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ABSTRACT 
While Boolean logic minimization is typically used in logic 
synthesis, logic minimization can be useful in numerous other 
applications. However, many of those applications, such as Internet 
Protocol routing table and network access control list reduction, 
require logic minimization during the application’s runtime, and 
hence could benefit from minimization executing on-chip alongside 
the application. On-chip minimization can even enable dynamic 
hardware/software partitioning. We discuss requirements of on-chip 
logic minimization, and present our new on-chip logic minimization 
tool, ROCM. We compare with the well-known Espresso logic 
minimizer and show that ROCM is 10 times smaller, executes 10-20 
times faster, and uses 3 times less data memory, with a mere 2% 
quality penalty, for the routing table and access control list 
applications. We show that ROCM solves real-sized problems on an 
ARM7 embedded processor in just seconds.  
 
Categories and Subject Descriptors 
C.3 [Special-Purpose and Application-Based Systems]: Real-time 
and embedded systems  

General Terms: Algorithms, Performance. 
Keywords: Logic minimization, dynamic optimization, on-chip 
logic minimization, on-chip synthesis, system-on-a-chip, embedded 
systems. 

1. INTRODUCTION 
Boolean logic minimization is best known as the main part of logic 
synthesis, which converts a logic function to a circuit. Logic 
minimization algorithms were first used to reduce two-level logic 
functions targeted for programmable logic arrays (PLAs). As 
programmable logic and synthesis tools matured, two-level logic 
minimization became used as an individual optimization in multi-
level logic synthesis. While many logic minimization algorithms 
exist, most are very computation intensive and are typically targeted 
to run on large workstations or servers. 
 Logic minimization can also be useful in applications other than 
logic synthesis, such as Internet Protocol (IP) routing table reduction 
and network access control list (ACL) reduction, which we will 
describe later. Many of those applications require logic minimization 
to be run dynamically along with the application, which poses several 
challenges. Figure 1 highlights two possible methods for performing 
dynamic logic minimization. In the off-chip approach, the application 
transmits unoptimized data to a logic minimizer running on a 
workstation accessible through a communication link such as 
Ethernet. The workstation optimizes the data and transmits the results 
back to the application. While an off-chip approach has the benefit of 

using a powerful workstation-based logic minimizer, the approach’s 
communication overhead can greatly slow the optimization process, 
especially when optimization is applied frequently. 

Alternatively, dynamic logic minimization can be performed on-
chip by adding an optimizer to the chip itself. One approach executes 
the optimizer as an additional task that shares the same processing 
resources as the application itself. Another approach implements the 
optimizer using a separate small embedded processor/memory 
system, connected to the application processor’s memory (perhaps 
via direct memory access). Both on-chip approaches have the benefit 
of reducing or even eliminating data transfer between the application 
and the logic minimizer, resulting in a very fast implementation.  
 In either on-chip approach, the logic minimizer will have 
limited processing resources, in terms of processor speed and 
memory, compared to workstation resources. These limitations create 
a need for a lean logic minimization tool. In this paper, we describe 
two modern applications of logic minimization: IP routing table 
reduction and ACL reduction. We discuss on-chip logic minimization 
tool requirements. We then describe ROCM (Riverside On-Chip 
Minimizer), our logic minimization approach targeted for on-chip 
use, and we compare with Espresso-Exact and Espresso-II. We show 
further improvements by tuning ROCM to the specific optimization 
problem of an application. 

2. IP ROUTING TABLE REDUCTION 
IP network routers route an incoming IP packet to its destination by 
determining the packet’s next hop. The router compares the packet’s 
destination IP address to the router’s routing table entries, and selects 
the entry with the longest matching prefix. For small network routers, 
searching the routing table entries can be done quickly. However, for 
larger network routers with tens of thousands of routing table entries, 
the lookup can be time consuming. Hence, fast IP routing table 
lookup, either software or hardware-based, has been the focus of 
much research.  
 The most common hardware-based lookup techniques 
incorporate a content-addressable memory (CAM) to perform routing 
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Figure 1: Comparison of off-chip and on-chip optimization 
approaches. 
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table lookup in parallel. One such approach uses binary CAMs to 
perform the lookup. Because a binary CAM performs a fixed length 
match between the input and key, each distinct prefix length requires 
a separate CAM. Of the matches found within each CAM, the match 
with the longest prefix is then selected.  
 Recently, the introduction of ternary CAMs (TCAMs) has 
enabled hardware-based lookup methods without the need for 
multiple CAMs. TCAMs operate similarly to binary CAMs, but 
allow for the storing of a mask that is applied to the input and stored 
key before comparison. Longest prefix matching can be directly 
mapped to TCAMs [7]. The approach involves ordering routing table 
entries from longest to shortest prefix length and storing the entries in 
the TCAM, where the IP address is stored as the key and the prefix 
length is stored in the mask as a number of 1s, corresponding to the 
prefix length, followed by 0s. TCAMs have the drawback of larger 
size and power than binary CAMs. 
 To reduce the required TCAM size, Liu [5] used two-level logic 
minimization to reduce the routing table size, as illustrated in Figure 
2, partially taken from [5]. In the original routing table, entries P1 and 
P2 have the same next hop port. Additionally, their prefixes only 
differ in the fourth bit. Logic minimization combines these two 
entries by setting the fourth bit of the mask to zero. However, such 
mask extension cannot be applied to the entire routing table. Instead, 
the routing table is first pruned to remove redundant entries and 
partitioned into sets, where each set corresponds to a specific next 
hop and prefix length. For each set, Liu used Espresso-Exact to 
perform the mask extension. 
 Performing mask extension for the entire routing table is time 
consuming. Therefore, Liu developed an incremental update scheme 
to handle frequent routing table updates. The incremental update 
scheme uses the new route being added to the table as the on-set of 
the logic function and the existing set corresponding to the correct 
prefix length/next hop port as the don’t care set (dc-set). By applying 
two-level logic minimization as before, two conditions may occur. If 
the route being added is covered by an existing entry in the table, the 
new route will be added to the TCAM. Otherwise, the new route will 
be optimized and all other routes covered by the added route will be 
removed. Liu’s incremental update technique handled an average of 
50 updates per second, using Espresso-Exact on a 500 MHz Pentium 
III processor. However, the update figure did not include the 
potentially large time for transferring data between the network 
router and off-chip optimizer. On-chip logic minimization can 
eliminate the need for such transfers. 

3. ACCESS CONTROL LIST REDUCTION 
Most commercially available network routers are currently capable 
of handling Access Control Lists (ACLs). The network routers use 
information from the incoming IP packet, consisting of connection 
type, incoming IP address, incoming port, destination IP address, 
and destination port, to search the ACL for the first matching entry 
and the associated action of permit or deny to be taken. Large ACLs 
often have thousands of entries, making sequential lookup infeasible. 
Furthermore, hardware-based parallel lookup approach is limited 
because the approach must preserve the ordering of the ACL entries. 

While discussing the problem of handling large ACLs with a 
company that designs network router chips, we saw a similarity 
between ACL processing and IP routing table lookup. ACL entries 
could be directly stored within a ternary CAM while preserving the 
list order. However, the size of each ACL entry is over 100 bits. A 
TCAM large enough to hold tens of thousands of entries requires 
very large hardware resources. Therefore, we can again use two-level 
logic minimization to reduce the list size. Before logic minimization, 
we partition the ACL into sets of non-conflicting entries, 
corresponding to sequential entries of permit’s or deny’s. We further 
partition these sets into subsets with a maximum of 1000 entries each 
to achieve faster execution times, as the logic minimization 
algorithms are super-linear. 

4. ON-CHIP LOGIC MINIMIZATION  
The Quine-McCluskey method [8] was one of the first exact methods 
for two-level logic minimization. Most improvements to the method 
have focused on branch-and-bound techniques and reducing the 
effort required to generate prime implicants [5] or eliminating the 
need to explicitly do so [9]. Although exact algorithms are useful, in 
many cases getting good enough results (near optimal perhaps) in far 
less time is more important, which has led to the development of 
heuristic logic minimization tools. These approaches typically start 
with an initial cover of the logic function and rely upon iterative 
improvements to achieve good results. While researchers have 
developed many heuristic minimization methods, one particularly 
important method is the unate recursive paradigm used by Espresso-
II [2]. 

While researchers have extensively studied both exact and 
heuristic-based two-level minimization algorithms, they have not 
explored the usefulness of these algorithms in an on-chip tool. In fact, 
most of these algorithms strive to reduce the computational time or 
improve the quality of the results. Most of these algorithms do so at 
the expense of additional memory requirements and larger code size. 
The additional memory required is not a big concern in traditional 
logic minimization that runs on powerful workstations. However, 
executing logic minimization on-chip imposes new requirements. 

4.1 Requirements 
Limited available on-chip resources drastically constrain on-chip 
logic minimizers. Data memory may be very limited. Whereas logic 
minimizers for desktop processors may use hundreds of megabytes 
[3], on-chip minimizers must use much less. Instruction memory is 
also limited. Desktop minimizers may have large program sizes, but 
on-chip minimizers must be much smaller. On-chip processor speed 
will also be much slower, as the small embedded processors on 
which an on-chip minimizer runs is typically about ten times slower 
than a desktop processor, but on-chip must still execute rapidly. 

Obviously, one must expect the results of an on-chip minimizer 
to be poorer than a desktop minimizer, but those results must still be 
good enough to satisfy the application’s demands. 

Figure 2: IP routing table using TCAM’s before and after logic 
minimization. 

Original TCAM Entries 
# Prefix Mask Next Hop Port 

P1 10011100 11111100 7 

P2 10001100 11111100 7 
 

 

TCAM Entries After Mask Extension (Logic Minimization) 
# Prefix Mask Next Hop Port 

P1 & P2 10001100 11101100 7 
 

Logic Minimization 
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4.2 ROCM - Riverside On-Chip Minimizer 
The general two-level logic minimization problem for heuristic 
minimizers can be stated as:  

 
Given the inputs F (cover of the on-set) and D (cover of the don’t 
care dc-set) of an incompletely specified logic function, 
determine a cover of F that is minimal, where a minimal cover of 
F is a cover that is not a proper superset of any other cover of the 
function. 

 
In designing our two-level logic minimization algorithm, we 

employ the techniques used by both Espresso-II [2] and Presto [12]. 
While Espresso-II produces excellent results, the algorithms 
employed are not data memory conscious. The most obvious 
example of large data memory usage is the computation of the off-
set. While the use of the off-set for expanding cubes (a binary 
encoding of the implicants) yields a very efficient algorithm, the size 
of the off-set can be very large. We therefore chose not to compute 
the off-set and instead employ a tautology-based approach similar to 
that used by Presto.  

We designed our simple heuristic approach for two-level 
minimization using a single expand phase implemented with the 
main goal of very small memory usage and acceptable execution 
time. Figure 3 presents an overview of our optimization algorithm. 
First, we order the cubes according to decreasing cube size, under the 
assumption that larger cubes are more likely to cover other cubes and 
less likely to be covered by other cubes [2]. The expansion process 
then selects each cube c of the cover F and expands c to create the 
cube c’. During the expansion of c, each entry in c is iteratively 
expanded, ultimately resulting in the expanded cube c’. To check for 
validity of the expanded cube c’, we determine if c’ is contained 
within the current cover F. We perform the validity check by 
computing the cofactor of F with respect to expanded cube c’ (Fc’), 
which is then tested to determine if the cofactor is a tautology. If the 
cofactor is a tautology, the expansion was valid. Otherwise, the 
expansion was invalid and we revert the expanded cube c’ to its 
previous state. In addition, during the validity check, we will also 
create a set W’ that corresponds to the set of implicants covered by 
c’. When the expand process is complete, the algorithm returns the 
resulting cube c’ and the set of all cubes covered by the expansion, 
W. We then compute the current cover F as the union of the previous 
cover with the expanded cube c’ minus the cubes covered by c’. 

Most heuristic logic minimizers use the expand operation along 
with reduce and irredundant transformations to further minimize the 
cover through repeated execution of an optimization loop. Although a 
logic minimization tool that uses a single expand phase may not 
perform well for logic synthesis, the IP routing table reduction 
application has data sets that contain highly similar entries. The high 
correlation of the entries results in very good reduction using the 
expand operation alone. Thus, our first version of ROCM contains 

only expand, leading to loss of generality, but smaller code size and 
faster execution. 

5. RESULTS 
To determine the feasibility of using ROCM on-chip, we compare 
ROCM with Espresso-Exact and Espresso-II. Table 1 compares the 
reduced routing table size, data memory usage, and execution time of 
the three methods. We performed routing table reduction using mask 
extension, with routing table information from four large network 
routers, MaeWest, AADS, Paix, and PacBell [9]. Initially, we 
obtained all results using a 500 MHz Sun Ultra60 workstation, and 
we later show results on an embedded processor. 

ROCM’s code size is an order of magnitude smaller than 
Espresso, requiring slightly over 1000 lines of C code and only 22 
kilobytes of instruction memory. Both Espresso-Exact and Espresso-
II are from a single source that is executed using different command 
line options. Their collective code size is over 11,000 lines of code, 
resulting in a binary size of 227 kilobytes.  

The table also shows that ROCM uses only about one-third the 
data memory of Espresso-II and Espresso-Exact, using about 1,000 
kilobytes compared to over 3,000 kilobytes.  

The code and data memory savings come at the expense of 
ROCM being a bit slower (13%) than Espresso-II. Surprisingly, 
Espresso-Exact was the fastest method. Normally, the generation of 
all prime implicants is a very time consuming task, but the high 
similarity of routing table entries results in relatively few prime 

Figure 3: ROCM optimization algorithm. 
 

Table 1: Comparison of ROCM with Espresso-Exact and Espresso-II, in terms of data memory usage (Data, in kilobytes), execution time (Time, 
in seconds), resulting IP routing table size (Table size, in number of entries), and % reduction of the table versus the pruned table (Reduct.). Code 

size is also shown, in kilobytes. 

 Initial table size Espresso-Exact (227 Kb) Espresso-II (227 Kb) ROCM (22 Kb) 

 Orig. Pruned Data Time Table 
size Reduct. Data Time Table 

size Reduct. Data Time Table 
size Reduct. 

MaeWest 29585 22042 3408 122 16323 26% 3520 217 16327 26% 1048 245 16747 24% 
AADS 33740 24795 3520 135 18433 26% 3560 237 18438 26% 1056 259 18898 24% 
PacBell 22165 16124 3760 166 11213 30% 3752 271 11221 30% 1080 295 11604 28% 

Paix 13914 11091 2056 11 8885 20% 2056 26 8887 20% 1064 30 9000 19% 
Average 24851 18513 3186 109 13714 26% 3222 188 13718 26% 1062 207 14062 24% 

 

Optimize(F,D)  
{ 
  OrderCubes(F) 
  for i=1 to |F| 
  { 
    c = Fi 
    (c’,W) = IterativeExpansion(F,D,c)  

 F = (F ∪ c’) - W 
  } 
} 
 
IterativeExpansion(F,D,c) 
{ 
  W = {} 
  c’ = c 
  for i=1 to |c| 
    c’ = Expand(c’,i) 
    (val,W’) = ValidExpansion(F,D,c’) 
    if val = true 
      W = W ∪ W’ 
    else 
      Revert(c’,i) 
 
  return (c’,W)     
} 
 
 
ValidExpansion(F,D,c’) 
{ 
  CS = F ∪ D 
  return Tautology(CSc’) 
} 
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implicants compared to the number of entries. 
ROCM achieves results very close to the other tools, resulting in 

only 2% less reduction (24% versus 26%) than Espresso-Exact and 
Espresso-II. Using ROCM along with the initial pruning step, ROCM 
achieves an average 43% overall routing table reduction. 

Table 1‘s data is for performing mask extension on the full 
routing table, which only occurs once, after which we use 
incremental updates. Table 3 provides execution times for 
incremental updates for three prefix length/next hop port sets with 
varying sizes from the optimized AADS routing table. In addition to 
evaluating the performance on a workstation, we also evaluated 
ROCM’s execution time on an ARM7 processor, a popular and 
inexpensive embedded 32-bit microprocessor [1], using Triscend’s 
A7 development board that includes a 40 MHz ARM7 processor with 
an 8 Kbyte instruction/data cache [13]. Due to the generation of all 
prime implicants by Espresso-Exact and the computation of the off-
set and multiple optimization iterations performed by Espresso-II, 
ROCM outperforms both optimization tools, which required 36.6 
seconds and 12.8 seconds respectively for the largest example 24/01 
having 4,080 entries. In contrast, the single expand phase of ROCM 
requires only 0.2 seconds to complete. Interestingly, although the 
ARM7 clock is over an order of magnitude slower than that of the 
workstation, ROCM executing on the ARM7 required only 2.1 
seconds, which is still significantly less time than both Espresso-
Exact and Espresso-II on a workstation. 

We also evaluated the usefulness of ROCM for ACL reduction. 
Table 2 shows the reduced ACL (number of entries) and percent 
savings using Espresso-Exact, Espresso-II, and ROCM for five 
examples obtained from a router chip design company. Univ is an 

ACL of a university’s Computer Science department, Typ1 and Typ2 
represent typical ACL lists of small size, Bad corresponds to an ACL 
with permit and deny actions frequently interleaved, and Long is 
substantially larger than the other four examples. The ACL reduction 
by ROCM ranges from 17% to 40%, averaging 28%. Espresso-Exact 
and Espresso-II provide only an average 2% further reduction. 

6. CUSTOMIZING ROCM 
In most embedded systems applications, optimizing an algorithm for 
a particular application is beneficial. One possible optimization is to 
customize the algorithms and data structures for the particular input 
size of the application. A customized version of our logic minimizer 
will require less memory and reduce dynamic memory allocation. 
We can optimize the algorithms to exploit the known input size to 
improve performance. 

We created a version of ROCM, ROCM-32, optimized for 
routing table reduction applications that have an input size of 32 bits. 
Table 4 provides a comparison of data memory usage and execution 
times for unoptimized ROCM and ROCM-32. ROCM-32 requires an 
average of 11% less memory and 37% less execution time than the 
unoptimized version.  

7. CONCLUSIONS 
We have shown that on-chip logic minimization is feasible. Our 
ROCM tool has one-tenth the code size and uses one-third the data 
memory compared to popular on-chip minimizers, while executing 
fast enough and providing results of sufficient quality (only 2% 
worse than a powerful desktop logic minimizer) to satisfy our sample 
networking application’s needs. Numerous other applications that can 
benefit from on-chip logic minimization may exist or evolve. For 
example, we are presently applying on-chip logic minimization as 
part of a dynamic hardware/software partitioning approach [11].  
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Table 2: ACL reduction (reported in number of entries) and % 
reduction using Espresso-Exact, Espresso-II and ROCM. 

  Orig.  Espresso-Exact Expresso-II ROCM 
 Size Size Reduct. Size Reduct. Size Reduct. 

Univ 361 229 37% 229 37% 233 35% 
Typ1 180 147 18% 147 18% 149 17% 
Typ2 128 99 23% 99 23% 99 23% 
Bad 359 191 47% 191 47% 200 44% 
Long 4425 3406 23% 3406 23% 3536 20% 

Average 1091 814 30% 814 30% 843 28% 
 

Table 3: Execution time (in seconds) for incremental routing table 
updates (table size in parentheses) using Espresso-Exact, Espresso-II, 
ROCM (all on a workstation), and ROCM executing on an ARM7. 

 Espresso-
Exact Espresso-II ROCM ROCM 

(ARM7) 
24/07 (420) 0.42 0.31 0.02 0.22 
23/01 (758) 1.0 0.58 0.04 0.45 
24/01 (4080) 36.6 12.8 0.2 2.1 

 

Table 4: Comparison of data memory usage and execution time for 
unoptimized ROCM and ROCM-32, and percent savings of ROCM-32 

vs. ROCM.  

 Data (kilobytes) Time (seconds) 

 ROCM ROCM
-32 Saving ROCM ROCM

-32 Saving 

MaeWest 1048 936 11% 245 147 40% 
AADS 1056 944 11% 259 157 39% 
PacBell 1080 984 9% 295 175 41% 

Paix 1064 936 12% 30 22 27% 
Average 1062 950 11% 207 125 37% 
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