) and structural architecture (b). 
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reusable, may be hardware and/or software, and are gen-
erally available from a library. A component may be de-
livered in many forms, e.g. software source code, an intel-
lectual property core for VLSI design, a synthesizable 
hardware description language, or a discrete integrated 
circuit. To clarify explanation, components are assumed to 
have parameters that can be varied without affecting the 
fixed topology, e.g. operating frequency or size of memory. 
3.6 Architecture Explorations 

Our approach assumes that the design space exploration 
framework delivers candidate architectures for evaluation. 
The candidate architecture is a configuration of 
components that expresses both a structural architecture, 
which provides the required physical resources, and a 
functional architecture that fulfils the system behavior 
requirements.  Candidate architectures are determined by 
the topology and number of subsystems as well as the 
population of individual subsystems. The manner in which 
individual components contribute to an architecture ranges 
in complexity from a simple subsystem population to 
instantiating a portion of topology containing several 
subsystems. Minor architecture variations that do not affect 
the topology are under control of the designer based on 
changes to component parameters and the resource 
mapping.  

Figure 2 demonstrates several different candidate archi-
tectures. Within the single topology of Figure 2(a), 
different components can populate a subsystem, e.g. the 
CPU. Figure 2(b) is a more complex topology that uses an 
additional physical memory on a separate bus. The 
potential trade-off is lower cost with a single memory (a), 
versus improved performance with a second memory 
“close” to the IOC (b). The impact on system functionality 
is also demonstrated by the inclusion of different IOCs with 
the corresponding fixed functionality.  

4. Scenario-Based Performance Evaluation 
A key contribution of the proposed technique is the 

application of an evaluation scenario to identify a 
characteristic subset of functionality that serves as a basis 
for a performance evaluation. Once a scenario is specified, 
it is used to generate a pseudo-trace. The operation 
execution costs are derived from the resource mapping, 
from which a performance evaluation is calculated. 
4.1 Identifying Characteristic Functionality 

The functional architecture is incrementally refined into 
the evaluation scenario through three levels of refinement 
listed in Table 1. The first step establishes the total set of 
system functionality, based on the candidate architecture. 
The second step identifies a subset of the functional 
specification and the start/end nodes for the scenario. The 
last step is a detailed analysis of the functional specification 
that results in an evaluation scenario [13]. The case study in 
Section 5 quantitatively demonstrates the functional 
architecture a designer needs to consider in each step. 
4.2 Scenario Specification 

Intuitively, an evaluation scenario corresponds to a walk 
through the collection of CFGs that expresses the 
functional architecture. The evaluation scenario was 
introduced in the context of software programs in a 
previous work [13]. Important details are summarized here. 

To specify a scenario, the start and end nodes are 
identified, and each control flow edge is annotated with the 
number of times it is traversed in the walk. Only control 
flow operations, i.e. those with multiple outbound edges, 
need explicit annotation.  

User understandable constraints are associated with 
nodes and express dataflow facts, e.g. “a= 0” or “b<2”. 
They are expressed in terms of the functional specification 
and are interpreted according to the semantics of 
operations. In this simplified explanation, edge annotations 
are equivalent to constraining control operation 
predicates [13].  

The flow of scenario specification is shown in Figure 3. 
At the start of detailed path analysis, the designer has 
identified a set of CFGs to analyze, and provides the start 
and end nodes of the scenario. To define a scenario, the 
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Figure 2. Variations from subsystems or topology. 

Table 1. Identifying subset of system functionality. 

Step 
What is it? 

How 
formed? 

How is designer 
guided? 

1: Functional 
architecture 
Set of CFGs 

Design 
exploration 
framework 

Component 
specifications, 
resource mapping 

2: Identify relevant 
subset 
Subset of CFGs, 
plus start and end 
nodes 

Problem 
domain 
identifies 
interesting 
behavior 

Important system 
goals, 
understanding of 
functional 
specification. 

3: Specify scenario 
A control flow 
walk on CFGs 

Detailed 
source code 
analysis 

Scenario 
specification flow  
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designer needs to constrain all control operation predicates. 
An initial pruning cycle analyzes the control dependences 
between the start and end nodes and extracts predicate 
constraints that are then applied to the CFG. Based on these 
constraints, nodes are pruned from the CFG and data flow 
facts are propagated. A pruned control operation is 
considered constrained. 

If the data flow fact propagation results in new 
constraints on any control operations, then subsequent 
automatic cycles continue until no new constraints are 
found.  If there are any control operations left to constrain, 
a manual constraint cycle begins in which the designer 
provides a constraint.  Using this constraint, more 
automatic constraint cycles are attempted.  When all 
control operation predicates are constrained, the 
specification is complete.  

Note that key metrics that demonstrate the efficacy of 
this method are the number of control operation nodes 
eliminated due to pruning (more is better), the number of 
constraints found automatically from propagation of data 
flow facts (more is better), and the number of manual 
constraints supplied by the designer (fewer is better).  
4.3 Pseudo-Trace Generation 

The pseudo-trace is generated by the walk from the start 
node to end node through the collection of CFGs as defined 
by control flow edge annotations. Each regular operation 
has only one outbound control flow, and each reachable 
control operation is constrained to describe how to traverse 
the edges. Sub-scenarios in a called function can be reused. 
4.4 Operation Costs  

The variables used in the cost model defined in Sec. 3.4 
are determined from component properties, the architecture 
features, and designer supplied values. Some variables are 
simply databook values, such as the number of cycles to 
execute a particular operation (n and coreτ ).  

Variables related to storage resource access are derived 
from the topology of the structural architecture in 
combination with databook values. For example, consider 
the operation “A = M1 + B” from a software component 
that is bound to the core processor in Figure 1.  The 

variables A and B are bound to register operations, and 
variable M1 is a memory access bound to storage resource 
DRAM 1. The register access time is “built in” to the 
operation execution time. However, the memory access 
time to DRAM 1 depends on the elements traversed in the 
structural topology from the execution resource to the 
storage resource:  the CPU internal bus, the CPU memory 
controller, and the DRAM 1, in this example. 

Given that processor cores typically run an order of 
magnitude faster than external bus transactions, the 
configuration of busses and memories external to the 
processor component tend have a dominant role in an 
operation cost estimate.  

The memory access cost for cached memory regions 
depends dramatically on the average hit rate. This variable 
in the cost model is supplied by the designer, an assump-
tion made in several other estimation techniques [1][15].  

5. Case Study 
The case study applies the proposed technique to a 

performance evaluation of several candidate architectures 
based on the system of Figure 1. Two sets of results are 
reported: the effort to specify a scenario and a 
demonstration of the fidelity of the performance evaluation 
across different architectures.   
5.1 Experiment Setup 

The experiment considers a network interface based on 
software components from the commercial operating 
system VxWorks and standard integrated circuits, i.e. 
hardware components. The CPU component contributes a 
fixed topology with several subsystems (see Figure 1b). An 
I/O controller component contributes to both the structural 
architecture and the functional architecture. 

Fixing the functional architecture, the two major 
structural variations shown in Figure 2 are explored, 
resulting in four different architectures. First, two different 
CPU components that differ in core processor speed are 
used, the Intel i960® RP (1X or 33 MHz core) and RD (2X 
or 66 MHz core). This illustrates populating a subsystem 
with different components as shown in Figure 2(a). Second, 
different topologies of the structural architecture are 
considered by adding a second storage resource (DRAM 2) 
shown in Figure 2(b).   
5.2   Scenario Specification 

The steps of Table 1 are applied to identify a 
characteristic subset of system functionality.   

Step 1. The complex functional architecture is delivered 
from the exploration framework. The designer specifies the 
execution resource mapping by associating all software 
modules to the core processor (the IOC mapping is fixed). 

Operands are mapped to the appropriate registers and 
the DRAM 1 storage resources, under the guidance of a 
compiler, except that the shared memory between the 
device driver and “I/O Functionality” is mapped to 
DRAM 2 when it is present in the structural architecture. 
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Figure 3. Scenario specification flow. 
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Step 2. Beginning with the operating system func-
tionality (723 KB as object code), the contemplated 
architecture variations lead the designer to focus on the 
performance of the subset defined by the device driver 
module (47 KB in size). 

The problem domain indicates reception of a small 
packet is a typical action for this system. The start and end 
nodes for such a scenario are found using the software 
documentation and examining the code using a program 
slicing tool.   

Step 3. The detailed analysis applies the algorithm of 
Figure 3 to identify an evaluation scenario. The analysis 
examines the device driver source code, packaged as a 
single file specifying 14 procedures with 1,650 lines of 
source code.   Table 2 summarizes this analysis.  

The scenario occurs across two processes: an interrupt 
routine and the driver executing as a regular task. The 
reported number of control operations in the CFGs 
represents how many constraints need to be determined (17 
and 13). Note that relatively few operations require 
designer specified constraints (only 2). 
5.3 Performance Evaluation 

The number of operations in each pseudo-trace is also 
listed Table 2.  Most operations execute within the core 
processor in a single cycle of coreτ = 30/15 ns, derived from 
a databook depending on the 1X/2X CPU. Access times to 
storage resources are found by analyzing the structural 
topology, e.g. dram1

r/wt =4 coreτ  and dram2
rt =12 coreτ . The de-

signer supplies effective cache miss rate, e.g. dram1
rp = 0.2. 

The performance evaluation of four architectures, one 
for each scenario process, is summarized in Table 3.  These 
results demonstrate the fidelity of the proposed technique. 
That is, the relative performance estimates at an 
architecture-level of abstraction track the observed 
performance values across the architecture variations. We 
observed the cost model to be biased towards under 
estimation, and best suited to explore changes one 

dimension at a time. The fidelity between the estimates is 
more important than the accuracy of individual estimates, 
as this guides selection of promising architectures. 

6. Conclusion 
A performance evaluation technique was proposed that 

uses a static model, evaluates for a typical case, and is 
abstract enough to support early, architecture-level design 
space exploration. The evaluation scenario approach helps 
filter a complex set of system functionality to a small, but 
relevant, subset that serves as the context for performance 
evaluation.  

The case study demonstrates that this technique allows a 
rapid performance evaluation of candidate architectures 
that exhibits good fidelity.  
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Table 2. Scenario and pseudo-trace summary. 

Major Procedure: Interrupt 
process 

Driver 
process 

Module Size 
Local procedure calls (sub-scenarios) 2 3 
Support library calls 4 4 
Nodes in local CFGs to be analyzed 177 123 

Scenario Specification Summary 
Control ops nodes (to be constrained) 17 13 
   Automatic constraints found 4 10 
   Pruned control operations 11 3 
   Control ops manually specified 2 0 

Pseudo-Trace Summary 
Operations in pseudo-trace 196 451 
   Derived from driver source 46 151 
   Derived from support library 150 300 

Table 3. Performance evaluation summary. 
Execution time in microseconds. 

DRAM 1 DRAM 2 Shared mem mapping:  
CPU component: 1X 2X 1X 2X 

Interrupt Estimate 38 32 38 32 
Service Observed 34 27 35 27 
Receive Estimate 72 55 78 60 
Task Observed 79 60 98 80 
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