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ABSTRACT 
In this paper, we introduce an efficient analysis method for the 
power network of general topology. The new approach is based 
on algebraic multigrid (AMG) method that can avoid the slow 
convergence of basic iterative methods. An innovative adaptive 
coarsening scheme is employed to further speed up the 
performance, taking advantage of the spatial variation of power 
supply noise. Experimental results show that our method is more 
than 100 times faster than SPICE3. 

Categories and Subject Descriptors 
B.7.2 [Design Aids]: Simulation 

General Terms 
Algorithms, Performance, Experimentation 

Keywords 
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1. INTRODUCTION 
Power network analysis covers voltage drop, voltage oscillation, 
and electromigration [1,2]. Excessive voltage drops reduce the 
switching speed as well as the noise margins of circuits and cause 
logic failures. Electromigration can decrease the chip lifetime [3]. 
Previous on-chip power grid analysis focuses on IR-drop caused 
by the resistance of power network. With the signal frequency 
increasing rapidly, the Ljω of on-chip power network becomes 
comparable with the resistance. Hence the inductance effect 
cannot be ignored. Moreover voltage oscillation may occur when 
power network resonance frequency drops to the range of the 
signal frequency [5].  
One bottleneck of power network analysis is the tremendous 
amount of elements in power network. Direct methods such as LU 
decomposition used in SPICE are thus prohibitive. To address this 
bottleneck, M. Zhao and Y. Cao used hierarchical macro 
modeling or model order reduction techniques in [6][7]; H. Chen 
divided the chip into 100*100 equipotential segments to reduce 
the complexity in [8]; Y. Lee adopted the ADI concepts in [9]. 

Some sparse matrix techniques have also been applied to the 
power network simulation. T. Chen employed a Preconditioned 
Conjugate Gradient (PCG) solver in [10,18] and Nassif developed 
a multigrid method in [11][12].  
In this paper, we present an adaptive approach for power grid 
analysis based on algebraic multigrid (AMG) method [15]. There 
are two kinds of multigrid methods: geometric multigrid and 
algebraic multigrid. Geometric multigrid requires regular mesh 
structure but has less coarse grid reduction cost while algebraic 
multigrid (AMG) can handle problems in general topology but 
requires heavier coarsening overhead [15].  
The main differences between our approach and the multigrid 
method in [11][12] are 
1) Our approach covers self and mutual inductances, while 

[11][12] can only handle RC networks. This is due to the 
limitation of geometric multigrid coarsening algorithm used in 
[11][12]. Since multigrid method requires the system matrix 
to be symmetric positive definite (S.P.D.) which circuits with 
inductors cannot satisfy using Modified Nodal Analysis 
method (MNA), reformulation as discussed in section 2 is 
needed. But the topology of reformulated system matrix is no 
longer the same as original circuit topology. It is not easy to 
derive coarse level grid directly from circuit topology in this 
kind of situation even if the power network is a regular mesh.  

2) Our coarsening scheme makes no assumption about the 
topology of power network. While in [11][12], special 
consideration is needed for irregular power networks. 

3) [11][12] ignored the error smoothing operation and only 
executed one multigrid iteration cycle. Although it may not 
result in much error for well-designed power network, 
accuracy cannot always be guaranteed for general cases. We 
keep the smoothing operations and iterate the multigrid cycles 
until the norm of the residue is less than a threshold.   

4) We adopt an adaptive coarsening scheme. The coarse grid is 
determined by the matrix structure and the circuit activities 
adaptively. Adaptive coarsening makes it possible to assign 
more computation to the active subnetworks of the power 
network than to the rest circuit. 

2. OVERVIEW  
We focus on power source network with the assumption that 
power and ground can be separated. Usually power network is an 
irregular mesh as shown in Figure 2.1. Every intersection node 
has a ground capacitance. Between neighboring intersection nodes 
is resistor or resistor and inductor in series. Mutual inductance can 
also be included. The devices with activities are modeled as time-
varying current sources [8]. 
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When only RC model is included, system equation can be 
formulated as  

)()()( tUtGXtXC =+ ,           (2.1)  
where X is the vector of  nodal voltages. 
Appling trapezoidal approximation with time step h to equation 
(2.1), we have 
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The left hand side matrix in (2.2) is symmetric and positive 
definite which makes the iterative methods converge quickly. 

 
  
When inductance is included, the system matrix equation 
becomes: 
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Appling trapezoidal approximation with time step h, the solution 
of equation (2.4) is derived by 
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Although MNA method can handle elements without admittance 
description, the transient analysis system matrix in (2.5) is no 
longer symmetric and positive definite when the inductance is 
included because of the introduction of current variables.  
Since Multigrid as well as PCG method requires the matrix to be 
symmetric positive definite, some extra processing is needed to 
reformulate the system [16]. Similar to the method used in [10], 
we split the variable vector into nodal voltage vector and branch 
current vector. Using block matrix operations, we decompose 
(2.5) into two iteration formulas (2.6) for nodal voltages and 
branch currents, respectively.  
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In equation (2.6), 1−L  corresponds to the K matrix [17], where the 
matrix inversion overhead is reduced by sparsification methods. 
If the inductance matrix is symmetric and positive definite 
(S.P.D.), we can prove that the system matrix is still S.P.D. This 
also holds for forward Euler, backward Euler integration 
approximation methods. Note that the topology of reformulated 
system matrix in (2.6) is no longer the same as original circuit 

topology.  Geometric based coarse grid reduction algorithm 
cannot be applied to RLC network directly. 

3. Multigrid Method 
The multigrid method is an efficient technique first widely used 
for solving partial differential equations [15]. The basic idea of 
multigrid method is to map the hard-to-damp low frequency error 
at fine level to easy-to-damp high frequency error at coarse level, 
solve the mapped problem at coarse level, and then map the error 
correction of coarse level back to fine level. The mapping 
operator from fine to coarse level is called restriction operator h

hI 2 , 
and the mapping operator from coarse to fine level is called 
interpolation operator h

hI 2
. Here the subscription represents the 

level. At each level, high frequency error is erased by a smoothing 
operator that is a forward iterative method such as Gauss-Seidel. 
The construction of hierarchical grid structure stops at the level 
when the reduced matrix can be quickly solved by LU 
decomposition. Once we find the exact solution of the problem at 
the coarsest level, we perform the interpolation from the coarsest 
level back to the find grid. An iteration of restriction from the fine 
grid to the coarsest grid and interpolation from the coarsest grid 
back to the fine grid is called a single multigrid cycle, which will 
iterate several times till converge.  

3.1 Geometric Multigrid vs. Algebraic 
Multigrid  
There are two kinds of multigrid methods: geometric multigrid 
and algebraic multigrid (AMG). Geometric multigrid method 
requires regular mesh structure. Its coarse grid reduction 
algorithm is defined geometrically, e.g. coarse node is selected 
every other fine node. 
If we want to handle problems with irregular structure, AMG is a 
good alternative of geometric multigrid method. The coarsening 
and interpolation operation of AMG are based on matrix itself.  
This overhead makes AMG less efficient than geometric multigrid 
if the problem analyzed has regular mesh structure. 

In geometric multigrid, the smoothing operation at each level is 
important to the convergence. The error after smoothing should be 
geometrically smooth, in other words, the local error among 
adjacent nodes should be small. While in AMG, the interpolation 
plays the crucial role. The convergence rate actually depends on 
the coarse grid construction and inter-level mapping operators 
[14]. 

3.2 AMG Interpolation & Restriction 
Operator 
Since AMG has no grid concept in mind, the inter-level mapping 
operators have to be determined based on the matrix. In AMG, 
smooth error means error components with relatively small 
residuals (3.1) [15], which means after several iterations of 
smoothing operation, the residue is small but the error decreases 
very slowly. 

0≈Ae                                          (3.1) 
Equation (3.1) can be rewritten as (3.2). Hence the error of fine 
node can be well represented by linear combinations of its 
neighbors’ error. 
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Figure 2.1 Power Network Structure 

106



If coarse and fine nodes have already been defined, we can further 
approximate the error of fine node by errors of only its coarse 
node neighbors. Although there are many other complicated 
interpolation methods, we find that this simple approach works 
well for the power grid problem. From (3.2), we can construct the 
interpolation operator h

hI 2
. Because of the symmetry of the 

mapping between levels in two directions, the restriction operator 
h

hI 2 is the transposition of the interpolation operator, i.e. h
h

Th
h II 2

2 = . 
The coarse level matrix can be computed as h

h
hh

h
h IAIA 2

2
2 = . 

Consequently, coarse level matrix hA2  remains symmetric 
positive definite. 
If the matrix is symmetric and positive definite, convergence of 
AMG can be guaranteed as long as the smoothing operation 
converges at each level. A detailed proof can be found in [13]. 

4. ADAPTIVE COARSENING SCHEME 
4.1 Spatial Variation of Power Supply Noise 
For typical power grid, the RLC values are quite uniform at the 
same layer. But due to the non-uniform power densities and the 
timing of the switching events, power supply noise exhibits 
spatial variation, which means some nodes of the power network 
have more rapid nodal voltage changes, or in other words, these 
nodes are more active than the rest circuit. 
Adaptive concepts can be integrated with the coarsening scheme 
in multigrid. Some adaptive methods like FAC [19] and MLAT 
[20] can be applied to geometric multigrid method. The basic idea 
behind these adaptive methods is that active regions should have 
finer grid structure, since active subnetworks need more 
computation to model their behavior accurately. 
In our adaptive coarsening scheme, active regions have relatively 
finer grid at coarse level. The coarse grid nodes are determined 
adaptively by the circuit activities as well as by the matrix. The 
coarse grid consists of two kinds of nodes: non-adaptive and 
adaptive coarse nodes. Non–adaptive coarse nodes are selected by 
coloring scheme [15] according to the matrix. Adaptive coarse 
nodes are determined by the circuit activities.  

4.2 Coloring Scheme for Non-Adaptive 
Coarse Nodes 
A two-level coloring scheme is explained below for sake of 
clarity. In practice, the coloring scheme is executed at every level 
except the coarsest one. 
Initially, the potential of each node is set to its degree. The node 
with the maximum potential is selected to be a coarse node and all 
its unassigned neighboring nodes are set as fine nodes. For each 
newly set fine node, we increase the potential of its neighbor by 1. 
The process is repeated until every node has been assigned as fine 
or coarse node. At the end, each fine node has at least one 
neighboring coarse node. 

4.3 Adaptive Coarse Nodes Selection 
Adaptive coarse nodes are selected according to the activities of 
circuits. One good candidate for the measurement of the impact of 
circuit activities is the first order derivative of nodal voltages that 
can be approximated from equation (2.4) for RLC network. 
For RLC networks as shown in Fig 2.1, since not every node has a 
ground capacitor, we split voltage vector V into two separate 

voltage vectors V1 and V2, where V1 is the set of nodes with 
ground capacitor and V2 is the set of nodes between resistance 
and inductance in branches.  We then calculate the first order 
derivative of nodal voltage in V1.  
Rewriting equation (2.4), we have 
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The first order derivative of intersection node voltage can be 
approximated as 
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−       (4.2) 
The inversion of capacitance matrix is easy because the 
capacitance matrix is actually a diagonal matrix.  
Those nodes with relatively larger voltage derivative are selected 
as adaptive coarse nodes. We apply adaptive coarsening at the 
finest level. The coarse grid selection at other levels is determined 
solely by the coloring scheme, because active components with 
finer first level coarse grid will still have relatively finer grid on 
the next coarse levels. Figure 4.1 shows the comparison of non-
adaptive and adaptive coarsening structure. Darker color means 
coarser level. The circuit activity focuses on the up-right corner of 
the circuits. Active region has finer grid than the other region in 
every grid level.  

        
Figure 4.1 Non-Adaptive (left) and Adaptive (right) 
Coarsening Structure 

5. EXPERIMENTAL RESULTS 
The proposed approach is implemented in ANSI C. The 
experiments are executed on a SUN Blade100 (300MHz) 
workstation with 2GB memory.   
We set the number of pre-smoothing and post-smoothing iteration 
to 3 at each level and the multigrid iteration termination control 
residue norm to 10101 −× . Gauss-Seidel method acts as smoothing 
operator at each level. 
Table 1 shows the DC analysis runtime of SPICE3 and our 
approach, which is more than 100 times faster than SPICE3 for 
large circuits. Table 2 compares the transient analysis runtime of 
SPICE3, non-adaptive AMG, and adaptive AMG. The time-
varying currents are modeled as triangular waveforms with 2mA 
peak current and 40ps rising and falling time [21]. Current 
sources are not evenly distributed and the timings are also 
different. We execute the transient analysis for 5ns. Experimental 
results show that adaptive AMG is faster than non-Adaptive AMG. 
The speedup against the non-adaptive AMG is not very obvious 
because we only take advantage the faster convergence rate of 
adaptive grid structure now. More improvement is expected after 
we extend the adaptive concept to smoothing operations at each 
level. Our approach runs about 20 times faster than SPICE3 for 
transient analysis. The performance speedup is comparable with 
the PCG approach in [10]. The number of multigrid iterations 
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dose not increase rapidly with the problem size. Actually the 
number of iterations is independent of the problem size, which 
cannot be proved but is observed in many cases.  

Table1 DC Analysis Runtime Comparison (sec) 
Nodes SPICE   AMG  Speedup 
1706 1.68 0.17 9.8 
2637 3.91 0.28 14 
5105 15.01 0.57 26.3 
10322 54.44 0.98 55.5 
40842 708.22 3.93 180.2 
91562 X 8.98  

Table 2. Transient Analysis Runtime Comparison (sec) 
Nodes SPICE   AMG  Adaptive AMG Adaptive Speedup 
1706 18.06 1.36 1.36 13.2 
2637 41.23 4.08 3.78 10.9 
5105 122.1 9.13 8.89 13.7 
10322 456.42 18.7 18.1 25.2 
40842 5048.5 165.1 155.2 32.5 

Figure 5.1 compares the transient analysis voltage waveforms of 
one node from SPICE and our adaptive AMG approach. The 
waveforms are almost the same.  

    
Fig 5.1 Comparison of voltage waveforms from SPICE (left) 

and Adaptive AMG (right) 

6. CONCLUSION AND FUTURE WORK 
In this paper, we present an adaptive AMG approach for power 
network analysis. The spatial variation of power supply noise is 
utilized to further speed up the performance. The new approach 
can handle power network of general topology with self and 
mutual inductances. Experimental result is very promising. In the 
future work, we will extend the adaptive concept to the smoothing 
operation at each grid level to fully explore the potential of 
adaptive multigrid. 
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