
The Synthesis of Cyclic Combinational Circuits∗

Marc D. Riedel
riedel@paradise.caltech.edu

Jehoshua Bruck
bruck@paradise.caltech.edu

California Institute of Technology
Mail Code 136–93, Pasadena, CA 91125

ABSTRACT
Digital circuits are called combinational if they are memo-
ryless: they have outputs that depend only on the current
values of the inputs. Combinational circuits are generally
thought of as acyclic (i.e., feed-forward) structures. And
yet, cyclic circuits can be combinational. Cycles sometimes
occur in designs synthesized from high-level descriptions.
Feedback in such cases is carefully contrived, typically occur-
ring when functional units are connected in a cyclic topology.
Although the premise of cycles in combinational circuits has
been accepted, and analysis techniques have been proposed,
no one has attempted the synthesis of circuits with feedback
at the logic level.
We propose a general methodology for the synthesis of

multilevel combinational circuits with cyclic topologies. Our
approach is to introduce feedback in the substitution / mini-
mization phase, optimizing a multilevel network description
for area. In trials with benchmark circuits, many were opti-
mized significantly, with improvements of up to 30% in the
area.
We argue the case for radically rethinking the concept of

“combinational” in circuit design: we should no longer think
of combinational logic as acyclic in theory or in practice,
since nearly all combinational circuits are best designed with
cycles.

Categories and Subject Descriptors
B.6.1 [Hardware]: LOGIC DESIGN—combinational logic

General Terms
Algorithms, Design

Keywords
Logic Synthesis, Combinational Logic, Cycles, Feedback

∗Supported in part by the “Alpha Project” at the Center for Ge-
nomic Experimentation and Computation, a National Institutes
of Health Center of Excellence in Genomic Sciences. The Al-
pha Project is supported by a grant from the National Human
Genome Research Institute (grant no. P50 HG02370).

Permission to make digital or hard copies of all or part of this work for
personal or classroom use is granted without fee provided that copies are
not made or distributed for profit or commercial advantage and that copies
bear this notice and the full citation on the first page. To copy otherwise, to
republish, to post on servers or to redistribute to lists, requires prior specific
permission and/or a fee.
DAC 2003, June 2–6, 2003, Anaheim, California, USA.
Copyright 2003 ACM 1-58113-688-9/03/0006 ...$5.00.

1. INTRODUCTION
The term combinational means that a circuit has outputs

that depend only on the current values of the inputs (i.e.,
it is memoryless); the term sequential means that a circuit
has outputs that may depend upon past as well as current
input values (i.e., it has memory).

x3 x2 x1 x0 Digit
0 0 0 0 0

a

b

c

d

e

f

g

0 0 0 1 1
0 0 1 0 2
0 0 1 1 3
0 1 0 0 4
0 1 0 1 5
0 1 1 0 6
0 1 1 1 7
1 0 0 0 8
1 0 0 1 9

Figure 1: 7-Segment display decoder.

a = x̄0x̄3c̄+ x̄1c

b = x̄0(x̄1x̄2 + x1x̄3)

c = x0x2x̄3 + x̄2(x̄1x3 + e)

d = x1x̄2x̄3 + a(x2 + x3)

e = x0x̄3d+ b

f = x̄2c+ x̄3ē

g = x0x̄3 + a

a

g

f

e
d

c

b

Figure 2: Cyclic network.

Combinational circuits are generally thought of as acyclic
structures, and sequential circuits as cyclic structures. In
fact, combinational and sequential are often defined this way.
A collection of logic gates connected in an acyclic (i.e., loop-
free) topology is clearly combinational. Regardless of the
initial values on the wires, once the values of the inputs
are fixed, the signals propagate to the outputs. There is
a clear correspondence between the electrical behavior of
the circuit and the abstract notion of the boolean functions
that it implements. The behavior of a circuit with feedback
is generally more complicated. Such a circuit may exhibit
timing-dependent behavior (as in the case of an R-S Latch),
and it may be unstable (as in the case of an oscillator).
And yet, cyclic circuits can be combinational. Consider

the example shown in Figure 1, ubiquitous in introductory
logic design courses: a 7-segment display decoder. The in-
puts are four bits, x0, x1, x2, x3, specifying a number from

10.5

163

1x 2x 3x 1x 2x 3x

)(3211 xxxf +=

3122 xxxf +=

)(2133 xxxf +=

3214 xxxf +=

)(3125 xxxf +=

2136 xxxf +=

Figure 3: A cyclic combinational circuit due to Rivest [11].

0 to 9. The outputs are 7 bits, a, b, c, d, e, f , g, specifying
which segments to light up in an LED display. A network
for the 7-segment display decoder is shown in Figure 2. Note
that there is a cycle through nodes a, d, e, and c. Never-
theless, the circuit is combinational. There is feedback in a
topological sense, but not in an electrical sense.
To see this, consider specific input values. For instance,

with x3 = 0, x2 = 0, x1 = 0, x0 = 1, the network simplifies
to that shown in Figure 4, yielding the correct solution: the
digit 1.

a = c = 0
b = 0
c = e = 0
d = 0
e = b+ d = 0
f = ē+ c = 1
g = 1

a

b

e

c

f

d

Figure 4: Network of Figure 2 with inputs x3 =
0, x2 = 0, x1 = 0, x0 = 1 (the digit 1).

With x3 = 0, x2 = 1, x1 = 0, x0 = 1, the network simplifies
to that shown in Figure 5, yielding the correct solution: the
digit 5.

a = c = 1
b = 0
c = 1
d = a = 1
e = b+ d = 1
f = ē = 0
g = 1

a

db

e

c

f

Figure 5: Network of Figure 2 with inputs x3 =
0, x2 = 1, x1 = 0, x0 = 1 (the digit 5).

The reader may verify that the network implements all
the digits correctly. The cost of the network, as measured
by the literal count, is 34. For comparison, the command
full simplify in the Berkeley SIS package [12] yields an
acyclic network with a cost of 37.

We argue that introducing loops in the design of combi-
national circuits is advantageous. The intuition behind this
is that with feedback, all nodes can potentially benefit from
work done elsewhere; without feedback, nodes at the top of
the hierarchy must be constructed from scratch.

1.1 Prior Work
In 1992, Stok observed that cycles sometimes occur in

combinational circuits synthesized from high-level designs [18].
In such examples, feedback is carefully contrived, occurring
when functional units are connected in a cyclic topology.
Recently, Edwards pointed out that cycles arise in circuits
synthesized from synchronous languages such as Esterel [5].
Most logic synthesis and verification tools balk when given
cyclic designs for combinational logic. Stok’s solution to this
dilemma is to disallow the creation of cycles in the resource-
sharing phase of high-level synthesis; Edwards’ approach is
to transform cyclic designs into equivalent acyclic ones.
In 1994, Malik addressed the issue of analyzing cyclic com-

binational circuits [8]. He proved that deciding whether a
cyclic circuit is combinational or not is co-NP-complete, and
he formulated an analysis algorithm for this task based on
ternary-valued simulation. He also addressed the issue of
timing analysis and testing for faults [9]. In 1996, Shiple
extended Malik’s work and set it on a firm theoretical foot-
ing [13]. He showed that the class of circuits that Ma-
lik’s procedure decides to be combinational are precisely
those that are well-behaved electrically, according to the
up-bounded inertial delay model [4]. He proposed refine-
ments to Malik’s algorithm [14] and extended the concept
to combinational logic embedded in sequential circuits [15].
Although the premise of cycles in combinational logic has

been established, combinational circuits are not designed
with feedback in practice. The examples that can be found
all have simple and regular feedback structures stemming
from high-level constructs [5], [17]. No one has attempted
the synthesis of circuits with feedback at the logic level.
As early as 1960, Short argued that permitting cyclic

topologies could reduce the size of relay networks [16]. Around
1970, Huffman and Kautz argued that cyclic combinational
circuits could have fewer logic gates than acyclic forms [6], [7].
Unfortunately, the examples that they gave, although plau-
sible, are not combinational in a strict sense.
In 1977, Rivest presented a convincing example of a family

of cyclic combinational circuits [11]. For any odd integer n
greater than 1, the circuit consists of n AND gates alternating
with n OR gates in a single cycle, with n inputs repeated. The
circuit for n = 3 is shown in Figure 3. Rivest showed that
the circuit is combinational and that each gate computes a
distinct output function depending on all n variables. Sig-

164

nificantly, he also proved that this circuit is optimal in terms
of the number of fan-in two gates used, and he proved that
the smallest acyclic circuit implementing the same 2n out-
put functions requires at least 3n−2 fan-in two gates. Thus,
asymptotically, this cyclic circuit is two-thirds the size of any
equivalent acyclic form.

1.2 Contributions
Inspired by the work of Rivest, we have generated a vari-

ety of cyclic examples with the same property as his circuit:
they have provably fewer gates than equivalent acyclic cir-
cuits. Most notably, we have found a family of circuits that
are asymptotically one-half the size. This work will be pre-
sented elsewhere.
In this paper, we explore the topic of cyclic combinational

circuit synthesis and demonstrate that these are not isolated
examples: cyclic topologies are superior to acyclic topologies
for a broad range of networks, from randomly generated
designs to small- and large-scale networks encountered in
practice.
We propose a general methodology for the synthesis of

multilevel combinational circuits with cyclic topologies. Our
approach is to introduce feedback in the substitution / min-
imization phase. We have incorporated the technique in the
Berkeley SIS package [12].
Our focus in the present work is on optimizing area (as

measured by the literal count). In trials, benchmark cir-
cuits were optimized significantly with feedback, with im-
provements of up to 30%. In trials with randomly gener-
ated examples, very nearly all had cyclic solutions superior
to acyclic forms, with improvements averaging up to 15%.
In [10], we discuss analysis aspects in the context of synthe-
sis, including timing analysis of our cyclic designs.

1.3 Notation and Definitions
We use the standard notation: addition (+) denotes dis-

junction (OR), multiplication (·) denotes conjunction (AND),
and an overline (x̄) denotes negation (NOT).
Our model is at the level of abstraction applicable in the

technology-independent phase of logic synthesis. Our goal
is to construct a network that computes boolean target
functions gi(x1, . . . , xm), 1 ≤ i ≤ n, of boolean input vari-
ables x1, . . . , xm. Internally, the network is specified as a
collection of nodes. Associated with each node is a node
function fi and an internal variable yi, 1 ≤ i ≤ n. The
node functions depend on internal variables and input vari-
ables. A directed edge is drawn from node i to node j iff
the node function fj associated with node j depends on the
internal variable yi associated with node i. A subset of the
nodes are designated as output nodes. For these, the tar-
get functions are the requisite output functions1.
A network is combinational iff it computes unique boolean

output values for each boolean input assignment. If there
are “don’t care” conditions on the inputs, then it is suf-
ficient if the network computes unique boolean values for
input assignments in the “care” set.

1In our examples, for the sake of readability, we use the same
symbol for the node function, the target function, and the
associated internal variable: on the left-hand side, a symbol
such as fi refers to a function; on the right-hand side, it
refers to the corresponding internal variable.

This computation must hold:

• regardless of the initial state

• and independently of all timing assumptions.

Our cost measure for area is the sum of the literals in the
factored form of the node expressions (see [3]).

2. SYNTHESIS
The goal in multilevel logic synthesis (also sometimes called

random logic synthesis) is to obtain the best multilevel,
structured representation of a network. The process typ-
ically consists of an iterative application of minimization,
decomposition, and restructuring operations [3]. An im-
portant operation is substitution (also sometimes called
“resubstitution”), in which node functions are expressed, or
re-expressed, in terms of other node functions as well as of
their original inputs. Consider the target functions in Fig-
ure 6.

f1 = x̄1x2x̄3 + x̄2(x1 + x3)

f2 = x̄1x̄2x̄3 + x1(x2 + x3)

f3 = x̄3(x̄1 + x̄2) + x̄1x̄2

Figure 6: Target functions for synthesis.

In our implementation, we use the simplify command of the
Berkeley SIS package to perform substitution/minimization [12].
For instance, substituting f3 into f1, we get

f1 = f3(x1 + x2) + x̄2x3.

Substituting f3 into f2, we get

f2 = x̄1x̄2x̄3 + x1f̄3.

Substituting f2 and f3 into f1, we get

f1 = x̄2x3 + f̄2f3.

For each target function, we can try substituting different
sets of functions. Call such a set a substitutional set.
Different substitutional sets yield alternative functions of
varying cost. In general, augmenting the set of functions
available for substitution leaves the cost of the resulting ex-
pression unchanged or lowers it. (Strictly speaking, this
may not always be the case since the algorithms used are
heuristic.)

2.1 Substitutional Orderings
In existing methodologies, a total ordering is enforced

among the functions in the substitution phase to ensure that
no cycles occur. This choice can influence the cost of the so-
lution. With the ordering shown on the right in Figure 7,
substitution yields the network shown on the left with a cost
of 14.
Enforcing an ordering is limiting since functions near the

top cannot be expressed in terms of very many others (the
one at the very top cannot be expressed in terms of any
others). Dropping this restriction can lower the cost. For
instance, if we allow every function to be substituted into
every other, we obtain the network shown on the left in Fig-
ure 8, with a cost of 12. This network is cyclic, with the
dependency shown on the right. It is not combinational.

165

f1 = x̄2x3 + f̄2f3

f2 = x̄1x̄2x̄3 + x1f̄3

f3 = x̄3(x̄1 + x̄2) + x̄1x̄2.

f1

f2

f3

Figure 7: Acyclic substitution order.

f1 = x̄2x3 + f̄2f3

f2 = x1f̄3 + x̄3f̄1

f3 = f1f̄2 + x̄2x̄3 f2 f3

f1

Figure 8: Unordered substitution (not combina-
tional).

An essential step in the synthesis process is the analysis for
combinationality, a topic previously addressed by Malik [8].
We have formulated a new algorithm for combinationality
and timing analysis that can be applied efficiently in the con-
text of synthesis. The details of our approach are presented
in [10].

2.2 Branch-and-Bound Algorithms
The goal of the synthesis process is to select a choice of

node functions that minimizes the cost while satisfying the
condition for combinationality. For each node, we expect the
lowest cost expression to be obtained with the full substi-
tutional set (i.e., all other node functions) and the highest
cost expression to be obtained with the empty set. For a
network with a non-trivial number of nodes, a brute-force
exhaustive search is evidently intractable. With n nodes,
there are 2n−1 substitutional sets for each node, for a total
of n · 2n−1 possibilities. We describe a branch-and-bound
approach, as well as various heuristics.

2.2.1 The “Break-Down” Approach
With this approach, the search is performed outside the

space of combinational solutions. A branch terminates when
it hits a combinational solution. The search begins with a
densely connected network, such as that in Figure 8. This
initial branch provides a lower bound on the cost. As edges
are excluded in the branch-and-bound process, the cost of
the network remains unchanged or increases. (Again, since
the substitution step is heuristic, this may not be strictly
true.) The algorithm:

1. Analyze the current branch for combinationality. If it
is combinational, add it to the solution list. If it is not,
select a set of edges to exclude based on the analysis.

2. For each edge in the set, create a new branch. Create
a node expression, excluding the incident node from
the substitutional set. If the cost of the new branch
equals or exceeds that of a solution already found, kill
the branch.

3. Mark the current branch as “explored”
4. Set the current branch to be the lowest cost unexplored
branch.

5. Repeat steps 1 – 4 until the cost goal is met.

A sketch of the algorithm is shown in Figure 9. (This is not
a complete trace of the search; only the trajectory to the
solution is shown.) For the target functions in Figure 6, the
algorithm yields a cyclic combinational solution with a cost
of 13, shown in Figure 11.
Many ideas immediately suggest themselves for expediting

the search heuristically. We can prioritize progress slightly,
at the expense of quality (i.e., choose branches that are
“closer” to being combinational, according to the details
provided by the analysis algorithm). Also, we can limit the
density of edges a priori or prune the set of edges before
creating new branches.

f3f2

f1

f3f2

f1

f3f2

f1

f3f2

f1

f3f2

f1

f3f2

f1

cost 13 cost 12

cost 13cost 12

combinational, cost 13
(best solution)

cost 12

Figure 9: “Break-Down” Search Strategy.

2.2.2 The “Build-Up” Approach
With this approach, the search is performed inside the

space of combinational solutions. A branch terminates when
it hits a non-combinational solution. The search begins with
an empty edge set (i.e., the target functions). Edges are
added as the substitutional sets of nodes are augmented.
As edges are included, the cost of the network remains the
same or decreases. The algorithm:

1. Analyze the current branch for combinationality. If it
is not combinational discard it. If it is combinational,
select a set of edges to include based on the analysis.

2. For each edge in the set, create a new branch. Create a
new node expression, including the incident node from
the substitution set.

166

3. Mark the current branch as “explored.”

4. Set the current branch to be the lowest cost unexplored
branch.

5. Repeat steps 1 – 4 until the cost goal is met.

A sketch of the algorithm is shown in Figure 10. (Again,
not a complete trace). The algorithm yields the same cyclic
combinational solution, shown in Figure 11.
With this method, we cannot prune branches through a

lower-bound analysis. However, exploring within the space
of combinational solutions ensures that incrementally better
solutions are found as the computation proceeds. In fact, as
an alternative starting point, we can use an existing acyclic
solution. Adding edges reduces the cost, while potentially
introducing cycles.
The break-down approach seems to perform best on dense

examples, whereas the build-up approach performs better on
sparse examples.

f3f2

f1

f3f2

f1

f3f2

f1

f3f2

f1

f3f2

f1

f3f2

f1

f3f2

f1

cost 16 cost 15

cost 15,
not combinational

cost 14

not combinational,
cost 13,

combinational, cost 13
(solution)

cost 17

Figure 10: “Build-Up” Search Strategy.

3. RESULTS
The most salient result to report, and the main message of

this paper, is that cyclic solutions are not a rarity; they can
readily be found for most networks that are not trivially
simple or sparse. We have run trials with our program,
called CYCLIFY, on a range of randomly generated examples
and benchmark circuits. We note that solutions for most of
the examples have deeply nested loops, with dozens or even
hundreds of cycles.

f1 = x̄3f̄2 + x̄2x3

f2 = x̄1x̄2x̄3 + x1f̄3

f3 = x̄1f1 + x̄2x̄3 f3f2

f1

Figure 11: Cyclic solution for target functions in
Figure 6.

3.1 Methodology
We present a simple comparison between the cost of cyclic

versus acyclic substitutions. The input consists of a col-
lapsed network. The substitution and minimization opera-
tion is performed with the simplify command in the Berke-
ley SIS package [12], with parameters: method = snocomp,
dctype = all, filter = exact, accept = fct lits. The cost
given is that of the resulting network, as measured by the
literal count of the nodes expressed in factored form. This
is compared to the cost of the network obtained by execut-
ing simplify directly with the same parameters. The trials
were run on an Intel Pentium IV, 1.8 GHz workstation. For
the larger circuits, the amount of improvement drops off due
to time limits imposed on the search.

3.2 Benchmarks
For benchmark circuits, we used the usual suspects, namely

the Espresso [2] and LGSynth93 [1] benchmarks. Examples
were selected based on size and suitability (generally, circuits
with fewer than 30 inputs and fewer than 30 outputs). For
circuits with latches, we extracted the combinational part.
In Figure 12, we present those circuits for which cyclic so-
lutions were found. Column 4 gives the improvement, and
Column 5 the computation time.

3.3 Randomly Generated Functions
Since randomly generated functions are very dense, they

are not generally representative of functions encountered in
practice. Nevertheless, it is interesting to examine the per-
formance of the CYCLIFY program on these. We present
results from random trials in Figure 13. Each row lists the
results of 25 trials. Cyclic solutions were found in nearly all
cases (3rd column). The average improvement is given in
the 4th column, and the range of improvement in the 5th
column.

4. CONCLUSIONS/FURTHER DIRECTIONS
We feel that we have made the case for a paradigm shift

in combinational circuit design: we should no longer think
of combinational logic as acyclic in theory or in practice,
since nearly all combinational circuits are best designed with
cycles.
Our focus in the present work is on optimizing area. Our

search algorithms, while heuristic in nature, can effectively
tackle circuits of sizes that are of practical importance. We
note that the implementation of more sophisticated search
algorithms is an obvious evolution of the project.
In future work, we will extend the method to the technol-

ogy mapping phase of logic synthesis, and we will address
the topic of optimizing cyclic designs for power and delay.

167

Espresso Benchmarks
Simplify Cyclify Improvement Time (H:M:S)

p82 104 90 13.5% 00:02:03
t4 109 89 18.3% 00:00:02

dc2 130 123 5.4% 00:01:34
apla 185 131 29.2% 00:00:31
tms 185 158 14.6% 00:01:17
m2 231 207 10.4% 00:06:02
t1 273 206 24.5% 00:21:40
b4 292 281 3.8% 00:09:50

exp 320 260 18.8% 00:33:26
in3 361 333 7.8% 00:22:06
in2 397 291 26.7% 00:00:45
b10 398 359 9.8% 00:08:29

gary 421 404 4.0% 00:18:15
m4 439 412 6.2% 00:07:22
in0 451 434 3.8% 00:05:53

max1024 793 774 2.4% 00:00:29
LGSynth93 Benchmarks

ex6 85 76 10.6% 00:00:06
inc 116 112 3.4% 00:00:04

bbsse 118 106 10.2% 00:00:08
sse 118 106 10.2% 00:00:10

5xp1 123 109 11.4% 00:00:01
s386 131 113 13.7% 00:00:08
bw 171 163 4.7% 00:15:41

s400 179 165 7.8% 00:02:12
s382 180 165 8.3% 00:02:30

s526n 194 189 2.6% 00:00:29
s526 196 188 4.1% 00:00:25
cse 212 177 16.5% 00:00:05
clip 213 193 9.4% 00:00:01
pma 226 211 6.6% 00:04:30
dk16 248 233 6.0% 00:00:53
s510 260 227 12.7% 00:00:05
ex1 309 276 10.7% 00:09:11
s1 332 322 3.0% 00:03:34

duke2 415 397 4.3% 00:02:58
styr 474 443 6.5% 00:03:24

planet1 550 517 6.0% 05:09:19
planet 555 504 9.2% 02:57:47
s1488 622 589 5.3% 00:47:04
s1494 659 634 3.8% 05:19:41
table3 1287 1175 8.7% 12:39:20
table5 1059 1007 4.9% 14:10:10

s298 2598 2445 5.9% 10:15:03
ex1010 3703 3593 3.0% 10:57:58

Figure 12: Cost (literals in factored form) of Berke-
ley SIS Simplify vs. Cyclify for benchmarks.

Randomly Generated Networks
In. # Out. Cyclic Solns.

Found
Avg. Improve-
ment

Range

5 5 100% 8.5% 3% – 17%
5 7 96% 9.1% 0% – 18%
5 10 100% 12.0% 2% – 20%
5 15 100% 13.4% 7% – 23%
5 20 100% 14.2% 8% – 18%
7 10 96% 5.6% 0% – 11%
7 15 88% 3.6% 0% – 10%

Figure 13: Cost improvement (literals in factored
form) of Cyclify over Berkeley SIS Simplify for ran-
domly generated networks (25 trials per row).

5. REFERENCES
[1] Benchmarks from the 1993 Int’l Workshop on Logic

Synthesis, available at http://www.cbl.ncsu.edu/.

[2] Benchmarks from “Logic Minimization Algorithms for
VLSI Synthesis,” by R. K. Brayton et al., available at
ftp://ic.eecs.berkeley.edu/.

[3] R. K. Brayton, G. D. Hachtel, C. T. McMullen, and A.
L. Sangiovanni-Vincentelli, “Multilevel Logic
Synthesis,” Proceedings of the IEEE, Vol. 78, No. 2,
pp. 264 – 300, 1990.

[4] J. A. Brzozowski and C.-J. H. Seger, “Asynchronous
Circuits,” Springer-Verlag, 1995.

[5] S. A. Edwards, “Making Cyclic Circuits Acyclic,”
Design Automation Conf., 2003.

[6] D. A. Huffman, “Combinational Circuits with
Feedback,” Recent Developments in Switching Theory,
A. Mukhopadhyay, ed., pp. 27 – 55, 1971.

[7] W. H. Kautz, “The Necessity of Closed Circuit Loops
in Minimal Combinational Circuits,” IEEE Trans.
Comp., Vol. C-19, pp. 162 – 166, 1970.

[8] S. Malik, “Analysis of Cyclic Combinational Circuits,”
IEEE Trans. Computer-Aided Design, Vol. 13, No. 7,
pp. 950 – 956, 1994.

[9] A. Raghunathan, P. Ashar, and S. Malik, “Test
Generation for Cyclic Combinational Circuits,” IEEE
Trans. Computer-Aided Design, Vol. 14, No. 11, pp.
1408 – 1414, 1995.

[10] M. Riedel and J. Bruck, “Cyclic Combinational
Circuits: Analysis for Synthesis,” Int’l Workshop Logic
and Synthesis, 2003.

[11] R. L. Rivest, “The Necessity of Feedback in Minimal
Monotone Combinational Circuits,” IEEE Trans.
Comp., Vol. C-26, No. 6, pp. 606 – 607, 1977.

[12] E. Sentovich, K. Singh, L. Lavagno, C. Moon, R.
Murgai, A. Saldanha, H. Savoj, P. Stephan, R. Brayton
and A. Sangiovanni-Vincentelli, “SIS: A System For
Sequential Circuit Synthesis,” Tech. Rep., UCB/ERL
M92/41, Electronics Research Lab, University of
California, Berkeley, 1992.

[13] T. R. Shiple, “Formal Analysis of Synchronous
Circuits,” Ph.D. Thesis, University of California,
Berkeley, 1996.

[14] T. R. Shiple, V. Singhal, R. K. Brayton, and A. L.
Sangiovanni-Vincentelli, “Analysis of Combinational
Cycles in Sequential Circuits,” IEEE Int’l Symp.
Circuits and Systems, Vol. 4, pp. 592 – 595, 1996.

[15] T. R. Shiple, G. Berry, and H. Touati, “Constructive
Analysis of Cyclic Circuits,” European Design and Test
Conf., pp. 328 – 333, 1996.

[16] R. A. Short, “A Theory of Relations Between
Sequential and Combinational Realizations of Switching
Functions,” Stanford Electronics Laboratories, Tech.
Rep. 098-1, pp. 33 – 34, 102 – 114, 1960.

[17] A. Srinivasan and S. Malik, “Practical Analysis of
Cyclic Combinational Circuits,” IEEE Custom
Integrated Circuits Conf., pp. 381 – 384, 1996.

[18] L. Stok, “False Loops Through Resource Sharing,”
Int’l Conf. Computer-Aided Design, pp. 345 – 348,
1992.

168

	Main Page
	DAC'03
	Front Matter
	Table of Contents
	Author Index

