
CoCo: A Hardware/Software Platform for Rapid
Prototyping of Code Compression Technologies

Haris Lekatsas1;2, Jörg Henkel1, Srimat Chakradhar1, Venkata Jakkula1, Murugan Sankaradass1

1NEC Labs America, 4 Independence Way, Princeton, New Jersey 08540, USA
2Vorras Corporation, 1 West Drive, Suite 1202, Princeton, New Jersey 08540, USA

flekatsas,henkel,chakg@nec-labs.com

Abstract
In recent years instruction code compression/decompression tech-
nologies have emerged as an efficient way to a) reduce the memory
usage of an embedded system, b) to improve performance through
effectively higher bandwidths and/or to c) reduce the overall power
consumption of a system processing compressed code. We have pre-
sented efficient code compression/decompression techniques and
architectures in the past. For the commercialization phase, we de-
signed a novel hardware/software code compression/decompression
platform (CoCo). It consists of a software platform that prepares,
optimizes, compresses and compiles instruction code and a generic,
parameterizable FPGA-based hardware architecture in form of a
hardware platform that allows to rapidly evaluate prototypes of di-
verse compression/decompression technologies. We show the flex-
ibility of CoCo, its ability to achieve code compression ratios (pa-
rameterizable) of up to 50% with a slight system performance gain
and its ability to apply compression on real-world compiled code
without any limitations where others have made implicit software-
restrictive assumptions.

Categories and Subject Descriptors
B.3 [Hardware]: Memory Structures; C.3 [Computer Systems
Organization]: Special-purpose and Application-based Systems-
Real-time and embedded systems

General Terms
Algorithms, Design, Performance

Keywords
Embedded Systems, Code Compression

1. INTRODUCTION
In recent years, diverse novel code compression/decompression

technologies for embedded systems have been proposed. This trend
is mostly driven by the advent of MPSOCs (Multi-Processor-System-
On-Chip) designs. Not only do those SOCs often exceed a com-
plexity of 100 million transistors on a single piece of silicon, but

Permission to make digital or hard copies of all or part of this work for
personal or classroom use is granted without fee provided that copies are
not made or distributed for profit or commercial advantage and that copies
bear this notice and the full citation on the first page. To copy otherwise, to
republish, to post on servers or to redistribute to lists, requires prior specific
permission and/or a fee.
DAC 2003, June 2–6, 2003, Anaheim, California, USA.
Copyright 2003 ACM 1-58113-688-9/03/0006 ...$5.00.

they also comprise a large set of heterogeneous or homogeneous
multiprocessors (we will simply use the term ”Processing Unit”
in the following) that communicate via an on-chip network. Typ-
ically, those MPSOC designs feature a large shared memory that
is accessed for diverse purposes by at least a subset of the multi-
processors. In addition, a single processing unit tends to have its
own (medium size) memory that holds the code and data that is
being accessed exclusively by this processing unit. Those individ-
ual memories can still have a size of several hundred KB to several
MB each and add up to a size that exceeds by far the single shared
memory.
An example for a homogeneous MPSOC is a state-of-the-art 64-
channel TDMA chip that comprises eight CPUs each processing
voice encoding on eight channels at a time. Each of the CPUs has
its own instruction memory of 32KB. Even though the code in each
of the instruction memories is almost identical, the simultaneous
access pattern constraints to provide an individual memory for ev-
ery CPU. Furthermore, the chip itself is constrained to 13mm2.
This, together with the TDMA performance constraints would re-
sult in a mismatch, given a technology of 0:13�.
Our solution to meet all constraints was to deploy a code compres-
sion technology: code in the instruction memory could be com-
pressed and thus require a smaller instruction memory. If, for ex-
ample, we compress the code by 50% this would save us 8�16KB
and we would meet the area constraints. We also found that code
compression can even boost the performance of an MPSOC due to
an effectively increased bandwidth and an improved memory ac-
cess pattern in a multi-level memory hierarchy (e.g. a cache might
appear larger since it holds compressed code and thus the cache hit
ratio might increase).

In this paper we present a parameterizable hardware/software
platform for code compression/decompression technologies that is
the first of its kind. The software platform prepares, optimizes,
compresses and compiles instruction code whereas the hardware
platform provides a generic, parameterizable architecture to imple-
ment various compression technologies and to adapt them to di-
verse instruction set architectures. Among others, it allows us to
tradeoff the compression ratio against the performance gain and
thus it is a vital tool- suite to explore the benefits of code compres-
sion/decompression technologies under varying constraints and di-
verse MPSOC architectures.

The structure of this paper: Sec. 2 summarizes the most promi-
nent work in code compression whereas Sec. 3 revisits issues in
code compression as they are necessary for the understanding of the
rest of the paper. It also states our contributions and assumptions.
Our CoCo hardware/software platform is introduced in Sec. 4 along
with two exemplary compression/decompression schemes that show
the flexibility of CoCo. Experimental results obtained with CoCo

306

19.2

are shown and discussed in Sec. 5, while Sec. 6 gives a summary
with conclusion.

2. RELATED WORK
A summary of the most prominent work in code compression fol-

lows; we present work that is closer to our CoCo platform. Wolfe
and Chanin proposed CCRP Compressed Code RISC Processor,
which was the first system to use cache-misses to trigger decom-
pression [9]. CodePack is a similar system used in IBM’s em-
bedded PowerPC systems [2]. Their scheme resembles CCRP in
that it is part of the memory system. Software decompression is
also possible, simplifying the hardware design and allowing de-
compression to be selected at run-time. Lefurgy et al. [5] proposed
two hardware mechanisms to support software decompression. An-
other technique that can be carried out purely in software is a dictio-
nary method proposed by Liao et al. [6] where mini-subroutines are
introduced replacing frequently appearing code fragments. Ishiura
and Yamaguchi [3] proposed a compression scheme for VLIW pro-
cessors based on automated field partitioning. They keep the size of
the decompression tables small by producing codes for sub-fields
of instructions. Xie [10] proposed another approach based on ap-
proximate arithmetic coding targeting VLIW code. Other methods
based on dictionary coding include the work by Benini et al. [1]
which selectively compresses instructions and the work by Lefurgy
et al. [4] for DSP. Okuma et al. [7] proposed an encoding technique
that takes into account fields within instructions. Yoshida et al. [11]
introduced a logarithmic-based compression scheme which can re-
sult in power reduction as well.

All these approaches are targeted to a specific instruction set ar-
chitecture and/or they make implicit assumptions that restrict the
instruction code. Our CoCo platform overcomes these limitations
as it is designed to work with diverse instruction set architectures
and to evaluate various compression schemes rapidly through its
flexible and parameterizable concept. In addition, it does not imply
restrictions on the code.

3. CONTRIBUTION OF OUR WORK AND
BASICS IN CODE COMPRESSION

In the following sub-section 3.1 we shortly revisit basics in code
compression as they are mandatory for the understanding of the rest
of the paper. For deeper information on these topics, please refer
to [8, 9].

3.1 Revisiting Basics in Code Compression
� Random Access

Code compression mandates random access i.e. the abil-
ity to start decompressing the code at any location that might
be a target of a jump/call/branch instruction. Only if small
parts of the code are decompressed at a time, the memory
usage of a system can be kept low. In contrary, file compres-
sion/decompression (e.g. images) do not need random access.

� Granularity in code compression
Due to the random access constraint, typical granularities i.e.
code portions that are compressed independently, are basic
blocks (i.e. the instructions in a basic blocks are always en-
tirely executed in a sequential way from the first to the last
instruction) or single instructions.

� Indexing
Assumed that the code is decompressed before it is fed into
the CPU1, there are two address spaces: the compressed ad-

1This implies the CPU is un-altered, processing regular uncom-
pressed code even though the rest of the system like caches, main

dress space and the uncompressed address space. The Pro-
gram Counter PC of the CPU will then operate in the un-
compressed address space whereas the main memory etc. will
operate in the compressed address space requiring a CPC
(Compressed Program Counter). Indexing is the problem of
mapping the PC to the CPC since code is not executed se-
quentially due to branch/jump/call instructions etc. Wolfe and
Chanin [9] proposed using a mapping table. The overhead for
such a table can be large when the granularity (see above) de-
creases. An alternative approach is to leave branch/jump/call
instructions untouched during compression and to patch the
offsets to point to compressed space after compression is done.

� Dictionary/table-based compression algorithms
A category of data compression algorithms that use tables is
dictionary coding. In dictionary coding, frequently appearing
sequences of symbols are replaced by indices to dictionaries
that hold the original symbols. Those indices are smaller in
size than the original sequences, thus achieving a compres-
sion. One of the first dictionary techniques proposed was LZ
coding by Lempel and Ziv [8].

� Compression ratio
We define the compression ratio as the ratio of compressed
code size to uncompressed code size. Example: a compres-
sion ratio of 70% would mean that the code size has shrunk
by 30%. This ratio excludes indexing and dictionary tables
and only shows raw code size reduction.

3.2 Assumptions and Basic Hardware Archi-
tecture of CoCo

The basic architecture of CoCo is shown in Fig. 1: the whole sys-
tem except for the CPU is processing in the compressed space. This
is beneficial since as many as possible system parts profit from the
compressed code (caches and main memory can be smaller, buses
have an effectively higher throughput etc.). The decompression en-
gine is located as close as possible to the CPU. This is a so-called
”post-cache” architecture as opposed to a ”pre-cache” architecture
where the instruction cache would not profit from the compressed

I-
c
a
c
h

e
I-

c
a
c
h

e

D
-c

a
c
h

e
D

-c
a
c
h

e

CPU

m
e
m

o
ry

m
e
m

o
ry

D
e
-c

o
m

p
re

s
s
io

n

e
n

g
in

e

D
e
-c

o
m

p
re

s
s
io

n

e
n

g
in

e

D
e
-c

o
m

p
re

s
s
io

n

e
n

g
in

e

D
e
-c

o
m

p
re

s
s
io

n

e
n

g
in

e

“post-cache” “pre-cache”
alternatives

Figure 1: Example for an architecture the COCO platform is aimed
at

code (shown in dashed lines in Fig. 1). In addition, it can be seen
that the decompression engine is separated from the CPU meaning
that no modifications to the CPU are necessary.
A further characteristic of CoCo is that decompression is performed
on-the-fly i.e. whenever an instruction(s) is required by the CPU.
This is a direct consequence of the post-cache architecture. The on-
the-fly decompression ensures a maximum possible performance
gain at a minimum memory requirement (since both, cache and
main memory, comprise compressed code they can be smaller com-
pared to the non-compressed case). On the down-side it requires a

memory, buses etc. might process/transfer compressed code.

307

careful design of the decompression engine since it hosts the crit-
ical path and may actually result in an increased clock cycle time.
We have solved this problem by a patented decoding tree hardware
(not part of this paper).

3.3 Contribution and Novelties in CoCo
The following characteristics of CoCo represent the major con-

tributions of this paper:

a) The CoCo hardware/software platform is not limited to a
specific compression scheme. Rather, it can use different
simple dictionary techniques provided that they can fit in
reasonable space and their contents do not change during
decompression.

b) The software flow is designed to be applied to a standard
compilation flow without altering it. In particular, an al-
ready compiled code can be used as is and be prepared for
code compression. This guarantees the application of our
technology to legacy code.

c) We solve the problem of unknown (at compile time) jump
and call targets. Hence, our techniques do not impose any
limitations on the software such as, for example, prohibit-
ing2 the use of jump and call to register-stored targets, a
problem that has not been addressed by others.

d) the software flow of CoCo identifies the working set (code
segments that will be executed most often). Thus, it maxi-
mizes the performance benefits of compression under area
constraints (size of dictionary; PC toCPC translation ta-
bles etc).

4. COCO HARDWARE/SOFTWARE PLAT-
FORM

Code compression in an embedded system is more than just ap-
plying a compression algorithm to a bit stream and then using the
inverse of the compression algorithm to decompress when the sys-
tem is running. Indeed, technical obstacles and their solutions will
decide whether the possible compression ratios can result in any
gain at all, considering the overhead involved. By means of two
compression schemes we show in this section the technical feasibil-
ity of code compression along with solutions to problems that have
not been solved by others before. The two schemes also demon-
strate the flexibility of CoCo to implement diverse solutions.
Note that the two exemplary schemes are both working with a
dictionary-based compression algorithm. We do not focus in this
paper on any specific compression algorithm since our CoCo plat-
form is flexible enough to implement various table-based schemes.
The two exemplary schemes are selected to showcase code-related
obstacles that we have solved in CoCo.

4.1 Instruction-based Compression
The granularity (see Sec. 3.1) for compression within this scheme

are full instructions. There is no limitation on the instruction set ar-
chitecture. Among others, the following cases are covered:

a) the instruction set can consist of instructions with differ-
ent widths like, for example, Tensilica’s Xtensa processor
with 24-bit and 16-bit instructions.

b) the instruction-width does not have to match the bus width
through which the instructions are fetched.

2which, in effect, may decrease the software efficiency i.e. perfor-
mance

I. Deducing the Compressed Program CounterCPC
The code in Fig. 2 shows a branch instruction that, if taken, may not

bnez ____ a5, L1

sub _____ a2, a3, a4

addi ____ a3, a3, 1

and _____ a2, a2, a3

L1: _or ______ a1, a2, a3

bnez ____ a5, L1

sub _____ a2, a3, a4

addi ____ a3, a3, 1

and _____ a2, a2, a3

L1: _or ______ a1, a2, a3

Figure 2: Problem of deducing the program counter in the decom-
pression engine during branching in a pipelined architecture

be detected as a branch by the DCE (Decompression Engine) since
the PC of the CPU continues to be incremented through a delayed
branch. Thus, theCPC (see 3.1) cannot be deduced by the PC. A
table-based translation from PC to CPC becomes necessary but
would be too costly if every instruction address had to be translated
by that table.
As a low-overhead solution, we use what we call a memory block
table MBT that maps uncompressed addresses of cache blocks (not
words) to compressed cache block addresses. The exact byte po-
sition of that address in the cache block is what we call the offset
which is derived from the software itself or, in the case of indirect
branch/jump/call instructions, from the main memory.
This technique is key since it saves large memory space that would
be necessary for PC toCPC translation tables, which would even-
tually reverse the gains achieved by code compression. Here are the
techniques:

1) Sequential Code: Offsets are derived from the decompres-
sion history which is a mechanism used by the DCE to
track compressed instruction sizes and thus compute the
next compressed address in compressed space.

2) branch/jump/calls where targets are not known at compile
time: Fig. 3 shows the case of an unknown jump tar-

old code:

...

jx____a5

...

new code:

...

neg____a5, a5

l32i___a5, a5, 0

jx_____a5

...

Figure 3: Software transformation to allow jumps to indirect ad-
dresses

get. Note, that the target address cannot be retrieved by a
data flow analysis on the code since it is only calculated
during run-time. The DCE, however, needs to know the
offset to be able to fetch the next instruction in the com-
pressed space. Our technique: the neg instruction inverts
the address and then the load instruction is executed on
that (invalid) address which is trapped by the DCE hard-
ware. Then, the DCE deduces the necessary offset from
that target address.

This is one major contribution of our work; we allow any kind of
compiler-generated code without restrictions. Note though, that the
code size increases through the transformations presented above.

II. Software Flow
Whereas the entire software flow of the CoCo platform is shown
in Fig. 4, below are the steps that are applicable to this scheme
(instruction-based compression):

308

Application Program (C, C++, &)

CompilationCompilation

LinkingLinking

Executable

Application Program (C, C++, &)

CompilationCompilation

LinkingLinking

Executable

Separate Code/DataSeparate Code/Data

BloatBloat

Relocate CodeRelocate Code

Compression

Parameters: a) compression ratio

b) alphabet size

Compression

Parameters: a) compression ratio

b) alphabet size

Translation Table

Generation

Translation Table

Generation

Compressed ExecutableCompressed Executable

Standard SW flow

CoCo

Software

Platform

CoCo HW Platform

Working Set DeterminationWorking Set Determination

Bit streams:

1. Dictionary table

2. PC to CPC tables

Bit streams:

1. Dictionary table

2. PC to CPC tables

Gathering StatisticsGathering Statistics

Compression

Algorithm Lib

Compression

Algorithm Lib

Figure 4: The software part of the CoCo platform

1) separating code from data:The executable is parsed and
the data sections are identified and marked to avoid com-
pression of data (which can even be located in code sec-
tions when using certain compilers).

2) bloating: Software transformations necessary to facilitate
address mappings between uncompressed and compressed
space (see above).

3) gathering statistics: Statistics are collected to obtain the
frequency of appearances of instructions in the program
for an efficient compression.

4) compressing: This phase parses the program a second
time and scans for re-occurrences of instructions or in-
struction pairs. When found, it replaces it with an index to
the compressed PC-to-CPC-table. Various table-based
compression schemes can be selected by the user.

5) generating translation tables:This phase parses the orig-
inal and the compressed program simultaneously, and gen-
erates an address mapping from uncompressed addresses
to compressed ones.

III. Hardware for Addressing
The following describes the hardware within the CoCo platform to
obtain addresses in the compressed space. Here are the constraints:
� the platform is capable of handling applications of any size,

though the compressed regions of a program together are lim-
ited to 256KB. We call these regions the Extended Working
Set (EWS) which is determined by software analysis (mainly
profiling).

� blocks in uncompressed space (we will refer to them as UC
blocks) are 256 bytes in size.

� as cache line we use mostly 32 bytes. However the platform
architecture is flexible enough to handle other cache block
sizes.
From the UC block size (256 bytes) and the cache block size (32

bytes) it follows that 8 separating values (we will refer to them as
separators) are needed to deduce the cache block number To store
these separators we use memories of 1Kx18. Four such memories

1K x 18 bit

1K x 18 bit

1K x 18 bit

1K x 18 bit

1K x 18 bit

4 ns

16bits

3.5 ns

Adders

MUX

Mem.

Block

Nums

Separ1

Separ2

Separ3

Separ4

2.3 ns

8 Comp.

13bits each

1bit

16bits

16bits

16bits

13bits

UnComp. Mem. Start

Comp. Mem. Start

UC Addr.

Padding
32bits

Comparators

UC

True/False

Figure 5: UC (i.e.PC) to CPC address generation block diagram

are necessary each holding 2 separators. Due to a UC block size
of 256 bytes, 8 bits per separator are required. Fig. 5 illustrates the
block diagram of the architecture. The 13 bits of the table giving
the cache block number in the EWS have to be padded with the
appropriate bits depending on the location of compressed code in
memory to form a full 32-bit address. The decompression history
offset is concatenated to the LSB part. Thus, 15 bits are needed to
be padded on the MSB side and 5 bits to be padded on the LSB side
to form a full 32-bit address for the cache/memory. The main ad-
vantage of this approach is complete independence from the cache
size on the architecture. A number of registers are used to make the
hardware platform as general as possible:
� A register holding the number of bits in the memory block

table (in the above example it is 12)
� A separator mask register: the maximum supported is 28 bits

of separator storage per table entry.
� A register storing the number of separators in the separator

table.
An implementation of CoCo using the Xtensa 1040 processor re-
sulted in 90k gates on an FPGA (Altera EP20K-1500E) board run-
ning at 40 Mhz.

4.2 Word-based Compression
The granularity (see Sec. 3.1) for compression within this scheme

is a word transmitted on the bus (typically 32-bit), irrespective of
the actual size of the instruction which could be different. The
compression metric used is described in Sec. 5.

I. Software Flow
The software flow is similar to the one in Sec. 4.1 except for: a) no
modifications to the software are necessary since indexing can sim-
ply be deduced due to the constant size of an entity (bus word) that
is being compressed, and b) the step ”gathering statistics” searches
for occurrences of a sequence of bus words, not instructions.

309

64 Kbytes

Uncompressed

Memory

Offset Tab. 2

Offset Tab. 1

MBT

SEP1

SEP2

1K

1K

1K

1K

1K

64 byte block

11 bits

6 bits

6 bits

17 bits

17 bits

Figure 6: Address lookup block diagram for word-based compression

II. Hardware for Addressing
Again, we have a technique to deduce the CPC without requir-
ing a full (large) table for each word in the program space. In this
scheme, CoCo limits the EWS size to 64KB. The mapping con-
sists of a memory block table MBT (see Fig. 6) that generates the
compressed memory cache block address from the uncompressed
address whereas SEP1/SEP2 take care of the non-covered cache
blocks (according to the compression of a word, the address of the
first word is stored in MBT; the succeeding 1-2 other words are ad-
dressed via separators). Then, the offset tables determine the exact
byte position in the cache block3. Eventually, we need 17 bits to
map any address in the 64KB segment that can be located anywhere
in the 4GB total address space.

5. EXPERIMENTS AND RESULTS
In the following, we present experiments using our CoCo plat-

form. We first describe our basic assumptions, then give synthesis
results (the hardware platform of CoCo is based on a board with an
Altera FPGA) and we finally present compression and performance
results for both the word-based technique and the instruction-based
technique. The aims of the experiments were to demonstrate:

a) the ability of the platform to run different code compres-
sion techniques. We deployed a reconfigurable processor
with an on-chip cache that allowed us to modify cache pa-
rameters such as the cache size,

b) the ability of CoCo to load/execute diverse (size, applica-
tion domain etc.) applications. Our CoCo software plat-
form takes any executable and patches all necessary in-
formation for execution (like space for the decompression
memory block and offset tables). During execution the
processor loads first the tables into the SRAM(s) and then
starts executing the on-the-fly decompressed application,

c) the ability of our method to handle complex instruction
sets with variable instruction lengths. Therefore, we used
a reconfigurable processor that has two different instruc-
tions sizes (24-bit and 16-bit) instructions. The processor
was configured to run on a 32-bit instruction bus. Thus, at
any time a 32-bit word is received and has to be processed
by the decompression unit DCE,

d) to evaluate our complex software package that accomplishes

3The offset tree structure is left out since it is currently being filed
as a patent

SRAM

24 bits

M
U

X

Final outgoing instr.

16 2 2

SRAM

24 bits

M
U

X

U
n
c

o
m

p
re

ss
e

d

in
st

ru
c

tio
n

C
a

c
h
e

In
te

r f
a

c
eAltera

Figure 7: CoCo’s hardware platform with DCE block diagram

code transformations (an example was given in 4.1).

The hardware platform of CoCo using an Altera FPGA is shown in
Fig. 7 along with a block diagram of the DCE.

The timing and area results for ”instruction-based”/”word-based”
methods are: 28ns=7:2ns clock cycle time (� 40MHz=130MHz)
on a 0:25�4 while the area usage equals to 11K/2K gates for the
decompression logic and 16.75K/15.5K for the SRAMs containing
the address mapping tables.

5.1 Compression and Performance Results
The first series of results stems from our instruction-based com-

pression scheme (see 4.1). They are based on two levels of com-
pression: the first level involves identifying the 1024 (i.e. size of
the lookup table on the hardware platform) most frequently appear-
ing 24-bit instructions and compressing them into 16 bits, while the
second level involves scanning for three frequently appearing con-
secutive 16-bit instructions (i.e. 48 bits in total) and compressing
them into 16 bits. The amount of compression is limited by our ta-
ble sizes: our platform has space for 1024 24-to-16 bit compressed
instructions and 1024 48-to-16 compressed instructions.

The second series of experiments are based on ”word-based”
compression (see 4.2). In this case, our tables can accommodate
1024 64-to-32 bit compressed instructions. In other words, the
1024 most frequently appearing pairs of words are grouped and
are compressed into one word (32-bit data bus). We used in all ex-
periments a 32-bit wide address bus (this is the maximum address
space of CoCo and as such requires the highest bit width for the
address mapping tables; see 4.1 and 4.2). Furthermore, the cache
line sizes were 32 bits throughout.

The applications are: advance (3100 lines of C code, 188KB ex-
ecutable), a math calculation application that makes use of complex
jump instructions (through switch statements) and smo (1245 lines
of C code, 74KB executable): an image smoothing application that
is dominated by bit operations.

Table 2 shows compression and performance results for our two
applications using the ”word-based” technique. It shows various
cache sizes in the compressed an un-compressed case, the number
of times a cache line is refilled, the total number of cycles that were
cache hits hit cycles, the total number of cycles in the application
total cycles and finally the cycles through compression. For the ad-
vance application we observe that smaller caches show larger ben-
efits as the execution pattern of the application is concentrated to a
small fraction of the code such that larger cache sizes do not result
in further improvements. This execution pattern (through the EWS
metric) leads to a partially full dictionary such that the upper bound
4Note that because of the prototyping nature of our platform we
need not to deploy the newest silicon technology. In fact, this older
technology enables us processors on our platform that are not yet
available in the newest silicon technology.

310

Appl. CR Cache Cache Hit Total Cycles

Appl. CR size Refills cycles cycles saved
no comp 1k 1,538 354,813 388,649 n/a

75% 1k 1,220 354,020 380,860 7,789
no comp 2k 1,270 354,713 382,653 n/a

75% 2k 1,002 353,745 375,789 6,864
adv no comp 4k 1,104 354,652 378,940 n/a

75% 4k 836 353,696 372,088 6,852
no comp 8k 994 354,610 376,478 n/a

75% 8k 752 354,286 370,830 5,648
no comp 16k 955 354,592 375,602 n/a

75% 16k 731 353,979 370,061 5,541

no comp 1k 53,855 3,879,327 5,064,137 n/a
77% 1k 52,140 3,880,928 5,028,008 36,129

no comp 2k 35,152 3,866,202 4,639,546 n/a
77% 2k 33,949 3,854,456 4,601,334 38,212

smo no comp 4k 7,739 3,867,419 4,037,677 n/a
77% 4k 4153 3,867,729 3,959,095 78,582

no comp 8k 53 3,863,575 3,864,741 n/a
77% 8k 43 3,863,586 3,864,532 209

Table 1: ”instruction-based” (see 4.1) compression: Results in
terms of compression ratio and performance for both, com-
pressed and uncompressed instruction code for various instruc-
tion cache sizes

of compression i.e. 50% can be achieved whereas smo utilizes the
whole dictionary and in fact not all patterns could be stored, effec-
tively resulting in a 69% compression ratio. The performance is
improved in all cases through the effect of an effectively higher bus
bandwidth and through an effectively larger cache (since it holds
compressed instructions. ”Instruction-based” Table 1 shows simi-
lar results; it depends on the application which technique achieves
better results.

The current limitation of the platform is that we can only deploy
simple dictionary-based compression methods. But, as mentioned
earlier, only dictionary/table-based techniques are capable to de-
compress on-the-fly under a feasible hardware effort and without
adding extra cycles.

6. SUMMARY AND CONCLUSION
We introduced in this paper our CoCo hardware/software plat-

form that allows to rapidly prototype and evaluate diverse code
compression technologies. It is the first such platform of its kind.
We have demonstrated the flexibility of CoCo by showcasing two
dictionary/table-based compression schemes (”instruction-based”
and ”word-based”). CoCo has no restrictions on the code (like all
other known approaches) since it allows to compress any instruc-
tion of an instruction set architecture (including jump instructions
to register-stored targets). It can handle instructions set architec-
tures that feature multiple instruction word lengths. Furthermore,
we have shown that CoCo can implement any dictionary/table based
compression algorithm. As a result, CoCo allows to rapidly proto-
type diverse techniques and, among others, to trade-off compres-
sion ratios against performance.

7. REFERENCES
[1] L. Benini, A. Macii, E. Macii, and M. Poncino. Selective

Instruction Compression for Memory Energy Reduction in
Embedded Systems. IEEE/ACM Proc. of International
Symposium on Low Power Electronics and Design
(ISLPED’99), pages 206–211, 1999.

[2] IBM. CodePack PowerPC Code Compression Utility User’s
Manual. Version 3.0, 1998.

Appl. CR Cache Cache Hit Total Cycles

Appl. CR size Refills cycles cycles saved
no comp 1k 1,538 354,813 388,649 n/a

50% 1k 863 354,085 373,071 15,578
no comp 2k 1,270 354,713 382,653 n/a

50% 2k 672 354,030 368,814 13,839
adv no comp 4k 1,104 354,652 378,940 n/a

50% 4k 546 353,399 366,011 12,929
no comp 8k 994 354,610 376,478 n/a

50% 8k 502 353,983 365,027 11,451
no comp 16k 955 354,592 375,602 n/a

50% 16k 463 354,241 364,427 11,175

no comp 1k 53,855 3,879,327 5,064,137 n/a
69% 1k 50,126 3,887,107 4,989,879 74,258

no comp 2k 35,152 3,866,202 4,639,546 n/a
69% 2k 30,911 3,878,879 4,558,921 80,625

smo no comp 4k 7,739 3,867,419 4,037,677 n/a
69% 4k 43 3,863,566 3,864,512 173,165

no comp 8k 53 3,863,575 3,864,741 n/a
69% 8k 43 3,863,565 3,864,511 230

Table 2: ”word-based” (see 4.2) compression: Results in terms
of compression ratio and performance for both, compressed
and uncompressed instruction code for various instruction
cache sizes

[3] N. Ishiura and M. Yamaguchi. Instruction Code Compression
for Application Specific VLIW Processors Based on
Automatic Field Partitioning. Proceedings of the Workshop
on Synthesis and System Integration of Mixed Technologies,,
pages 105–109, 1998.

[4] C. Lefurgy and T. Mudge. Code Compression for DSP.
CSE-TR-380-98, University of Michigan, November 1998.

[5] C. Lefurgy, E. Piccininni, and T. Mudge. Reducing Code
Size with Run-time Decompression. Proceedings of the
International Symposium of High-Performance Computer
Architecture, January 2000.

[6] S.Y. Liao, S. Devadas, and K. Keutzer. Code Density
Optimization for Embedded DSP Processors Using Data
Compression Techniques. Proceedings of the Chapel Hill
Conference on Advanced Research in VLSI, pages 393–399,
1995.

[7] T.Okuma, H.Tomiyama, A.Inoue, E.Fajar, and H.Yasuura.
Instruction Encoding Techniques for Area Minimization of
Instruction ROM. International Symposium on System
Synthesis, pages 125–130, December 1998.

[8] J. Ziv and A. Lempel. A universal algorithm for sequential
data compression. IEEE Transactions on Information
Theory, Vol. 23(No 3):pp 337–343, May 1977.

[9] A. Wolfe and A. Chanin. Executing Compressed Programs
on an Embedded RISC Architecture. Proceedings of the
International Symposium on Microarchitecture, pages
81–91, December 1992.

[10] Y. Xie. Code Compression Algorithms and Architectures for
Embedded Systems. PhD Thesis, Princeton University 2002.

[11] Y. Yoshida, B.-Y. Song, H. Okuhata, and T. Onoye. An
Object Code Compression Approach to Embedded
Processors. Proceedings of the International Symposium on
Low Power Electronics and Design (ISLPED),
ACM:265–268, August 1997.

311

	Main Page
	DAC'03
	Front Matter
	Table of Contents
	Author Index

