

Application of Design Patterns for Hardware Design
Robertas Damaševičius, Giedrius Majauskas, Vytautas Štuikys

Kaunas University of Technology, Software Engineering Department
Studentų 50, 3031-Kaunas, Lithuania, Ph: (370 37) 300 399

E-mail: {damarobe, giedmaja}@soften.ktu.lt, vystu@if.ktu.lt

ABSTRACT
Design patterns, which encapsulate common solutions to the
recurring design problems, have contributed to the increased
reuse, quality and productivity in software design. We argue that
hardware design patterns could be used for customizing and
integrating the Intellectual Property (IP) components into System-
on-Chip designs. We formulate the role of design patterns in HW
design, and describe their implementation using
metaprogramming. We propose a Wrapper design pattern for
adapting the behavior of the soft IPs, and demonstrate its
application to the communication interface synthesis.

Categories and Subject Descriptors
B.5.2 [Hardware]: Register-Transfer-Level Implementation |
Design; D.2.2 [Software]: Software Engineering | Design Tools
and Techniques.

General Terms
Design.

Keywords
Design patterns, system-level design processes, wrapping,
UML, metaprogramming.

1. INTRODUCTION
Ever-growing complexity of hardware (HW) design is a great
challenge for a designer. It is nearly impossible to create the
System-on-Chip (SoC) design from scratch and ensure its quality
in a reasonable time. The reuse of the predefined Intellectual
Property components (IPs) is only a partial solution to this
problem, because the designer usually has to modify the IPs or to
write the glue code in order to integrate the IPs. This manual
work is usually time-consuming and error-prone. Thus, the HW
designers are seeking to adapt the solutions for large-scale design
problems from other domains, such as software (SW) design.

One of the solutions for describing the structural or behavioral
relationship between components in SW design is design patterns
[1]. These are used to abstract and encapsulate common design
solutions as well as to describe contexts to which they can be
applied in a language-independent way.

The benefits of using design patterns in HW design can be stated
as follows. (1) Describing a HW system in an abstract and
implementation-independent way can significantly raise the level
of abstraction. (2) Using the standard UML [2] diagrams eases the
communication between different design teams. (3) Using the
already developed object-oriented (OO) design and testing
methodologies can ensure higher HW design quality. (4) Using
graphical design tools, catalogues of design patterns, and
automatic code generation tools can significantly increase HW
design automation and productivity as well as accelerate design
reuse, sharing and transfer.

Although the OO design techniques may seem foreign to HW
designers, many of the concepts and principles are similar. For
example, the development of SW systems using the classes from a
reuse library is comparable to SoC design using the IP blocks; SW
classes communicate with messages, and HW blocks
communicate with signals, etc.

The aim of this paper is to consider the application of design
patterns for system-level HW design, and their contribution to
managing the design complexity problem, raising the level of
abstraction and ensuring higher design quality.

Our contribution is as follows. (1) We analyze the role of design
patterns and problems of their application in HW design. (2) We
define a new HW design pattern, called Wrapper, for adapting the
interface and behavior of an IP to the context of the usage, and
describe it using UML. (3) We propose to implement the HW
design patterns using metaprogramming. (4) We demonstrate an
application of the Wrapper design pattern for the communication
interface synthesis.

The structure of the paper is as follows. In Section 2, we review
the related work. In Section 3, we analyze the role of design
patterns in HW design. In Section 4, we propose the Wrapper HW
design pattern. In Section 5, we present a metaprogramming-
based scheme for implementing design patterns in HW design. In
Section 6, we present a case study. In Section 7, we evaluate the
results and present a discussion. Finally, we conclude in Section 8.

2. RELATED WORK
Several authors consider the problem of adapting the OO design
concepts and, particularly, the application of design patterns for
HW design. Kumar et al. [3] acknowledge the importance of the
OO modeling techniques for improving the HW design process.
Some of the advantages are the improved modifiability of models,
quick composition of new components, and ability to identify,
reuse and specialize common components. Nebel and Schumacher
[4] analyze the OO modeling techniques as a means to increase
productivity in HW design. The largest possible gain is expected
when the subjects of the OO design are not the physically existing
objects (e.g., gates), but abstract concepts for solving the design

Permission to make digital or hard copies of all or part of this work for
personal or classroom use is granted without fee provided that copies
are not made or distributed for profit or commercial advantage and that
copies bear this notice and the full citation on the first page. To copy
otherwise, or republish, to post on servers or to redistribute to lists,
requires prior specific permission and/or a fee.
DAC 2003, June 2-6, 2003, Anaheim, California, USA.
Copyright 2003 ACM 1-58113-688-9/03/0006…$5.00.

4.3

48

problems. Yoshida [5] analyzes the applicability of the known SW
design patterns to SoC design. He uses an Abstract Factory
pattern for design parameterization, and a State pattern to
encourage FSM (Finite State Machine) state reuse and extension.
The author concludes that some SW design patterns can be
applied for HW design, however, further research is needed to
discover new HW design patterns. Doucet and Gupta [6] present a
methodology, which uses design patterns to capture the Models of
Computation (abstractions of design functionality) formally in the
context of the system-level HW design. Two HW design patterns
are presented: a Bus-Protocol pattern for specifying on-chip bus
structures and associated protocol behaviors, and a DLX
Processor Architecture pattern for describing the architecture of
the pipeline processor. Vanmeerbeeck et al. [7] use design
patterns to describe the inter-process communication, and present
a Resource Manager pattern for managing all access requests
from different processes to a specific resource. Åström et al. [8]
demonstrate how SW design patterns can be applied to HW
design. Four design patterns are considered: Composite, Object
Adaptor, Abstract Factory and Decorator, which are used to
design a C++ based library of DSP models.

Recently, SystemC [9] has emerged as a C++ modeling platform
for HW design. As an extension of C++, SystemC allows the
usage of the OO modeling techniques (including design patterns).
For example, Charest and Aboulhamid [10] use a Singleton design
pattern to deal with configurability in HW designs. However,
SystemC does not encourage the usage of inheritance and other
OO techniques when designed for synthesis [11].

Another related area of research is platform-based design [12].
Generally, design patterns and platforms have the same aims, i.e.,
to describe a common architectural solution and to allow the reuse
of HW and SW components. However, design patterns are based
on the principles of the OO design, whereas platforms are
developed using the principles of the component-based design.

UML also has attracted a considerable amount of attention from
the researchers and designers. For example, Fernandes et al. [13]
overview the UML diagrams, and present how UML can be used
to model embedded control systems. Martin [14] discusses the
capabilities and lacks of UML for embedded system design, and
formulates the requirements for future extensions to UML to
support the platform-based HW design. Chen et al. [15] consider
the requirements to modeling SoC platforms in UML, and
developing the OO methodologies for embedded system design.
Zhu et al. [16] propose a design methodology for SoC based on
UML and C++/SystemC. UML is used as a modeling language
extended for parallelism, structure, and timing. The authors report
the reduction of the design time by about one-third compared to
the conventional methods.

The summary of the related works is as follows. The authors (1)
emphasize the importance of the structuring, encapsulation and
reuse of HW designs at the highest levels of abstraction, (2)
suggest using the OO modeling techniques, including design
patterns and UML, for HW and embedded systems design, and (3)
seek to discover and describe HW design patterns.

Our approach has some similarities to [8]. However, there are
substantial differences as follows. (1) We focus on discovering
HW design patterns, rather than adapting the already known SW
design patterns. (2) We apply our approach at the system-level of
abstraction. (3) Our approach is a language-independent one,

therefore, we can use a standard HDL (e.g., VHDL) rather than
C++/SystemC, thus we can create a synthesizable design. (4) The
proposed HW design pattern is a generic solution for several
application domains. (5) We use the metaprogramming-based
code generation to implement the HW design patterns, which
allows us achieving higher design quality and productivity.

3. ROLE OF PATTERNS IN HW DESIGN
3.1. Recent Shifts in HW Design
The reuse of the pre-designed IPs, such as µPs, DSPs, RAMs, etc.,
is essential for SoC design success. The combination of the large
and complex IP blocks and embedded SW in SoC is precipitating
a fundamental shift from the content-based HW design to the
integration-based one. The traditional content-based design
approach is focused on creating the original design content from
scratch and verifying it.

By contrast, the integration-based approach shifts from the
content creation to the problems of evaluating, customizing, and
integrating multiple IPs developed by independent IP vendors into
SoC designs. For these designs, describing how and what IP
blocks will be utilized, how system functionality will be
partitioned between HW and SW parts, and how the components
will be interconnected and verified, is the primary focus of a
designer. This requires more in-depth system-level design,
modeling and reuse methodologies and techniques, HW/SW co-
design and verification tools, qualification at all levels of the
design process, including the usage of the third party IP providing
and design consulting services.

3.2. HW Design Processes
Reflecting the recent shifts in HW design, the HW design
processes are categorized as follows (see Figure 1):

(1) Register Transfer-level (RTL) design processes are the lower-
level content-based processes, which are concerned with IP design
from scratch. They involve a manual programming in a HDL, as
well as bit-level modeling, testing and synthesis.

(2) System-level (SL) design processes are the higher-level
integration-based processes, which are concerned with the
assembly of the HW systems from the IP blocks. They involve a
variety of design activities, which enable IP reuse, customization
and integration. As complexity of the designed systems is
constantly increasing, the SL processes are becoming increasingly
important in HW design.

IP IP IP

SoC

Register Transfer-level (RTL)
design processes

System-level (SL)
design processes

Figure 1. HW design processes.
We categorize the SL design processes as follows: (1)
Specification processes deal with the analysis and specification of
design problems, e.g., separation of concerns, composition and
generalization. (2) Implementation processes are concerned with

49

the aspects of implementation of design solutions that deal with
design problems, e.g., customization and wrapping of soft IPs.

Separation of concerns is a process of finding and isolating the
different aspects of system's functionality. When concerns are
implemented separately, we can derive different variants of a
system by configuring and integrating the separated concerns, as
well as reuse the concerns in another context of application.

Composition is a process of gluing the separate pieces of the
existing code into a system. We distinguish two types of
composition: (1) logical composition, when components are
connected via their interfaces (ports), and (2) physical one, when
domain programs are composed from the HDL statements using
inlining or another language-specific mechanism.

Generalization is a process of deriving a generic specification,
which describes a family of the ‘look-alike’ components, where
variations of the domain functionality are represented at a higher
level of abstraction. Generalization encapsulates the multi-aspect
view (e.g., functional, architectural, etc.) to the component,
enhances its reusability and increases applicability. We implement
generalization using the higher level (generic/meta) abstractions
usually aiming at concise expressing of the different design
aspects, and widening a context of the usage.

Customization is a design process, which changes the
characteristics of the IP without modifying its original
functionality (architecture). Wrapping is a particular case of
customization when additional functionality is added to the basic
IP functionality in order to adapt it to the context of the usage.

3.3. Motivation for Using Design Patterns
The existing HW design and reuse methodologies (e.g., [17]) are
mostly dealing with the RTL design styles and coding rules. This
accumulated experience and lessons learned in the design practice
are very important and useful when achieving design reuse.
However, the SL design issues are not addressed properly. The
application of the OO techniques for the SL design can overcome
this gap. Though, design patterns can be used for modeling the
RTL design processes in HW design, we suggest that their main
application should be the SL design. However, the role of the
design pattern as “encapsulated design experience” is too general
and vague, and needs a rectification for HW domain. In our view,
the HW design patterns should be used to describe the commonly
used SL design processes. In contrast, the SW design patterns are
used to describe the common SW architectures.

Design patterns especially could contribute to ensuring the higher
HW design quality. The quality of a HW system can be
understood as a combination of the quality of the third-party IPs,
which compose the system, and the quality of the SL design
processes, which are used to integrate the IPs. We assume that the
IP providers ensure the quality of the IPs. However, the HW
designer still must ensure the quality of the SL design processes,
which can depend upon many factors such as personnel skills,
management models, availability of tools, etc., but the most
important factor is design methodology. Design patterns have
increased the quality of SW design [1]. We hope that the
application of design patterns to the SL HW design processes will
lead to the higher quality of HW designs, too.

Other contributions of design patterns include (1) managing of
design complexity through the usage of the UML diagrams, and
(2) raising the level of abstraction above the HDL level.

3.4. Examples of Application of Design
Patterns and Wrappers in HW Design
Although the term itself is not frequently used in HW design, we
can describe some widely used non-formal design patterns, such
as models of computation, data flow models, communication
models, wrappers, etc. For example, FSM is a well-known
solution for the control-based applications. The designers usually
implement FSMs using the State design pattern [5]. This solution
gives the following benefits. (1) The designer can use well-
known optimization methods to reduce the chip area. (2) There are
plenty of validation solutions available.

For system composition, several other design patterns are used,
such as shared busses and communication coprocessors (bridges)
[18]. The bus pattern is used to share communication medium
between several units effectively. The communication
coprocessor pattern is used to separate the computation and
communication tasks in the system.

Wrappers are already used in a number of applications. However,
they were not described as a design pattern, yet. Some of the
examples of application of wrappers are as follows:

(1) A reliability wrapper is used for the reliability-critical
applications in order to determine HW faults and reduce the
probability of an erroneous output. The wrapper provides an
implementation of a majority voter, error detection/avoidance
circuits, and self-repair circuits. This approach is used in [19] to
generate the fault-tolerant embedded processors.

(2) A bus wrapper is used for the communication synthesis in SoC
designs. The wrapper provides an implementation of a particular
data protocol for communication with other components. This
solution is used in VSIA’s Virtual Socket Interface methodology
[20] to connect the IPs to on-chip buses.

(3) A protocol wrapper is used for layered Internet packet
processing. The wrapper provides an implementation of an OSI
protocol layer. This solution is used in the FPX networking
platform [21] to simplify and streamline the implementation of the
high-level networking functions by abstracting the operation of
the lower-level packet processing functions.

(4) A memory wrapper is used for the automatic adaptation of the
physical memory interfaces to a communication network that may
have a different number of access ports. The wrapper provides an
implementation of a memory controller, access manager, internal
communication bus, arbiter and other memory-specific control
logic. This approach is used in [22] to facilitate the integration of
the standard memory components into SoC designs.

3.5. Adaptation of UML for HW Design
Much of the difficulties when applying the OO modeling
techniques to HW design are related to the lack of the standard
OO HDL. Although there are efforts in developing the OO
extensions of the standard HDLs (e.g., SUAVE [23]), or adapting
the existing OO languages to HW design (e.g., SystemC [9]),
most of HW designers are still using the standard HDLs (such as
VHDL, Verilog). This can be explained by the fact that (1) most
of the existing soft IPs were developed using a standard HDL, and
(2) there are few efforts to directly synthesize the OO concepts to
RTL. Therefore, we need to agree how we map the OO concepts
to the abstractions of the non-OO HDL, such as VHDL (see
Figure 2).

50

Figure 2. Application of the OO concepts for VHDL.

We consider that an abstract class corresponds to the VHDL
entity. A class that implements an abstract class corresponds to the
VHDL architecture. The configuring and instantiation of the class
instances (objects) corresponds to the VHDL configuration. Class
attributes correspond to the VHDL ports (public) and signals
(private), and class methods – to the different VHDL processes.
The composition relationship describes the composition of a
system from the components and corresponds to the VHDL port
map statement. The inheritance relationship means that a VHDL
entity inherits the I/O ports.

4. WRAPPER DESIGN PATTERN
In this section, we propose a new HW design pattern, called
Wrapper. A description of the design pattern is a document
composed of plain text descriptions, UML charts and sample
codes. Here, we describe the Wrapper design pattern using a
common description scheme [1].

[Intent] Wrapper allows adapting an interface and behavior of the
IP component to the context of a given application.

[Applicability] Use Wrapper when you need to adapt the
component to the requirements of its environment.

[Structure] For an UML Class diagram, see Figure 3. Entity
Wrapper inherits the I/O ports of the entity IP, and declares new
I/O ports for the Wrapper functionality. Architecture IPModel
implements the functionality of the IP. Architecture
WrapperModel implements the functionality of the Wrapper and
contains component IP. Essentially, this description means that
WrapperModel wraps IPModel with new Wrapper functionality.

Figure 3. Wrapper design pattern.

[Consequences] Wrapping can be nested, i.e., we can apply this
design pattern to the IP again and again. Many different wrappers
can be applied to the same component, as well as the same
wrapper can be applied to the different IPs. However, a designer
must be cautious for an area and delay overhead, which can be
introduced by the wrapper component.

5. IMPLEMENTATION OF DESIGN
PATTERN USING METAPROGRAMMING
It is possible to generate the code representing a design pattern
automatically, if the domain is well defined and formalized. There
are several examples of the automatic generation of similar

wrappers described in the literature (e.g., [18, 22]). Generally, we
have (1) to extract the environmental parameters of a design, and
(2) apply the generative techniques for the code generation. This
can be accomplished using a specialized code generator,
metalanguage, or the internal HDL capabilities for generic
programming (e.g., generics in VHDL), etc.

We implement HW design patterns using the metaprogramming
(MPG) techniques [24, 25]. In general, MPG is a higher-level
programming technique, which provides a means for manipulating
with other (domain) programs as data. The heterogeneous MPG is
based on the usage of two different languages in the same generic
specification. The lower-level language (domain language) is
used for expressing basic domain functionality. The higher-level
language (metalanguage) is used for expressing generalization
and describing domain program modifications.
The main aim of MPG is to create a metaprogram – a program
generator for a narrow application domain. The metaprogram
consists of a family of the related domain program instances
encapsulated with their modification algorithm, which describes
the generation of a particular instance depending upon the values
of the generic parameters. A designer uses a metalanguage as a
higher-level abstraction to integrate together the different domain
program instances and make up a metaprogram. The metaprogram
is then used as a set of instructions for a metalanguage processor
to generate the specific domain program instances.
We implement a particular design pattern (e.g., Wrapper) by
developing a parameterized code generator (metaprogram) that
applies a respective design process (e.g., wrapping) to a given soft
IP (see Figure 4). The role of MPG is to serve as a bridge between
the abstract description of the SL design process and its
implementation, as well as to provide a means and guidelines for
developing domain code generators. So far, the MPG step (the
development of the generator) is performed manually. However,
the wrapper generation is performed automatically for any soft IP.

IP <<a>> wrapping

IP IP
Wrapper

design pattern

Metaprogramming

SL design process

Wrapper
Generator

(Metaprogram)

Figure 4. Relationship between design process, design pattern

and metaprogramming.

We demonstrate the application of the Wrapper pattern for HW
design, including the automatic generation of the VHDL code, in
our case study.

6. CASE STUDY
In this case study, we deal with the problem of interface synthesis
[26], i.e., the generation of interfaces between the communicating
IPs. We apply a Wrapper design pattern to generate the handshake
wrappers using a single-rail 4-phase handshake data protocol [27].
The data transmission scheme is as follows. The IP communicates
with a micro-controller (MC), which drives the IP through a
channel (bus) using a handshake data protocol (DP) (see Figure 5,

51

a). Our aim is to adapt the IP for handshaking in order to establish
a direct communication between the MC and the IP as it is shown
in Figure 5, b. For this, we need to modify the IP interface and
wrap the IP with a control logic. Note that in this case study we
generate only a client side of the application. The wrapped IP is
now ready for integration into a larger-scale HW system.

(a)

DATA DATA

Server side Client sideChannel

SoC

MC IP
DATA

DP DP
REQ
ACK

Channel

(b)SoC

MC wrapped
IP

DATA

REQ
ACK

Figure 5. Data transmission scheme using handshaking: a)
before, and b) after interface synthesis.

We have constructed a wrapper generator to automatically
generate the handshake wrappers for the third-party soft IPs
described in VHDL. The handshake wrapper was implemented as
a generic metaprogram parameterized by the parameter values,
which are extracted from the interface of the soft IP. The wrapper
generator uses a VHDL parser [28] to analyze the given soft IP
interface, and several Java (metalanguage) classes to generate
VHDL (domain language) code according to the Wrapper design
pattern. The wrapper generator performs wrapping by generating
an instance of the handshake FSM from a generic metaprogram,
and a port map statement, which maps signals of the handshake
wrapper to the IP. The generation process is fully automatic. The
architecture (UML Class diagram) of the handshake wrapper is
given in Figure 6. To describe the behavior of the wrapper, we
have used other UML diagrams such as State diagram.

Figure 6. Architecture of the handshake wrapper.

We have performed the experiments using the third-party soft IPs
as follows: (1) Dragonfly micro-core [29], (2) HC11 CPU [30],
and (3) i8051 micro-controller [31]. Synthesis results (Synopsys;
CMOS 0.35 um technology) for the original third party IPs and
the generated wrapper components (Wr) are presented in Table 1.

Table 1. Synthesis results

IP
Area,
cells
(IP)

Area,
cells
(Wr)

Inc-
rease,

%

Power,
uW
(IP)

Power,
uW

(Wr)

Dec-
rease,

%
Dragonfly 5883 6804 16 19.9421 14.6646 26

HC11 7394 8951 21 19.0632 14.6237 23

i8051 24266 25282 4 50.5518 33.8819 33

The synthesis results show an increase in chip area (~14%), and a
moderate decrease in the estimated power usage (~27%). This
decrease can be explained by the fact that power is not used when
data is not transmitted to the IP.

7. EVALUATION AND DISCUSSION
The application of the concept of design patterns for HW design
allowed us to better understand the domain, and to specify the
system-level HW design processes and target architectures in a
semi-formal way. Faced with a problem of interface synthesis, we
have introduced and successfully applied the Wrapper design
pattern. To automatically apply the pattern, we have developed the
metaprogramming-based VHDL code generator, which generates
a handshake wrapper for any given soft IP virtually in seconds,
thus substantially increasing design productivity.

The advantages of using design patterns in HW design are as
follows. (1) The design content is captured immediately and
intuitively, thus increasing design comprehensibility. (2) The
pattern-based design can be easily supported by the automated
validation and code generation tools, thus increasing design reuse,
quality and productivity. (3) The level of abstraction is raised to
the system level, which allows dealing with growing complexity
of HW designs.

Additionally, the usage of design patterns may reduce the gap
between the development of SW and HW parts of the SoC, as the
object-oriented and pattern-based design is widely used in SW
domain. It can be very useful to co-design the HW and SW parts
of a system using the same design methodology, and partition
these parts as late as possible in the design cycle. The same high-
level description can be implemented either in HW, or in SW
running on an embedded processor. This allows achieving greater
flexibility for the system designer.

The idea of applying design patterns to HW design holds great
promises; however, there are many gaps, which must be bridged
before these promises could be fulfilled. (1) Conceptual gap: SW
designers think in terms of the OO design (objects and messages),
whereas HW designers are used to think in terms of the
component-based design (components and wires). (2)
Methodological gap: how the SL design processes described
using the UML-based HW design patterns could be (semi-)
automatically transformed into metaprograms? (3) Physical gap:
how the physical constraints (such as the timing ones) should be
reflected in an OO model (design pattern)? (4) Technological gap:
how objects or even entire design patterns could be directly
synthesized to RTL?

We hope that the recent trends towards blurring the boundaries
between SW and HW domains (e.g., HW/SW co-design,
SystemC, etc.) will overcome some of these problems, too.

8. CONCLUSIONS AND FUTURE WORK
The application of the object-oriented modeling techniques,
including design patterns, has only recently became a hot topic in
HW design. In this paper, we analyzed the role of design patterns
in system-level HW design, and proposed a new HW design
pattern, called Wrapper, for adapting the behavior of the IPs. It
can be used in a variety of HW design applications from the fault-
tolerant design to the communication synthesis. In addition, we
have discussed the implementation of HW design patterns using
the heterogeneous metaprogramming techniques. We expect that

52

the application of design patterns will contribute to the increase in
HW design reuse, automation, quality and designer productivity.

Future work will focus on the discovery of other HW design
patterns and the development of the HDL code generators for their
implementation.

REFERENCES
[1] E. Gamma, R. Helm, R. Johnson, and J. Vlissides. Design

Patterns: Elements of Reusable Object-Oriented Software.
Addison-Wesley, 1995.

[2] G. Booch, I. Jacobson, J. Rumbaugh, and J. Rumbaugh. The
Unified Modeling Language User Guide. Addison-Wesley,
1998.

[3] S. Kumar, J. H. Aylor, B. W. Johnson, and W. A. Wulf.
Object-Oriented Techniques in Hardware Design. IEEE
Computer, Vol. 27, No. 6, June 1994, pp. 64-70.

[4] W. Nebel, and G. Schumacher. Object-Oriented Hardware
Modelling – Where to apply and what are the objects? In
Proc. of EURO-DAC with EURO-VHDL'96, September 16-
20, 1996, Geneva, Switzerland, pp. 428-433.

[5] N. Yoshida. Design Patterns Applied to Object-Oriented SoC
Design. In 10th Workshop on Synthesis and System
Integration of Mixed Technologies (SASIMI 2001), October
18-19, 2001, Nara, Japan.

[6] F. Doucet, and R. K. Gupta. Microelectronic System-on-Chip
Modeling using Objects and their Relationships. In Online
Symposium for Electrical Engineers (OSEE 2000), 2000.

[7] G. Vanmeerbeeck, P. Schaumont, S. Vernalde, M. Engels,
and I. Bolsens. Hardware/Software Partitioning of Embedded
System in OCAPI-xl. In Proc. of the Ninth Int. Symposium
on Hardware/Software Codesign (CODES’2001), April 25-
27, 2001, Copenhagen, Denmark, pp. 30-35.

[8] P. Åström, S. Johansson, and P. Nilsson. Application of
Software Design Patterns to DSP Library Design. In Proc. of
the 14th Int. Symposium on System Synthesis (ISSS’01),
October 1-3, 2001, Montreal, Canada, pp. 239-243.

[9] T. Grőtker, S. Liao, G. Martin, and S. Swan. System Design
with SystemC. Kluwer Academic Publishers, Boston, 2002.

[10] L. Charest, and E. M. Aboulhamid. A VHDL/SystemC
Comparison in Handling Design Reuse. In Proc. of 2002 Int.
Workshop on System-on-Chip for Real-Time Applications
(IWSOC 2002), July 6-7, 2002, Banff, Canada, pp. 79-85.

[11] S. Virtanen, D. Truscan, and J. Lilius. SystemC Based Object
Oriented System Design. In 4th Int. Forum on Design
Languages (FDL'01), September 3-7, 2001, Lyon, France.

[12] A. Sangiovanni-Vincentelli, and G. Martin. A Vision for
Embedded Systems: Platform-Based Design and Software
Methodology. IEEE Design and Test of Computers, Vol. 18,
No. 6, 2001, pp. 23-33.

[13] J.F. Fernandes, R.J. Machado, and H.D. Santos. Modeling
Industrial Embedded Systems with UML. In Proc. of the 8th
Int. Workshop on Hardware/Software Codesign (CODES
2000), May 3-5, 2000, San Diego, CA, USA, pp. 18-22.

[14] G. Martin. UML for Embedded Systems Specification and
Design: Motivation and Overview. In Proc. of DATE’2002,
March 4-8, 2002, Paris, France, pp. 773-775.

[15] R. Chen, M. Sgroi, L. Lavagno, G. Martin, A. Sangiovanni-
Vincentelli, and J. Rabaey. Embedded System Design Using
UML and Platforms. In Forum on Specification and Design
Languages (FDL’2002), September 24-27, Marseille, France.

[16] Q. Zhu, A. Matsuda, S. Kuwamura, T. Nakata, and M. Shoji.
An Object-Oriented Design Process for System-on-Chip
using UML. In Proc. of the 15th International Symposium on
System Synthesis (ISSS 2002), Kyoto, Japan, pp. 249-254.

[17] M. Keating, and P. Bricaud. Reuse Methodology Manual for
System-on-Chip Designs. Kluwer Academic Publishers,
Boston, 2001.

[18] D. Lyonnard, S. Yoo, A. Baghdadi, and A. Jerraya.
Automatic Generation of Application-Specific Architectures
for Heterogeneous Multiprocessor System-on-Chip. In Proc.
of DAC 2001, June 18-22, Las Vegas, Nevada, pp. 518-523.

[19] M. Pflanz, and H. T. Vierhaus. Generating Reliable
Embedded Processors. IEEE Micro, Vol. 18, No. 5, 1998, pp.
33-41.

[20] G. Cyr, G. Bois, and M. Aboulhamid. Synthesis of
Communication Interface for SoC using VSIA
Recommendations. In D. Sciuto (ed.), DATE 2001 Designer's
Forum, March 13-16, 2001, Munich, Germany, pp. 155-159.

[21] F. Braun, J. Lockwood, and M. Waldvogel. Protocol
Wrappers for Layered Network Packet Processing in
Reconfigurable Hardware. IEEE Micro, Vol. 22, No. 3,
February 2002, pp. 66-74.

[22] F. Gharsalli, S. Meftali, F. Rousseau, and A. A. Jerraya.
Automatic Generation of Embedded Memory Wrapper for
Multiprocessor Soc. In Proc. of DAC 2002, June 10-14,
2002, New Orleans, Louisiana, USA, pp. 596-601.

[23] P. J. Ashenden. Object-Oriented Extensions to VHDL. In Int.
Conference on Chip Design Automation (ICDA 2000),
August 21-25, 2000, Beijing, China.

[24] V. Štuikys, R. Damaševičius, G. Ziberkas, and G. Majauskas.
Soft IP Design Framework Using Metaprogramming
Techniques. In B. Kleinjohann, K. H. (Kane) Kim, L.
Kleinjohann, and A. Rettberg (eds.). Design and Analysis of
Distributed Embedded Systems, pp. 257-266. Kluwer
Academic Publishers, Boston, 2002.

[25] R. Damaševičius, and V. Štuikys. Wrapping of Soft IPs for
Interface-based Design Using Heterogeneous
Metaprogramming. INFORMATICA, 14 (1), 2003, pp. 3-18.

[26] A. Rajawat, M. Balakrishnan, and A. Kumar. Interface
Synthesis: Issues and Approaches. In Proc. of the 13th Int.
conference on VLSI Design, January 3-7, 2000, Calcutta,
India, pp. 92-97.

[27] A.M.G. Peeters. Single-Rail Handshake Circuits. PhD.
Thesis, Technische Univ. Eindhoven, the Netherlands, 1996.

[28] Andreas Dangberg (C-Lab). VHDL Parser, 1997,
http://home.wtal.de/software-solutions/vhdl-parser/

[29] LEOX Team. DRAGONFLY micro-core, 2001,
http://www.leox.org

[30] Green Mountain Computing Systems, Inc. HC11 CPU core,
2000, http://www.gmvhdl.com/hc11core.html

[31] T. Givargis. Intel 8051 micro-controller, 2000,
http://www.cs.ucr.edu/~dalton/i8051/i8051syn/

53

	Main Page
	DAC'03
	Front Matter
	Table of Contents
	Author Index

