
Constraint Synthesis for Environment Modeling in
Functional Verification

Jun Yuan Ken Albin
Motorola Inc.

Austin, TX 78729
jun.yuan,ken.albin@mot.com

Adnan Aziz
University of Texas at Austin

Austin, TX 78712
adnan@ece.utexas.edu

Carl Pixley
Synopsys

Hillsboro, OR 97124
cpixley@synopsys.com

ABSTRACT
Modeling design environment with constraints instead of a
traditional testbench is advantageous in a hybrid verification
framework that encompasses simulation and formal verifica-
tion. This movement is gaining popularity in industry and
sparks research in the constraint-based environment mod-
eling and stimulus generation problem. We present an ap-
proach, called constraint synthesis, to this problem. Con-
straint synthesis falls in the general category of parametric
Boolean equation solving but is novel in utilizing don’t care
information unique to hardware constraints and heuristic
variable removal to simplify the solution. Experimental re-
sults have demonstrated the effectiveness of the proposed
approach.

Categories and Subject Descriptors
J.6 [Computer-aided engineering]: Verification

General Terms
Algorithm, Verification

Keywords
Constraint solving, Simulation vector generation

1. INTRODUCTION
Constraint-based verification is the idea of defining an en-

vironment for the Design Under Verification (DUV) by using
constraints. These constraints can take several forms such
as Boolean formulas whose variables reference inputs and
state bits in the design or in auxiliary finite state machines,
or in the form of temporal logic expressions. An environ-
ment is often called a testbench or bus functional model in
conventional simulation. It is used to inject inputs into a de-
sign possibly reacting to the design’s outputs or to monitor
the outputs of the design. An environment is also necessary

Permission to make digital or hard copies of all or part of this work for
personal or classroom use is granted without fee provided that copies are
not made or distributed for profit or commercial advantage and that copies
bear this notice and the full citation on the first page. To copy otherwise, to
republish, to post on servers or to redistribute to lists, requires prior specific
permission and/or a fee.
DAC 2003, June 2–6, 2003, Anaheim, California, USA.
Copyright 2003 ACM 1-58113-688-9/03/0006 ...$5.00.

for a formal analysis of the design [3]. One of the key ad-
vantages of using constraints to model environments is its
generation/monitor duality [8]. This duality means that the
very same syntax can be used to monitor the interaction
between designs and to drive inputs to a design fragment.
Several commercial tools such as Vera and Verisity use con-
straints to help define a testbench [9]. In addition, Yuan et
al. [13], Kukula and Shiple [4] and Shimizu and Dill [10] have
presented algorithms to implement constraints as stimulus
generators for simulation.

In our experience, sometimes hundreds of constraints are
used to model the environment of a commercial DUV. This
requires that the stimulus generator be able to handle high
complexity. In addition, so as not to inordinately slow down
simulation, the generator must solve the constraints every
clock cycle very quickly, depending upon the value of the
state-holding variables sampled from the DUV. Since the
general SAT problem is known to be NP-hard, this stresses
the constraint solving engine. One way to solve this prob-
lem is to build Binary Decision Diagrams for the conjunction
of the constraints. To keep BDD sizes small, various tech-
niques have been proposed, e.g, the hold-constraint extrac-
tion in [12] aimed at conjoining as few constraints as neces-
sary, and the range-preserving simplification of constraints
in [5].

The current paper shows a more efficient alternative to
Yuan et al. [13] for stimulus generation from constraints.
Although falling into the general category of parametric
Boolean equation solving (e.g., [11, 7, 1, 2, 6]), this approach
is novel in two aspects: first, it simplifies the solution by uti-
lizing don’t care information present in hardware constraints
involving both input and state variables and in multi-level
logic; second, further optimization is achieved by heuristi-
cally removing parametric variables. This approach is also
related to Kukula and Shiple [4] in that it can be used to
build a hardware circuit that emits correct inputs (if there
are any) for any assignment of state variables.

The remainder of this paper is organized as follows: Sec-
tion 2 introduces hardware design constraints and the prob-
lem of constructing general (parametric) solutions for Boolean
functions. In Section 3, we present the main algorithm and
the optimization techniques. We show experimental results
in Section 4 and summarize in Section 5.

2. PRELIMINARIES
In this paper, we are concerned with the problem of solv-

ing constraints in the form of Boolean formulas that capture
the interaction between a design and its environment. Take

296

18.4

a bus interface as an example: a typical environment con-
straint would be “the transaction start input (ts) is asserted
only if the design is in the address idle state”, or in formula

ts → (addr state == ADDR IDLE).

Generally, environment constraints can be viewed as rules
that relate the design’s inputs to its state. Constraints de-
pending on state information are general enough to describe
a rich class of scenarios. For example, the temporal behavior
of inputs can be modeled by constraints that use auxiliary
variables to remember past states.

Our focus will be on constraint solving through the syn-
thesis of constraints. Given a constraint over some input and
state variables, constraint synthesis is the problem of finding
a general solution to the inputs under all states for which a
solution exists. Formally, let f(X, Y) be the constraint of
concern where X = {x1, . . . , xn} is the set of inputs and Y
the state variables; the general solution to f is a substitution
σ = {σ1, . . . , σn} for X, such that for any state for which
the equation f = 1 has a solution, f(σ1, . . . , σn, Y) reduces
to constant 1.

We call the states for which f = 1 has a solution the le-
gal states. Whether a state s is legal or not can be quickly
determined by checking if s ∈ ∃Xf . Having a general so-
lution literally means all input vectors allowed under the
current state are embodied by the solution. For this reason
constraint synthesis provides a parametric solution and thus
can be used to generate symbolic stimulus in formal verifi-
cation. In contrast, the method in [13] is explicit and only
applicable in traditional simulation.

3. CONSTRAINT SYNTHESIS
Constraint synthesis falls in the general category of Boolean

equation solving, of which a representative approach called
the Boolean Unification [11, 7] can be traced back to Boole
himself. However, the result of Boolean Unification is not
directly applicable in our case: we wish to consider don’t
cares unique to state-dependent hardware constraints and
use them to optimize the general solution to the constraints.
We also intend to minimize the variable count in the solu-
tion so as to further simplify the solution. In this section,
we show how these objectives are achieved.

3.1 The Core Procedure
Let f be a constraint of input variables X = {x1, . . . , xn}

and state variables Y . Denote the projection of f onto
{xi, . . . , xn, Y } by f i, which is given by the existential quan-
tification ∃x1,... ,xi−1f , for 1 ≤ i ≤ n. Note the special case

f1 = f . It is not hard to see the following results:

1. Given a constraint f and a state, either all, or none,
of the projections f1, . . . , fn are satisfiable.

2. Under a legal state, any input assignment satisfying f i

can be extended to an input assignment satisfying fj ,
for all j < i.

Therefore, we can construct a solution for f by successively
solving for inputs in the projections, starting from fn which
contains only xn and the state variables, then applying the
solution of xn to fn−1, in which the only inputs are xn, xn−1,
and solving for xn−1, and so on. Since f1 = f , when we
have solved x1, we have also obtained a solution for f . So
what’s left to be decided is how we compute each input in a
projection.

First we note the following decomposition of a function g
over an orthogonal basis {gxgx, gxgx, gxgx}:

g = gxgx + gxgx x + gxgxx. (1)

Suppose a solution exists for ∃xg. Denote it by a vector α.
Then a satisfying assignment to x in g is chosen as

x =

��
�

u if α ∈ gxgx

1 if α ∈ gxgx

0 if α ∈ gxgx.
(2)

This solution to x is general in that u, a free variable, has the
options of assigning either 0 or 1 to x whenever it is allowed.
However, an extra degree of freedom can be introduced if we
consider the states where no input combinations are allowed
by the constraint. For example, a designer may deem certain
configurations of the control registers as illegal or undefined
which should be warned against once they are realized by the
design. As stated earlier, these states can be easily detected.
Knowing this, we can use the don’t care condition gx gx for
optimization. We defer the details to the next subsection.

Returning to solving inputs in the projections, we see that
the above analysis applies by corresponding xi, the variable
to be solved in fi, to x in g, and f i+1 to ∃xg since f i+1 =
∃xif

i. Therefore, according to Equation (2) and the don’t
care condition, we come to the following general solution for
xi:

σi(xi) := (f i
xi

f i
xi

)ui + (f i
xi

f i
xi

) + (f i
xi

f i
xi

)di. (3)

Note ui is the free variable introduced for xi, and di can
be any function that takes advantage of the don’t care con-
dition. Perceiving the σi’s as logic circuits with inputs ui’s
and outputs xi’s. A general solution to f(x1, . . . , xn, Y) can
then be constructed as a multi-level and multi-output circuit
that is the cascade of σi’s according to the following rules:

1. x1 is the output of σ1

2. xi is the output of σi, whose input uj is connected to
xj for 1 ≤ j < i

3. all state inputs to σi for 1 ≤ i < n are connected to
the corresponding state lines from the design

Figure 1 gives an example of a 3-output solution circuit for
a 3-input constraint, where σ1, σ2, σ3 are the solutions, and
u1, u2, u3 and Y are the input and state variables, respec-
tively. The following theorem summarizes the property of

u

u

2 3

3

2

σ

Y

u1

1x’ x’ x’

3

2

1

σ

σ

Figure 1: Example: Synthesis of a 3-input constraint

constraint synthesis we discussed so far.

Theorem 1. The solutions σi’s connected as above de-
fines a mapping σ : Bn �→ Bn, such that for any legal state
and any pair of input vectors α, α′ ∈ Bn and σ(α) = α′, we
have

297

1. α′ satisfies f , and

2. if α satisfies f , then α′ = α.

3.2 Optimizations
We discuss two types of optimizations: one through the

use of don’t care information, the other with the elimina-
tion of variables introduced in the derivation of the general
solution.

3.2.1 Don’t Cares
The don’t care optimization arises from the introduction

of the term

f i
xi

f i
xi

di (4)

in the solution for each input xi in (3). The careset actu-
ally has two sources, the legal states and the limited input
combinations observed by the general solutions σi’s. For ex-
ample, in Figure 1, the first two inputs of the circuit σ3 are
constrained by the outputs of σ1 and σ2.

We know for a constraint f(X, Y) (recall X and Y are the
input and respectively state variables) the legal state space
is given by ∃Xf . In addition, under a legal state s, the only
input patterns (excluding the free variable ui) allowed at a
solution σi are these satisfying the projection f i+1 under s,
i.e., ∃xif

i|s. Overall, the careset over the input-state space
is the product of the two which reduces to ∃xif

i. The inver-
sion of this, the don’t care condition, equals the condition
for di in (4). This is no accident but a result of the synthesis.

To take advantage of this careset information and to real-
ize di, we simplify the solution in (3) by first setting di = 1
which gives

σi(xi) := f i
xi

ui + f i
xi

. (5)

This reduction is intended to minimize intermediate BDD
operations which tend to explode. Then we optimize the
result again with respect to the careset ∃xif

i using the BDD
restrict operator [1].

One may be tempted to collapse the solutions for simpli-
fication, for example, in Figure 1, by substituting σ1 for the
input to σ2, then σ1 and the new σ2 for the inputs to σ3.
This is the case in standard Boolean Unification, such as the
one in [7]. In a sense, this also realizes the input restriction
we exploited above. But this enforcement of the restriction
is to be distinguished from the optimization with respect
to the restriction. Further, as suggested by experiment re-
sults, this recursive substitution tends to pose complexity
problems in the BDD implementation.

3.2.2 Variable Removal
The problematic recursive substitution has one good ef-

fect: it eliminates the variables being substituted. However,
the same effect can be achieved simply by recycling the in-
put xi whenever a free variable ui is needed. This is sound
due to the cascade of individual solutions shown in Figure 1,
in which each ui can be safely replaced by xi.

Furthermore, the xi’s do not always have to be reintro-
duced. It is well known that function f is independent of
variable x iff the Boolean difference fxfx +fxfx (denoted by
∂f/∂x) is 0. Applying this to the solution in (3), we have
the following condition for the removal of xi:

(f i
xi

f i
xi

= 0)
�

(f i
xi

f i
xi

(∂di/∂ui) = 0). (6)

/* GetRset() returns variables satisfying (7) */
ConSynth(f, r set) {

if (f contains no input variables)
return;

if (r set == nil)
r set = GetRset(f);

if (r set is empty) {
let x be the input in f with

the highest rank (in BDD var. ordering);
else {

let x ∈r set be such that ∃xf has the
largest removable set;

r set = GetRset(∃xf);
}
σx = xfx + fx;
σx = BDD Restrict(σx,∃xf);

ConSynth(∃xf, r set);
}

Figure 2: Constrain synthesis.

As we have chosen di as 1 before the careset optimization,
this condition can be simplified to

f i
xi

f i
xi

= 0. (7)

If this condition is met, the solution in (3) reduces to

σi(xi) := f i
xi

, (8)

which is subjected to further optimization using the careset
∃xif

i.
The satisfiability of the condition in (7) is determined

by the constraint and the order in which the variables are
solved. So instead of following the arbitrary order xn, . . . , x1,
we use the following heuristic to select a variable to solve in
the current constraint projection f i: first compute the re-
movable set of variables that meet the condition in (7); if
this set is not empty, choose from it a variable x such that
∃xf i has the largest removable set; else, choose the highest
ranked (in BDD variable ordering) input in f i. Note that
since the removable sets shrink monotonically (because for
any variable ordering, f i

xi
f i

xi
= 0 only if fxifxi = 0 initially)

and they are relatively small comparing to the whole set of
inputs, finding a good ordering incurs only an insignificant
overhead.

3.3 The Overall Algorithm
The algorithm that combines synthesis and optimization

is given in Figure 2. Initially, the argument for the remov-
able set, r set, is passed in as nil; GetRset(f) computes the
removable set of f ; and the general solution for input x is
computed as σx.

4. EXPERIMENTAL RESULTS
We implemented the proposed algorithm and two related

methods for evaluation. Examples with constraints are from
real designs we collected. Each example has up to a few
hundreds of constraints that involve from hundreds to over
a thousand input and state variables. The actual numbers
of variables in the examples range from a few to over 10
thousands.

298

SimGen BU Consynth
circuit time size time size time size removed
des1 19.0 2105 t/o – 29.0 3814 21/115
des2 27.0 2345 34.0 1599 30.0 822 238/423
des3 12.0 2437 14.0 1347 14.0 1217 6/174
des4 63.0 2847 88.0 15675 69.0 1521 11/134
des5 15.0 4679 92.0 16056 40.0 1641 15/63
des6 73.0 21822 t/o – 81.0 8108 132/689
des7 237.0 28430 t/o – 279.0 18480 23/207
des8 141.0 53788 t/o – 169.0 9968 45/283

Table 1: Complexity of Solutions

In Table 1, we compare the construction time (in seconds)
and size of the BDDs (in number of BDD nodes) represent-
ing solutions from three methods: SimGen – the vector gen-
eration tool from [13], BU – the Boolean Unification method
from [7], and Consynth, the method presented in the current
paper. All three share the same flow including design com-
pilation and constraint partitioning, and up to the construc-
tion of BDDs representing the constraints. SimGen ends af-
ter this stage, while BU and Consynth starts their respective
constraint solving processes. As can be seen, in Consynth,
the extra time spent in constraint solving is modest com-
paring to time for building the constraint BDDs, indicated
by the time used by SimGen. Also, the final BDD size is
reduced in all but one case. This should also apply to the
comparison of our method vs. the method in [4] which would
produce BDDs of the same size as those produced by Sim-
Gen. The classic BU approach, with recursive substitution
and lacking the optimizations proposed, tends to generate
larger BDDs and actually in half of the cases timed out (t/o)
after 30 minutes.

The last column in the table reports the result of vari-
able removal, where an entry m/n means m out of n input
variables are removed from the final solution.

In Table 2, we report the results of using our method in
vector generation in comparison with SimGen. The first two
columns give the time (in seconds) spent by each method on
vector generation in simulation. Each simulation runs for
10000 clock cycles. The third column reports the speedup
using Consynth. We have already seen the reduction of BDD
size in Consynth. But this is not the main factor that at-
tributes to the order of magnitude improvement of the vector
generation speed. When used as an explicit vector genera-
tor, Consynth uses time linear in the number of variables in
the solution, whereas SimGen uses time linear in the number
of BDD nodes.1 This contrast is especially noticeable when
BDD size gets large in both methods.

5. SUMMARY
We have described a method of solving hardware con-

straints by using Boolean equation solving techniques en-
hanced by don’t care optimization and variable removal. We
have shown improvements over similar approaches. In the
case of input vector generation, we have achieved speedups
of an order of magnitude in large designs.

Using constraints for environment modeling is an effec-

1Since state variables are assigned by the design, one cannot
walk randomly down the BDD to generate vectors; instead,
a bottom-up weight computation (in time linear to the BDD
size) has to be performed to guide the walk [13].

circuit SimGen Consynth speedup
des1 71.06 7.30 9.73
des2 34.66 11.68 2.97
des3 22.35 10.98 2.03
des4 14.70 2.18 6.74
des5 10.96 5.56 1.97
des6 181.72 6.74 26.96
des7 124.61 14.57 8.55
des8 219.4 9.53 23.02

Table 2: Speedup of Vector Generation

tive alternative to the traditional testbench approach in
functional verification. Constraint synthesis facilitates the
application of this methodology in areas where parametric
or synthesizable constraint solutions are required, e.g., in
model checking and emulation.

6. REFERENCES
[1] O. Coudert and J. C. Madre. A Unified Framework for the

Formal Verification of Sequential Circuits. In Proceedings of
International Conference on Computer-Aided Design,
pages 126–129, November 1990.

[2] M. Fujita, Y. Tamiya, Y. Kukimoto, and K.-C. Chen.
Application of Boolean Unification to Combinational Logic
Synthesis. Proceedings of International Conference on
Computer-Aided Design, pages 510–513, 1991.

[3] M. Kaufmann, A. Martin, and C. Pixley. Design
Constraints in Symbolic Model Checking. In Proceedings of
the Computer Aided Verification Conference, 1998.

[4] J.H. Kukula and T.R. Shiple. Building Circuits From
Relations. In Proceedings of the Computer Aided
Verification Conference, 2000.

[5] H.H. Kwak, I.-H. Moon, J.H. Kukula, and T.R. Shiple.
Combinational equivalence checking through function
transformation. Proceedings of International Conference on
Computer-Aided Design, pages 526–533, 2002.

[6] C-J. H. Segar M. D. Aagaard, R. B. Jones. Formal
verification using parametric represenations of boolean
constraints. Proceedings of the Design Automation
Conference, 1996.

[7] U. Martin and T. Nipkow. Boolean unification - the story
so far. In Journal of Symbolic Computation, volume 7,
pages 275–293, 1989.

[8] C. Pixley. Integrating Model Checking Into the
Semiconductor Design Flow. Computer Design’s Electronic
Systems journal, pages 67–74, March 1999.

[9] S. Regimbal, J-F. Lemire, Y. Savaria, G. Bois, E-M.
Aboulhamid, and A. Baron. Applying Aspect-Oriented
Programming to Hardware Verification with e. Proceedings
of HDLCON, 2002.

[10] Kanna Shimizu and David Dill. Deriving a simulation input
generator and a coverage metric from a formal
specification. Proceedings of the Design Automation
Conference, pages 801–806, June 2002.

[11] W. Büttner and H. Simonis. Embedding boolean
expressions into logic programming. In Journal of Symbolic
Computation, volume 4, pages 191–205, 1987.

[12] J. Yuan, A. Aziz K. Albin, and C. Pixley. Simplifying
boolean constraint solving for random simulation-vector
generation. Proceedings of International Conference on
Computer-Aided Design, pages 123–127, 2002.

[13] J. Yuan, K. Shultz, C. Pixley, H. Miller, and A. Aziz.
Modeling Design Constraints and Biasing in Simulation
Using BDDs. Proceedings of International Conference on
Computer-Aided Design, pages 584–589, 1999.

299

	Main Page
	DAC'03
	Front Matter
	Table of Contents
	Author Index

