
Architectural Analysis and Instruction-Set Optimization for
Design of Network Protocol Processors∗

Haiyong Xie†, Li Zhao, and Laxmi Bhuyan
Computer Science & Engineering Department

University of California, Riverside
Riverside, CA 92521

{zhao, bhuyan}@cs.ucr.edu

ABSTRACT
TCP/IP protocol processing latency has been an important issue
in high-speed networks. In this paper, we present an architec-
tural study of TCP/IP protocol. We port the TCP/IP protocol stack
from the 4.4 FreeBSD to the SimpleScalar simulation environment.
The architectural characteristics, such as instruction level paral-
lelism and cache behavior, are studied through simulation. We also
compare the characteristics of TCP/IP protocol to that of SPECint
benchmark programs. It turns out that the former is quite differ-
ent from the latter due to the unique processing structure. Further-
more, in order to improve the effectiveness of instruction cache,
frequent instruction pairs are analyzed, and corresponding archi-
tectural optimizations are made to the instruction set architecture.
The performance is evaluated in the simulator. We find that a 23%
improvement can be achieved by taking advantage of the optimiza-
tion. The instruction set optimizations proposed in this paper will
be helpful for the design of new programmable protocol processors
in future.

Categories and Subject Descriptors
C.3 [Special-Purpose and Application-Based Systems]: Real-
time and Embedded Systems

General Terms
Measurement, Design, Performance

Keywords
Network processing, Architecture simulation, Instruction optimiza-
tion, TCP/IP protocol

∗The research was supported in part by NSF grants CCR-0220096
and ACI-0233858.
†Haiyong Xie is currently with Computer Science Department at
Yale University, New Haven, CT 06520. His current email address
is yong@cs.yale.edu.

Permission to make digital or hard copies of all or part of this work for
personal or classroom use is granted without fee provided that copies are
not made or distributed for profit or commercial advantage and that copies
bear this notice and the full citation on the first page. To copy otherwise, to
republish, to post on servers or to redistribute to lists, requires prior specific
permission and/or a fee.
CODES+ISSS’03, October 1–3, 2003, Newport Beach, California, USA.
Copyright 2003 ACM 1-58113-742-7/03/0010 ...$5.00.

1. INTRODUCTION
The gaps between the available network bandwidth, CPU com-

putation power, and the speed of memory system are expanding
day by day. In the past decade, the speed of the physical layer has
increased exponentially due to break-through advances in technol-
ogy. The bandwidth of the Internet’s trunk lines has increased over
the years to 10 Gbps and will continue to grow at a rate of 4 times
per year. This growth is much faster than that of the CPU per-
formance and has led to a growing gap between the transmission
bandwidth and processor speed [4][18].

The demands on needed computation power of CPUs and speed
of memory systems to sustain higher network bandwidth are greater
than ever before. For instance, in order to process a typical 64-
byte TCP control packet, the CPU has to complete TCP/IP proto-
col processing and deliver the packet to the network interface card
in 512 ns to sustain the 1Gbps bandwidth. However, as revealed
by our study, the TCP/IP protocol stack executes more than 1600
instructions to process such a packet on a RISC machine (similar
results in [15]). This means that for a CPU running at 1GHz with
1 instruction per cycle, it will take more than 1600 CPU cycles,
or equivalently more than 1600 ns, to process such a packet. This
time is for critical path processing, and does not include time on the
connection establishment and tear-down, nor does it take into con-
sideration factors such as memory access latency, the overhead in-
troduced by the operating system, and the capability of upper layer
applications. We conclude, therefore, that with special optimiza-
tions current computer systems do not have enough capability to
fully sustain networks operating at 1Gbps bandwidth or higher.

TCP/IP protocol processing latency is vital to the overall per-
formance of special network devices such as web switches [5][7],
which perform not only transport-layer but also application-layer
functions. With increasing demand on highly secure transmissions
over network, future routers will have to look into both layer 4 and
5 information. Currently, network processors with hardware ac-
celerators, multi-threading and multiprocessing are being designed
and marketed aggressively. However, implementing protocol pro-
cessing in network processors is a major concern, and poses several
challenges.

TCP/IP processing latency can be attributed to two aspects: data-
touching operations and non-data-touching operations [11][12]. Data-
touching operations such as checksum computations dominate the
processing latencies of large packets, and consume approximately
70% of the total processing overhead. However, non-data-touching
operations, such as protocol data structure manipulation and proto-
col specific operations, are dominant in case of small- and medium-
payload packets. Extensive research has been conducted to maxi-
mize the throughput by improving data-touching operations [1][8].

225

However, when a realistic distribution of message size is consid-
ered, non-data-touching operations introduce 84% of total protocol
processing latency for TCP and 60% for UDP [11][12], which in-
dicates that it is more important to improve processing of non-data-
touching operations. Hence, we primarily focus on reducing the
latencies for non-data-touching operations.

In this paper, we take TCP/IP protocol processing as an inde-
pendent workload and study its various architectural characteristics
by means of simulation. We measure the impact of architectural
parameters like ILP and cache behavior on the TCP performance.
Comparisons between TCP/IP and SPECint2000 [19] benchmark
programs are also made in order to highlight the different charac-
teristics.

We port the reference implementation of TCP/IP protocol stack
in 4.4 FreeBSD [14] to the SimpleScalar simulation environment
[17]. To the best of our knowledge, we are the first to run the com-
plete standard TCP/IP protocol stack from Berkeley UNIX imple-
mentation in an execution-driven simulator. We extend the Sim-
pleScalar simulation tool-set to break down the execution time into
three categories: CPU execution time, data access time and instruc-
tion access time. This extended simulator is used to study architec-
tural characteristics of, and evaluate the optimization for, TCP/IP
protocol processing.

It is observed that the instruction cache has a greater impact on
TCP/IP performance. In order to improve effectiveness of an in-
struction cache, we identify the frequently used instruction pairs
by extending the simulator and profiling the protocol stack. We de-
sign and implement some new instructions for the simulated CPU
so that the frequently used instruction pairs can be replaced with
corresponding new instructions. By doing so, we expect to not
only reduce the total number of instructions needed to process each
packet, but also improve instruction cache performance and reduce
the execution time. We make only minor modification to the in-
struction set architecture and evaluate the overall performance of
this new ISA in the simulator. We find that 23% improvement can
be achieved by taking advantage of the minor extensions to the in-
struction set architecture. This observation can be used to help de-
sign new programmable protocol processors in the future.

The rest of this paper is organized as follows. Section 2 describes
the methodology employed in our work and the parameters of the
simulation environment. The synthetic network traffic trace is de-
scribed as well. Section 3 presents various results of performance
evaluation with SimpleScalar. We also make comparisons between
TCP/IP workload and SPECint benchmark programs. Section 4 an-
alyzes the patterns of frequent instruction pairs and makes architec-
tural optimizations to the instruction set architecture in order to im-
prove the latency of non-data-touch operations. Section 5 presents
background and related work. Section 6 concludes the paper.

2. METHODOLOGY
This section describes the methodologies used to evaluate the

performance of TCP/IP protocol processing, including execution-
driven simulation and synthetic network traces.

2.1 Execution-driven simulation
We use SimpleScalar Tool Set 3.0 to study the architectural char-

acteristics of protocol processing. The default processor architec-
ture we simulate has 16K 4-way set-associative L1 instruction and
data caches. Both have block sizes of 32 bytes and LRU as the
replacement strategy. The data cache is write-back, write-allocate,
and non-blocking with 2 ports. There is a 256K 4-way set asso-
ciative unified L2 cache with 64-byte blocks and a 6-cycle hit la-
tency. The processor has an instruction level parallelism of 4, and

bimodal as the default branch predictor. The bimodal branch pre-
dictor used in our reference processor is not state of the art, how-
ever, for TCP/IP protocol workload, it is almost as good as the
perfect predictor, which is not shown in this paper due to space
limitations.

We extend the detailed timing simulator,sim-outorder, to further
break down the total execution time into three categories: CPU
execution time when there are instructions being executed without
stalling for data or instruction access, data access time when CPU
stalls due to data cache misses, and instruction access time when
CPU stalls due to instruction cache misses. The overlapped access
time when CPU stalls waiting for both data and instruction access
is taken as data access time.

2.2 Network traffic trace
TCP/IP protocol processing latency depends directly on the packet

size. The packet sizes of both local area networks and wide area
networks conform to bimodal distribution [20]. We analyze traffic
traces available from NLANR for both local area networks (LAN)
and wide area networks (WAN). The results in Figure 1 are similar
to those in early studies. Approximately 52% of the packets in lo-
cal area networks are smaller than 200 bytes in size. In the WAN
traces, most of the packets (approximately 99%) are smaller than
1500 bytes, and the size distribution of these packets is similar to
that of LAN traces.

0 500 1000 1500
0

10

20

30

40

50

60

70

80

90

100

Packet Size (Bytes)

C
um

ul
at

iv
e

P
er

ce
nt

ag
e

%

Packet Size Distribution − Local Area Network

0 500 1000 1500 2000 2500 3000 3500 4000 4500
0

10

20

30

40

50

60

70

80

90

100

Packet Size (Bytes)

C
um

ul
at

iv
e

P
er

ce
nt

ag
e

%

Packet Size Distribution − Wide Area Network

Figure 1: Packet size distribution of LAN and WAN

It is important to study the characteristics of TCP/IP protocol
stack with realistic network traffic traces in execution-driven sim-
ulators. We instrument a client program with knowledge of the
distribution of realistic network traffic. The program establishes
TCP connections and transmits data, using predefined packet sizes,
the distribution of which conforms to that in Figure 1. By doing so,
we generate a synthetic trace of 10K packets. We call this trace as
realistic or synthetic network trace throughout this paper. We eval-
uate the TCP/IP protocol stack in SimpleScalar using this synthetic
trace.

3. PERFORMANCE EVALUATION THROUGH
SIMULATION

In this section, we present the impact of various architectural pa-
rameters on TCP/IP. The results are obtained by running the proto-
col stack in the simulation environment with the synthetic network
trace.

3.1 Instruction mix and ILP
We study the instruction mix and the impact of ILP on execu-

tion time by varying the instruction fetch, decode, and issue width
and the number of functional units. The results are compared with
that of SPECint benchmarks as well, as shown in Figure 2. Note

226

that the execution time has been normalized to that of SPECint pro-
grams with ILP being 1. Both the benchmarks and TCP/IP run in
the simulation environment with default configuration described in
Section 2.

The TCP/IP protocol stack has an unexpected high percentage of
unconditional branch instructions. This leads to not-so-good pro-
gram structures that introduce higher instruction cache miss ratio.
The TCP/IP protocol stack has a lower percentage of conditional
branch instructions compared to SPECint benchmark. The reason
is that the protocol processing is more like a streamlined process-
ing with only a small number of loops. These program properties
require different cache configurations compared to SPECint bench-
mark programs.

load store uncond. br. cond. br. int. computation
0

5

10

15

20

25

30

35

40

45

50
Instruction Mix Comparison

Pe
rc

en
ta

ge
 %

TCP/IP
SPECint95

1 2 4 8
0

1

2

3

4

5

6

7
x 10

9

SPEC ILP

Ex
ec

uti
on

 T
im

e (
Cy

cle
s)

Impact of Instruction Level Parallelism

1 2 4 8
TCPIP ILP

CPU Execution
Data Access
Instruction Access

Figure 2: Instruction mix and ILP (top: instruction mix, bot-
tom: ILP)

It is observed that TCP/IP protocol processing is less sensitive
to instruction level parallelism, compared to SPECint programs.
SPECint programs obtain improvement on both CPU execution
time and instruction cache when ILP increases. However, for TCP/IP
protocol processing, it does not improve data or instruction access
time very much. For instance, the total execution time of SPECint
programs improves 40% and 24%, while that of TCP/IP processing
improves 29% and 15%, respectively, when the instruction level
parallelism increases from 1 to 2 and 2 to 4. However, the exe-
cution time improves little (5%) with ILP greater than 4 for both
SPECint and TCP/IP programs. The instruction level parallelism
in TCP/IP is limited, and other techniques such as multi-threading
are needed to go beyond this speed-up. The major problem with
TCP/IP lies in the long instruction access time, which is unaffected
by increasing ILP. Instruction cache plays a more important role in
improving TCP/IP processing latency, as can be seen in later sec-
tions.

3.2 Cache behavior
We study both the L1 instruction and data cache behavior by

varying such parameters as cache size, line size, and set associa-
tivity. Data cache behavior is similar to that of SPECint programs,
which is not presented here due to space limitations. The results of
instruction cache are presented in Figure 3, and those of SPECint

benchmark are also shown in these figures for comparison purpose.
Figure 3 shows the different impact of cache size on L1 instruc-

tion cache (the figure on the upper-left). The miss ratio of instruc-
tion cache decreases as cache size increases. There is a 60% im-
provement as the cache size increases from 16KB to 32KB and
74% from 32KB to 64KB. From 64KB and beyond, the improve-
ment is not so much as that from 8KB to 16KB and 64KB, which
indicates that capacity misses become dominant. Due to the pro-
gram structure of the TCP/IP protocol stack, which is a monolithic
program with a small number of loops, the requirements on cache
size are higher compared to that of SPECint benchmark programs,
as can be seen in the figure. Instruction cache is very sensitive to
cache size. It is because that TCP/IP has a very large kernel code
size and has a large capacity miss. Additionally, data cache does
not benefit from larger cache size than 8K and beyond (not shown
here). On the contrary, a much smaller cache is enough to bound
the miss ratio to a sufficiently low level for SPECint programs.

Similar behavior with varied associativity and line size is shown
in Figure 3 as well. Higher associativity and larger line size both
have greater impact on instruction cache. From Figure 3 we can see
that there exists a great difference between TCP/IP and SPECint
programs in terms of instruction cache performance. It is observed
that TCP/IP processing almost always performs much worse than
SPECint benchmark given the same cache parameters. For in-
stance, a 16KB cache size is nearly enough for most of the pro-
grams in the benchmark to reduce instruction cache miss ratio to
less than 1%, however, it is not the case with TCP/IP processing,
which needs 4 times more cache size to obtain miss ratio less than
1%. It can also be seen that cache associativity and line size have
much greater impact on TCP/IP performance than SPECint bench-
mark programs. For instance, cache miss ratio improves by 51% for
TCP/IP processing compared to 25% when line size increases from
16 to 64 bytes. Instruction cache miss ratio continuously improves
even when line size is larger than 64 bytes, while SPEC benchmark
programs perform worse due to increased miss penalty.

2 4 8 16 32 64 128 256
0

2

4

6

8

10

12

14

16

18
L1 Instruction Cache Behavior Comparison

Cache size (KB)

M
is

s
R

a
tio

 %

TCP/IP
SPECint00

1 2 4 8 16
0

1

2

3

4

5

6

7

8

9

10
L1 Instruction Cache Behavior Comparison

Set associativity

M
is

s
R

a
tio

 %
TCP/IP
SPECint00

8 16 32 64 128 256
0

2

4

6

8

10

12

14

16

18

20
L1 Instruction Cache Behavior Comparison

Line size (bytes)

M
is

s
R

a
tio

 %

TCP/IP
SPECint00

Figure 3: Impact of cache parameters (upper left and right:
size, associativity; bottom: line size)

TCP/IP protocol stack benefits more from a instruction cache
with larger size, higher associativity, or larger line size, compared
to SPECint benchmark programs. The above observation leads to

227

the conclusion that given a total L1 cache size on the chip, more
area should be devoted to I-Cache and less to D-Cache. Compiling
techniques aimed at minimizing the code size will help as well.
In addition, there is a greater need to replace some of the code
using hardware units. A detailed hardware/software co-design of
the TCP/IP protocol processing is an interesting research direction.

3.3 Execution time analysis of cache behavior
The previous subsection presents the behavior of L1 instruction

cache as a function of various architectural parameters. However,
we are more concerned with the impact of these parameters on the
categorized execution time, the results of which are shown in Fig-
ure 4.

It can be seen that CPU execution time accounts for less than a
half of the total time in the baseline cases, where the configuration
has 16KB 4-way set associative L1 instruction cache with 32-byte
line size. In these baseline cases, more than half of the total exe-
cution time is spent in waiting for completion of data or instruction
accesses. Instruction access time is at least 3 to 4 times longer than
data access time when instruction cache performs worse than the
baseline cases. It can also be seen that the total execution time
is more sensitive to instruction cache performance. For instance,
the reduction in execution time is 26% by increasing the cache
size from 16KB to 32KB or 32KB to 64KB. Improving instruction
cache performance has the greatest impact on overall performance.
Data cache has almost negligible impact (around 1% improvement
at best) on the overall performance compared to its counterpart.

2 4 8 16 32 64 128 256
0

5

10

15

20

25

30

35

40

45

Cache size (KB)

E
xe

cu
tio

n
 T

im
e

 (
M

ill
io

n
 C

yc
le

s)

Impact of L1 Cache Size on Execution Time
CPU Execution
Data Access
Instruction Access

1 2 4 8 16
0

5

10

15

20

25

30

Set associativity

E
xe

cu
tio

n
 T

im
e

 (
M

ill
io

n
 C

yc
le

s)

Impact of Set Associativity on Execution Time
CPU Execution
Data Access
Instruction Access

8 16 32 64 128 256
0

5

10

15

20

25

30

35

40

45

50
Impact of L1 Cache Line Size on Execution Time

Line size (Bytes)

E
xe

cu
tio

n
T

im
e

(M
ill

io
n

C
yc

le
s) CPU Execution

Data Access
Instruction Access

Figure 4: Impact of cache parameters on execution time (upper
left and right: size, associativity; bottom: line size)

4. INSTRUCTION-SET OPTIMIZATION FOR
NON-DATA-TOUCHING OPERATIONS

Non-data-touching operations dominate the protocol processing
latency of the synthetic workload. Based on results in previous
sections, instruction cache plays a more important role and there-
fore should be improved first. In this section, We will extend the
ISA with some new instructions so that the frequently used instruc-
tion pairs can be replaced with corresponding new instructions.

By eliminating frequently used instruction pairs, we expect to not
only reduce the total number of instructions executed to process
each packet, more importantly, but also improve instruction cache
performance and decrease the execution time. The overall perfor-
mance with this new ISA is evaluated using SimpleScalar.

4.1 Frequent instruction pairs
Frequent instruction pairs are also present in a lot of other network-

related programs, e.g., ADD-SUBCC is the most frequent instruc-
tion pair occurring in CommBench benchmark programs [21]. The
idea of replacing conventional frequent instruction pairs with sin-
gle instructions has been brought forth by many researchers. The
destination register of the first instruction has to be one of source
registers of the second instruction. This dependence makes it pos-
sible to combine the instruction pair into a single new instruction
that performs the same functionality. We extend the simulator to
obtain profiling of instruction pairs with such dependence. We get
the most frequent instruction pairs as shown in Table 1 with the
extended simulator. To concentrate on the behavior of non-data-
touching operations, we turn off data-touching operations such as
checksum computation.

Table 1: Most frequent pairs with dependence
1st Instruction 2nd Instruction Occurrence

ADDIU BNE 4.91%
ANDI BEQ 4.80%
ADDU ADDU 3.56%

SLL OR 3.38%
LUI ADDU 2.50%

SLTUI BNE 2.47%
ANDI SRL 2.47%
SRL ANDI 2.45%

ADDU LW 2.29%
ADDIU BEQ 2.26%

Table 1 shows that the first instruction of most frequent instruc-
tion pairs is mostly integer computation instruction. Non-data-
touching operations such as header validation and packet classifi-
cation need to first compute the values and then decide to continue
processing or not. That is why such instruction pairs as compute-
branch and comparison-branch occur so frequently in protocol pro-
cessing.

4.2 ISA extension
We elect not to make radical changes to the original ISA. The

instruction format and encoding are not changed. Only some new
instructions, having the same format as old ones, are introduced.

Note that some of the instruction pairs cannot be combined in a
single instruction, e.g., ADDU-ADDU, which may have 5 different
register operands and it is impossible to put all of them in a single
instruction. We elect to optimize those pairs that have either inte-
ger or logic operations followed by branch instructions, which are
chosen from Table 1.

The first instruction of the selected pairs has to be either R-type
or I-type instruction1. By taking advantage of unused bits in an
instruction word, all the new instructions have either three regis-
ter operands and one immediate operand for target address, or two
register operands and two immediate operands (one for immediate
number, the other for target address). Due to this limitation, only
1The format of R-type instructions isopcode rd, rs, rt; the format
of I-type instructions isopcode rd, rs, imm. Details can be found
in [17].

228

two types of instruction pairs are considered suitable for replace-
ment, as shown in Table 2. Each type of instruction pairs can be
further divided into R-type and I-type.

Table 2: Types of candidate instruction pairs
Type Conditions R-type example I-type example

1 rd1 == rs1 and addu $2,$2,$3 addiu $2,$2,5
rd1 == rs2 beq $2,$5,$L1 beq $2,$5,$L1

2 rt2 == $0 and addu $2,$3,$4 addiu $2,$3,5
rd1 == rs2 beq $2,$0,$L1 beq $2,$0,$L1

In type one instructions, the source registerrs of the first instruc-
tion, denoted asrs1, is the same as the destination registerrd1; in
type two, registerrt of the second instruction,rt2, is $0. In both
types, the destination register of the first instruction (rd1) is the
same as one of the source registers of the second instruction (rs2).
These two types are divided in such a way that the total number of
operands can only be 4, either three different register operands and
one target address, or two different registers, one immediate num-
ber, and one target address (register $0 in type 2 instructions can be
safely omitted since it always holds 0).

Since we combine two operations in one, which means that the
integer operation (integer computation or logic operation) and the
branch operation must be done in one cycle, we need a simpler
ALU to do the comparison and branch. The additional simpler
ALU won’t introduce significant delays to the data path, therefore
the ISA with this minor modification will have nearly the same
CPU cycle time as the original one.

4.3 Performance evaluation
We have sixteen alternatives to implement the above ISA exten-

sion. We can optimize I-type, R-type, or both for either type 1,
type 2, or both instruction pairs. We name these alternatives using
two letters, which represent the type of optimization for the first
and second instruction, respectively. For instance,rb stands for
optimizing R-type pairs of type 1 and both R- and I-type of type 2
pairs, while-- stands for no optimizations, which can be taken as
the baseline case for comparisons;i- stands for optimizing I-type
pairs of type 1 only and no optimization for type 2 pairs.

We apply the ISA extension to the simulator, compile TCP/IP
protocol using new instructions to replace corresponding pairs for
each alternative optimization, and run the protocol stack with syn-
thetic network traffic trace in the simulation environment. Results
of performance improvement due to this optimized ISA and the
corresponding execution time break-down are shown in Figure 5.

It is found that the number of instructions reduced is not neces-
sarily proportional to the execution time improvement. Therefore,
performance improvement of optimizing both type 1 and 2 pairs
will not necessarily be the sum of them. I-type and R-type op-
timizations have different impacts on instruction cache behaviors.
Optimizing I-type pairs of both type 1 and 2 has the highest im-
provement, which is 23% in total and twice as much as the second
highest one. We further break down the improvement into 3 major
sources: CPU execution, data access, and instruction access, as we
did in previous sections. The result is shown in the bottom figure
in Figure 5. The improvement comes mainly from improvement of
instruction cache accesses. For the case with highest improvement,
the CPU stall time due to instruction cache misses improves 47%.
On the contrary, CPU execution time and data access time improve
3% and 14% respectively.

i− r− b− −i −r −b ii ir ib ri rr rb bi br bb
0

5

10

15

20

25

Pe
rfo

rm
an

ce
 Im

pr
ov

em
en

t %

Performance Improvement with ISA Extension
Instruction Reduction
Execution Time Reduction

−− i− r− b− −i −r −b ii ir ib ri rr rb bi br bb
0

1

2

3

4

5

6
x 10

5

Ex
ec

ut
io

n
Ti

m
e

(C
yc

le
s)

Execution Time Break Down With ISA Extension
CPU Execution
Data Access
Instruction Access

Figure 5: Performance of extended ISA (top: improvement of
all configurations, bottom: execution time break-down; --=no
optimization, i=I-type, r=R-type, b=both I- and R-type)

5. RELATED WORK
Many researchers have addressed issues of network protocol per-

formance in the past few years. A lot of techniques have been de-
vised to speed up the protocol processing. The research can be
broadly divided into two categories. The first is to design and im-
plement low-latency and high-throughput protocols, or to optimize
current TCP/IP protocol stack with either the help of compilers to
improve the protocol processing latency[15][16] or hardware units
to eliminate the data-touching operations such as checksum com-
putation [1][2]. The second is to design new architectures such as
network processors to optimize protocol processing [9][13].

Most of the researchers focus on improving the performance of
TCP/IP protocols by designing new mechanisms or optimizations.
A relatively small number of researchers have studied various ar-
chitectural characteristics of network protocols.

Some researchers found that the memory system is a key factor
in dominating protocol latency and throughput, and the instruction
cache has a greater impact on latency [3][15][16]. Erich Nahum
et al. analyzed the cache behavior of network protocol inx-kernel
[10]. They found that larger caches and increased associativity im-
prove the performance. However,x-kernel is designed as a platform
for quickly developing efficient network protocol software and is
not implemented in the protocol stacks of real operating systems.
We choose the implementation from FreeBSD because it is widely
used in the variants of BSD systems and its derivatives exist in a
lot of other commercial operating systems. The software structures
have not been radically changed in the derivative protocol imple-
mentations in various commercial operating systems, although they
have been improved over time. We also identified the peculiarity
of TCP/IP protocol processing and compared its performance with
SPECint benchmark programs.

229

In [15], the authors explored such compiler techniques as out-
lining, cloning, and path-inlining to reduce processing latency by
improving the instruction cache effectiveness. Another solution to
speed up TCP/IP protocol processing is the design of special hard-
ware units to eliminate bottlenecks such as checksum computation
and data movement. This solution has been explored in much de-
tail. One example is offloading TCP/IP protocol processing onto
intelligent network interface cards [2][1]. However, this solution is
not effective in improving protocol processing latency, especially
for small messages dominant in local area networks.

Network processors have emerged as another totally new and
different solution to speed up protocol processing. Most of the
network processors have been optimized with new instruction sets
and various hardware supports (such as hardware multi-threading)
to reduce processing latencies. However, network processors are
not general-purpose processors for end hosts to improve the perfor-
mance.

6. CONCLUSION
In order to evaluate the performance of TCP/IP protocol and

study the headroom of improving protocol processing latency, we
ported the complete TCP/IP protocol stack from FreeBSD operat-
ing system, which contains the standard implementation of TCP/IP
protocol suite, to SimpleScalar simulation environment. Choos-
ing the TCP/IP protocol stack that is widely adopted in both BSD-
variant or BSD-derivative operating systems is more meaningful to
capture the characteristics of the real systems.

We evaluated the performance of TCP/IP protocol stack and stud-
ied such architectural characteristics as ILP and cache behavior. We
also identified the peculiarity of TCP/IP protocol processing and
compared it with SPECint benchmark programs. They turn out to
be quite different due to the unique processing structure and data
sets of TCP/IP.

We also extended SimpleScalar simulation environment by di-
viding execution time into CPU execution time, data access time,
and instruction access time. Thus, we could see clearly how the
architectural parameters affect the overall performance of protocol
processing.

Finally, in order to improve instruction cache which has greater
impact on processing latency, frequent instruction pairs were an-
alyzed. To optimize non-data-touching operations, we incorpo-
rated new instructions into the SimpleScalar ISA to replace the fre-
quently used instruction pairs. The extension to the original ISA
will not introduce much delay into the data path. The reduction in
the number of total instruction improves effectiveness of instruc-
tion cache. The overall improvement is 23% with only 1% percent
of instructions being eliminated when I-type pairs of both type 1
and type 2 are replaced. These results can be used to help design
new programmable protocol processors in the future.

7. REFERENCES
[1] Boon S. Ang. An Evaluation of an Attempt at Offloading

TCP/IP Protocol Processing onto an i960RN-based iNIC.HP
Labs Technical Report HPL-2001-8, January 2001

[2] M. Benz. An Architecture and Prototype Implementation for
TCP/IP Hardware Support.TERENA Networking Conference
2001, Turkey, May 2001

[3] Trevor Blackwell. Speeding Up Protocols for Small
Messages.ACM SIGCOMM Symposium on Communications
Architectures and Protocols, 1996

[4] Ross Callon. Predictions for the Core of the Network.IEEE
Internet Computing, 4(1), February 2000

[5] Cisco CSS 11000 series content services switches,
http://www.cisco.com/warp/public/cc/pd/si/11000/

[6] Ethereal Network Analyzer, http://www.ethereal.com
[7] Foundry Networks, Inc. BigIron,

http://www.foundrynet.com/products/l3backbone/bigiron/
[8] A. Gallatin, J. Chase, K. Yocum. Trapeze/IP: TCP/IP at

Near-Gigabit Speeds.USENIX Technical Conference, June
1999

[9] T. Halfhill. Intel Network Processor Targets Routers.
Microprocessor Report, September 1999

[10] Norman Hutchingson, and Larry Peterson. Thex-kernel: An
Architecture for implementing network protocols.IEEE
Transactions on Software Engineering, 17(1):64-76, January
1991

[11] J. Kay and J. Pasquale. The Importance of Non-Data
Touching Processing Overheads in TCP/IP.Proceedings of
the SIGCOMM ’93 Symposium on Communications
Architectures and Protocols, September 1993.

[12] J. Kay and J. Pasquale. Profiling and reducing processing
overheads in TCP/IP.IEEE/ACM Transactions on
Networking, Vol. 4, No. 6, December 1996

[13] K. Krewell. Rainier Leads PowerNP Family.Microprocessor
Report, January 2001

[14] M.K. McKusick, K. Bostic, M.J. Karels, and J.S.
Quarterman.The Design and Implementation of the 4.4BSD
Unix Operating System. Adison-Wesley Publishing
Company, MA, 1996

[15] D. Mosberger, L.L. Peterson, P.G. Bridges, and S. O’Malley.
Analysis of Techniques to Improve Protocol Processing
Latency.Proceedings of SIGCOMM ’91 Symposium on
Communication Architectures and Protocols, 1996

[16] E. Nahum, D. Yates, J. Kurose, and D. Towsley. Cache
Behavior of Network Protocols.SIGMETRICS, 1997

[17] SimpleScalar LLC, http://www.simplescalar.com
[18] Jonathan M. Smith. Seleted Challenges in Computer

Networking.IEEE Computer, 32(1), Jan 1999
[19] Standard Performance Evaluation Corporation, SPEC CPU

2000 Version 1.2, December 7, 2001
[20] K. Thompson, G. Miller, and R. Wilder. Wide Area Internet

Traffic Patterns and Characteristics.IEEE Network,
11(6):10-23, November 1997

[21] T. Wolf and M. Franklin. Commbench: A
Telecommunications Benchmark for Network Processors.
IEEE International Symposium on Performance Analysis of
Systems and Software, April 2000

230

	Main Page
	CODES+ISSS'03
	Front Matter
	Table of Contents
	Author Index

