
Tracking Object Life Cycle for Leakage Energy
Optimization �

G. Chen, N. Vijaykrishnan, M. Kandemir,
M. J. Irwin

Department of Computer Science and
Engineering

The Pennsylvania State University
University Park, PA 16802

fgchen, vijay, kandemir, mjig@cse.psu.edu

M. Wolczko
Sun Microsystems, Inc.

2600 Casey Ave
Mountain View, CA 94043

mario@eng.sun.com

ABSTRACT
The focus of this work is on utilizing the state of objects during
their lifespan in optimizing the leakage energy consumed in the
data caches when executing embedded Java applications. Our anal-
ysis reveals that a major portion of the leakage energy is actually
wasted in retaining the objects beyond their last use. In order to
eliminate this wastage, we investigate three approaches that use the
garbage collector, escape analysis and last use analysis for reducing
leakage energy. Finally, we track the access gap between succes-
sive object accesses to reduce leakage energy of live objects. A
combination of these schemes is shown to provide 21% data cache
leakage energy reduction in our default configuration.

Categories and Subject Descriptors
B.3.m [Hardware]: B.3 Memory Structures—Miscellaneous

General Terms
Algorithms, Experimentation

Keywords
Java, cache, leakage energy

1. INTRODUCTION
Optimizing power consumption has become important for a vari-

ety of systems ranging from high-performance systems to low end
battery-operated devices. While optimizing dynamic power con-
sumption has been the focus of most of the previous work, static
power consumption due to leakage current is an important concern
in future technologies [1]. Unlike dynamic energy consumption,
static power is consumed independent of whether the component
�This research is supported in part by NSF Awards 0103583,
0130143; NSF CAREER Awards 0093082, 0093085; MARCO 98-
DF-600 GSRC.

Permission to make digital or hard copies of all or part of this work for
personal or classroom use is granted without fee provided that copies are
not made or distributed for profit or commercial advantage and that copies
bear this notice and the full citation on the first page. To copy otherwise, to
republish, to post on servers or to redistribute to lists, requires prior specific
permission and/or a fee.
CODES+ISSS’03, October 1–3, 2003, Newport Beach, California, USA.
Copyright 2003 ACM 1-58113-742-7/03/0010 ...$5.00.

is accessed or not. Specifically, leakage power consumption is pri-
marily dependent on the technology used and the number of tran-
sistors used for the design. As on-chip caches account for a major
portion of the processor’s transistor budget, they constitute a major
portion of the energy budget of the processor. Leakage energy is
projected to account for 70% of the cache power budget in 70nm
technology [2].

We can reduce leakage by completely gating the supply voltage
of cache lines. However, when the supply voltage is gated, the
data stored in the cache line is lost (state-destroying leakage con-
trol) [3]. Hence, if another access is required to the same data, it
should be fetched from lower levels of memory hierarchy, and this
incurs a large performance penalty than using state-preserving leak-
age control. We refer to placing a cache line in low leakage mode
as “turning off the cache line” and restoring the normal supply volt-
age as “turning on the cache line” in the rest of this paper. We use
this term for both state-preserving and state-destroying modes and
distinguish between them when relevant.

The effectiveness of the leakage reduction depends on how pre-
cisely the behavior of cache line can be tracked. While turning off
a cache line later than the last use can waste energy consumption,
prematurely turning off a cache line can incur energy/performance
penalties when it needs to be accessed. Thus, deciding when to
turn off a cache line is very important. In this work, we utilize the
knowledge about the state of an object in its lifespan to direct the
turning off cache lines. In particular, we identify different states
in the lifetime of an object, when it is created, last-used, becomes
garbage, and is collected by the garbage collector. It must be ob-
served that the cache lines containing only objects beyond their
last use waste leakage energy. Our analysis in this paper reveals
that this wasted leakage energy contributes to a significant portion
of data cache energy consumption. In order to control the turning
off cache lines more precisely, we propose a series of object in its
lifespan. Almost none of prior approaches (e.g., [4, 5]) utilizes the
object lifetime information in optimizing leakage energy with the
exception of [6] that manages the leakage in on-chip memory us-
ing the garbage collector. In this paper, in addition to the garbage
collector, we further exploit object lifetime information by apply-
ing escape and last use analyses to find more leakage reduction
chances. Further, as compared to the work in [6], we focus on the
data cache rather than leakage control in memory where caching
influences the potential of the scheme.

This work explores three different approaches that save cache
leakage energy. In our first approach, the garbage collector is used
to turn off the cache line(s) containing the collected objects. Note

213

that in this case it is preferable to employ state-destroying leakage
control as the object will never be accessed again. Our second tech-
nique exploits the observation that, for many objects, their lifetime
is contained within the lifetime of a particular methods execution.
We refer to such objects as “method local objects”. Using a trace-
based escape analysis technique, we identify the method local ob-
jects and turn the corresponding cache lines off when the method
to which it is local completes its execution. Thus, this scheme can
turn off cache lines much earlier than the garbage collector. How-
ever, only method local objects can benefit from this scheme. Our
third technique attempts to be even more precise. We identify the
last-use of the object by identifying the instruction that last uses it.
We turn off the cache line containing the object immediately after
executing this instruction. After these three optimization strategies,
we focus our attention on object access times and show that it is
beneficial to turn-off cache lines containing objects which have a
large gap between their successive accesses.

In exploring these schemes, we focus on objects in embedded
Java applications. Our choice is influenced by the wide adoption
of Java in the energy-constrained mobile devices [7, 8]. The results
of our evaluation of using ten embedded Java applications shows
that the three proposed approaches provide significant savings in
leakage energy consumption.

The remainder of this paper is organized as follows. In the next
section, we introduce our experimental setup and the benchmark
suite used. In Section 3, we show the energy consumption profile
in the data cache based on object lifespan. Next, we evaluate our
energy optimization schemes that use garbage collection, escape
analysis and last-use analysis in Sections 4 through 6. In Section 7,
we present how to optimize energy consumed by live objects. Fi-
nally, we provide conclusions in Section 8.

2. EXPERIMENTAL SETUP AND BENCH-
MARKS

We use ten applications that target embedded Java-based envi-
ronments (Table 1). We believe these applications represent a good
mix for typical Java-enabled personal devices. For obtaining de-
tailed energy profiles, we have customized an energy simulator and
analyzer using the Shade [9] (microSPARC instruction set sim-
ulator) tool-set and simulated the entire KVM (a small-footprint
Java virtual machine designed for resource-constrained environ-
ments [10]) executing a Java code. As many of our optimization
techniques are profile-based, we used a different training set to get
the profiles and a different input set for evaluating the energy ben-
efits. Shade is used to capture the cache access pattern of the appli-
cation while the KVM was augmented with instrumentation code to
track the lifespan of the objects. Figure 1 shows our experimental
setup.

Once the cache access patterns are captured and the state of the
cache lines is determined after applying the optimizations, we can
evaluate the energy consumption. In our experiments, we assume
that the processor has 32KB ICache and 32KB DCache. The dy-
namic energy for each cache access is 0.302nJ. When a cache line
is in the active mode, it consumes 0.147pJ energy each cycle; while
in the sleep mode, it does not consume leakage energy. These en-
ergy parameters are based on future 70nm CMOS technology. The
cache data energy is obtained by using CACTI 3.0 [11]. Each cache
line is either in active or leakage control (sleep) mode. A cache line
needs to be in active mode to serve a cache access and consumes the
maximum leakage energy. When a cache line is in the sleep mode,
we assume state-destroying leakage control and assume zero leak-
age energy. Accessing a sleep cache line involves loading the data

Shade Instruction
Level Simulator

Profiling info:

Memory Accesses
Instruction Counts

Energy Parameters

KVM

Java Application
Energy Cost

Optimization Scheme

Figure 1: Experimental setup.

Heap Energy Cache
Benchmark Brief Description (mJ) Leakage

Memory Cache Contribution

calculator Arithmetic calculator for MIDP 0.84 4.21 84.9%
chess User vs. computer chess game 16.26 87.38 80.4%
emailviewer Light-weighted POP3 Client 2.65 16.29 86.3%
manyballs Drawing bouncing balls 0.60 3.26 84.9%
mdoom 3D Shooting game 8.29 44.27 84.9%
mpg Movie player for MIDP 7.16 35.64 80.9%
pushpuzzle A conventional puzzle game 1.28 7.18 83.1%
scheduler Personal monthly scheduler 0.67 8.08 94.3%
sfmap Digital map for MIDP 3.47 17.03 85.9%
webviewer WWW browser for MIDP 5.18 28.25 84.5%

Table 1: Our benchmarks.

from main memory, which is similar to a cache miss. The wakeup
delay of the sleep cache line is overlapped with the delay due to the
main memory access.

In order to control the leakage state, we support a special in-
struction, deactivate(address, length), that can turn off cache lines
and place them in sleep mode. This instruction takes two parame-
ters, the starting address and the number of bytes (length) from the
starting address to place in sleep mode. The deactivate instruction
compares the tag of each cache line for addresses in this region se-
quentially and turns off cache lines whenever the tags match. Note
that the tag match is necessary as only a part of the object may be
present in the cache. A deactivate instruction may take several cy-
cles to execute based on the size of the region being turned off. In
order not to create conflicts in address port with other data cache
accesses, the deactivate instruction needs an extra address decoder
to control the supply voltage to cache lines. It should be noted that
the deactivate instruction does not need to access the data itself.

3. OBJECT LIFETIMES AND CACHE EN-
ERGY CONSUMPTION PROFILE

Table 1 shows the energy consumed in the data cache and mem-
ory due to the heap accesses for the applications in our suite. The
last column of the table indicates the contribution of leakage energy
to the cache energy. We can observe that it is a major contributor
to overall cache energy.

Figure 2 illustrates the lifetime of a Java object. An object is
created, used a number of times, and then reaches its last use. Fol-
lowing this, it becomes garbage, and after some time, it is collected
(by the garbage collector). It should be pointed out that this object
can be in the cache during these different phases of its lifetime. In
fact, even after it is garbage collected, it can still be in the cache.
Obviously, energy spent on a cache line that keeps an object which
has passed its last-use is wasted, and should be reduced as much as
possible.

Since the leakage current can be reduced only at the granularity
of cache lines and not at the granularity of objects, it is important
to identify how objects are mapped to cache lines. For an object
whose size is larger than one cache line, all the cache lines occupied
by it are called relevant cache lines (RCLs) (Figure 3). Since the

214

Time

Garbage CollectedCreated Last-Used

Figure 2: Lifetime of an object.

.
.
.

.
.
.

.
.
.

.
.
.

.
.
.

.
.
.

the object

Main Memory Cache

Object
RCLs of�������

�������
�������
�������

�������
�������
�������
�������

�����
�����
�����
�����

�������
�������
�������

�������
�������
��������������
�������
�������
�������
�����
�����
�����
�����

�����
�����
�����
�����

�������
�������
�������

�������
�������
�������

Figure 3: Relevant Cache lines of an object

objects are not necessarily aligned to the beginning of cache lines,
it is possible for multiple objects to be contained in the same cache
line. Further, these multiple objects can be in different phases of
their lives. For example, two objects can share a cache line, and
one of them might be live (i.e., its last use has not been reached
yet), whereas the other one can be garbage. To capture these cases,
we classify cache lines into the groups given in Table 2 according
to their states. As an example, the state of a cache line is tagged
as ‘Last-Used’ if it does not have a live object and has parts of (at
least) one last-used object. It can also have objects that are garbage
or collected. In this table, ‘Not-Used’ refers to a state where the
cache line is not used by the application being executed.

Based on the discussion above, one can see that a cache line
can be in one of the five states: live, last-used, garbage, collected,
and not-used. Figure 4 shows the percentage data cache energy
consumption breakdown as dynamic energy and static energy com-
ponents. The static energy part is further divided into energies ex-
pended in different cache line states. This graph clearly shows that
a large percentage of the cache energy is static energy consumed for
maintaining cache lines that do not keep any useful data. In fact, a
major portion of the leakage energy consumed in the caches is ac-
tually wasted because cache lines are not turned off when holding
objects beyond their last use. Eliminating this energy consumption
through object lifetime analysis can be very beneficial in practice.

Figure 4 also indicates the upper bounds on energy savings that
can be achieved using optimal algorithms that target different phases
of object lifetimes. For example, an optimization strategy that turns
off cache lines holding collected objects can reduce overall cache
energy by 10% for emailviewer. It should be noted that such
a strategy can be implemented within the garbage collector itself.
On the other hand, a different optimization strategy that turns off
cache lines immediately after such lines transition to the garbage
state can eliminate energies due to both cache lines in “garbage”
and “collected” states. Finally, a strategy that turns off cache lines
immediately after they transition to the last-used state can eliminate
all wasted energy due to storing objects beyond their last use (sav-
ing 47% cache energy on the average). Up to this point, we have

Objects that may be contained
Status Live Last-Used Garbage (Dead) Collected

Live Yes Maybe Maybe Maybe
Last-Used No Yes Maybe Maybe
Garbage No No Yes Maybe
Collected No No No Yes
Not-Used No No No No

Table 2: Classification of cache lines into different states.

Figure 4: Energy breakdown in base case in data cache.

Figure 5: Data cache energy results for GC controlled cache
line turnoff optimization (do this for other similar figures, too).

focused only on the wasted energy that is consumed after an object
reaches its last use. However, objects that are live also cause their
RCLs to consume leakage energy. If the gap between successive
object accesses is large, it would be more beneficial to turn-off the
cache lines rather than expend leakage energy during that interval.
The focus of the rest of the paper is to implement schemes that can
achieve close to the maximum energy savings possible while min-
imizing the overheads due to the implementation of the schemes
themselves.

4. GARBAGE COLLECTION CONTROLLED
CACHE LINE TURNOFF

KVM invokes the garbage collector(GC) when it runs out of heap
memory. The collection is performed in two phases. In the mark
phase, the collector traverses the reference graph from the roots to
mark all the objects that are reachable from the roots. In the sweep
phase, the collector collects all the objects that are not marked in
the mark phase and merges them into free blocks. These free blocks
are returned to the free memory pool for future allocation. Since
the collected objects have been merged, we can turnoff the RCLs
of several collected objects with contiguous addresses using one
deactivate instruction. It should be noted that, during garbage col-
lection, the header of each object (either live or dead) is accessed.

Figure 5 shows the impact of this garbage collector controlled
cache line turnoff. All the energy values are normalized to the
energy consumption of the cache without any optimization, as is
shown in Table 1. The energy results for the optimized strategy
also include the overhead energies consumed due to the execution
of the deactivate instructions and for turning on the cache lines that
are in sleep mode. Note that sleep cache lines need to turn-on when
the next object maps onto the same cache line. On an average, this
GC controlled cache line turnoff saves the overall data cache en-
ergy consumption by 9%. All the other schemes discussed in the
rest of the paper use the GC controlled scheme.

215

Figure 6: Data cache energy of escape analysis optimization.
Also uses GC controlled leakage.

5. ESCAPE ANALYSIS
Prior research [12, 13] has shown that a big portion of objects do

not survive beyond the lifetime of the method where these objects
are created. These objects are called the “method local objects”
since their lifetime is limited by that of their creating method. Us-
ing escape analysis [12, 13], we can identify the method local ob-
jects and turn off the cache lines occupied by them when the corre-
sponding method returns. The key to escape analysis is to identify
the local allocation sites, i.e., the bytecodes that allocate only local
objects. In contrast to static analysis techniques employed in [12]
and [13], we use a trace-based approach to identify method local
objects. Specifically, we run each application with the training in-
put sets using an instrumented virtual machine, which records the
allocation site of each object. When a method returns, the instru-
mented virtual machine scans the heap to find out which objects
that have been created within this method are still accessible. If an
object created within the method is still alive, the allocation site of
this object is marked as “global”. When we are done with the train-
ing input sets, the instrumented virtual machine outputs the location
of each global allocation site of each method. This information on
the global allocation sites is then added to the corresponding class
files using our class file annotation tool. During run time, when a
class file is loaded, the virtual machine checks the annotations and
marks each global allocation site. The unmarked allocation sites
are regarded as local allocation sites.

We allocate all the objects created at the local allocation sites
during the same invocation of each method together in a contiguous
address space. When a method returns, all RCLs corresponding to
its local objects can be turned off. The use of a contiguous address
space helps to turn off all the cache lines containing the local ob-
jects of this method using only a single deactivate instruction. Note
that since cache line turn-off using state-destroying leakage mode
only evicts the copy in the data cache, even an accidental eviction
of a non method local object is not a correctness issue (it may only
hurt performance). Note that dirty (dirty indicates that the cache
line was modified since it was brought into the cache) cache lines
are always written back to the next level when they are turned off
to maintain cache coherence. Figure 6 shows the effectiveness of
escape analysis in conserving the energy consumption of the data
cache when used along with garbage collector based turn off. Com-
paring Figure 6 with Figure 5, we can observe that the percentage of
the leakage energy that is consumed by the cache lines containing
garbage objects is reduced. On the average, we achieve 17% over-
all data cache energy savings in our 10 benchmarks by turning-off
method local objects immediately after the corresponding method
returns.

6. LAST USE ANALYSIS
Last use analysis is used to turn off the RCLs of objects more

aggressively immediately after their last accesses. In the program

int f(int n) {
Object o = new Object();
int i = 0;
int s = 0;
while(++i < N) {

access(o);
}
for(i=0; i<1000; i++) {

s += g();
}
return s;

}

Figure 7: An example code fragment.

(c)(b)

2

3

4

5 5’

5

(a)
2

11

4

Customized bytecode5’

Potential Last Use Site

S1: o = new Object();
S2: access(o);
S3: access(o);
S4: if(...) goto S2;
S5:

3

3

Figure 8: Last use analysis.

shown in Figure 7, we observe that object o will never be accessed
after the while loop. Consequently, we can turn off the object o
immediately after the exit of the while loop (i.e., much earlier than
the exit of the method or before a garbage collector can collect it). It
should be noted that, although the application does not access those
last used objects, their headers and reference fields (for last used but
still live objects) are still accessed in the garbage collection. This
may cause extra cache misses and energy overhead (this overhead
is also captured in our results). Fortunately, for most applications,
garbage collection is not invoked very frequently.

In order to perform the last use analysis, we utilize a “last-reference
register” that indicates the address of the object that has been last
used. This can then be used by a deactivate instruction that is in-
serted into the bytecode sequence to turn-off the RCLs of the ob-
ject pointed to by the last-reference register. The key here is to
identify the last use sites (i.e., the bytecodes that will update the
last-reference register) and where the deactivate instruction should
be inserted. In some cases, it may not be possible to turn off the
cache line at the last use site since the same static site can access
the object multiple times. Hence, it is necessary to distinguish be-
tween the last use site and where the cache lines that hold the object
can be turned-off.

Figure 8 shows an example of how our last use analysis works.
Figure 8 (a) is a code fragment and (b) is its Control Flow Graph
(CFG). From this CFG, we can identify a loop which consists of
nodes 2, 3 and 4. Let us assume that object o is not accessed out-
side the loop. Both S2 and S3 access object o many times in the
loop. However, none of the accesses made by S2 is a last access.
Therefore, S2 is not a potential last use site. On the other hand,
at the last iteration of the loop, S3 makes a last access to object o.
Therefore, we mark S3 as a potential last use site. At S5, we ob-
serve that all the objects accessed by the previous potential last use
site (S3) have become last used. Therefore, we insert a deactivate
instruction (S5’) right before S5 to turn off the RCLs of the objects
that are last-used by S3.

Our current implementation uses training sets and profiling traces
to find the addresses of bytecodes that make last uses and the ad-
dresses for inserting the deactivate instructions. Specifically, we
first run each application with training input sets using our instru-
mented virtual machine, which keeps track of each bytecode and
generates a detailed trace file. After this, we analyze the trace file
using the following three steps to identify last use sites and the

216

Code Step 1 Step 2 Step 3
Fragment A B A B

#1 i = 0 0 1 0 1
#2 j = 0 99 1 0 100
#3 o = new Object 99 1 0 100
#4 access o 99 401 0 100
#5 access o mark 99 401 0 100
#6 j = j + 1 100 400 100 400
#7 if(j<5) goto 4 100 400 100 400
#8 i = i + 1 100 0 100 0
#9 if(i<100) goto 2 100 0 0 100

#10 return 1 0 0 1

Figure 9: Example: finding the locations to insert deactivate
instructions.

addresses to insert deactivate instructions. An example is shown in
Figure 9. The results of this analysis are added to the corresponding
class files as annotations using our annotation tool. These annota-
tions are used by the virtual machine at runtime to optimize data
cache energy consumption (the details will be explained later).

Step 1: We scan the trace in the reverse order of execution to
find: (1) when each object is last used; and (2) which bytecodes
have ever made last accesses. The bytecodes that have ever made
last accesses are marked as potential last use sites (see the “mark”
in the third column of Figure 9).

Step 2: We scan the trace in the order of execution. In this scan,
we update the last-reference register right after each execution of
the bytecode that has been marked as potential last use site in step
1. Note that this register is shared by all potential last use sites. Fur-
ther, associated with each static bytecode in the program are two
counters: A and B. Before the execution of each bytecode, if the
last-reference-register is not null and it refers to an object that has
become last used (by comparing the object’s death time against the
execution time of current bytecode), we increase the counter A of
the current bytecode by one. Otherwise, the counter B of this byte-
code is increased by one. Obviously, A+B is equal to the number
of times that this bytecode has been executed. The fourth column
in Figure 9 shows the contents of counters A and B for each byte-
code after the code fragment (in the second column) returns. From
this column, we observe that bytecode #6 is executed 500 times, for
100 of which the last-reference-register refers to the last used ob-
jects. Note that the initial value of the last-reference-register is null,
and that the reference that is stored in the last-reference-register by
bytecode #5 remains unchanged until next loop iteration. There-
fore, we observe thatA counters of bytecodes #2, #3, #4 and #5 are
all set to 99. After the scan, all the bytecodes withA=(A+B) > T
(T is a given threshold, T=95% in this work) are marked as candi-
dates for inserting the deactivate instruction.

Step 3: We scan the trace once more in the order of execution.
The scan in this step is similar to that in step 2 except that, after
the execution of each bytecode that has been marked as candidates
for inserting in step 2, the last-reference-register is set to null. Our
purpose here is to filter out the redundant insertion candidates. Af-
ter this scan, the bytecodes whose A and B counters still satisfy
A=(A + B) > T are marked as inserting points. Their addresses,
as well as the addresses of the last use sites that have been found in
step 1, are fed into a class file annotation tool, which adds a nota-
tion to each Java method indicating which bytecodes in the method
are inserting points and which are last use sites. The last column of
Figure 9 gives the contents of counters A and B for each bytecode
after the code fragment returns. In this example, only bytecode #8
is determined to be an inserting point.

During execution, when the notated Java class files are loaded,
the virtual machine marks the bytecode at each last use site and in-
serts a deactivate instruction right before each bytecode that is no-
tated as an inserting point. Right after each marked bytecode is ex-

Baseline Last Use Access Gap
Benchmark Cache Miss Cache Miss Exec Time Cache Miss Exec Time

Rate (%) Rate (%) Increase (%) Rate (%) Increase (%)
calculator 1.67 1.99 0.54 3.86 3.69
chess 1.83 1.85 0.04 2.66 1.89
emailviewer 4.50 4.54 0.07 5.65 1.61
manyballs 1.57 1.62 0.09 3.69 3.61
mdoom 1.44 1.41 -0.04 2.96 2.61
mpg 0.88 0.89 0.03 2.67 4.10
pushpuzzle 1.14 1.12 -0.04 1.65 1.01
scheduler 2.45 2.56 0.06 5.03 1.47
sfmap 2.15 2.19 0.07 3.22 1.67
webviewer 2.03 2.05 0.03 3.81 3.06

Table 3: Performance degradation due to last use and access
gap analysis optimization

Last Use Access Gap
Benchmark Inserted Marked
calculator 149 469
chess 130 818
emailviewer 206 1594
manyballs 98 394
mdoom 110 603
mpg 129 866
pushpuzzle 128 718
scheduler 133 566
sfmap 116 578
webviewer 196 1399

Table 4: The number of inserted deactivate instructions in last
use analysis and the number of marked instructions in access
gap analysis.

ecuted, the virtual machine updates the last-reference-register. The
inserted deactivate instruction uses the address in the last-reference
register to identify the object and relevant RCLs to turn-off. Note
that our approach is not always accurate in determining last use and
sometimes may cause some of the objects to be turned off prema-
turely. This premature turn off may incur additional performance
penalties for fetching the data again from memory (or L2 cache);
however, this does not affect the correctness of execution. Our ex-
periments (see Table 3) demonstrate that the impact of such extra
cache misses is marginal. Another problem is that executing the
inserted deactivate instructions incurs overhead. Table 4 shows the
actual number of deactivate instructions inserted in the selected ap-
plications. Compared to the total number of bytecodes of the corre-
sponding benchmarks, the numbers of inserted instructions are very
small. The third/fourth column in Table 3 shows the cache miss
rate/execution time increase of our ten benchmarks with the last
use analysis optimization. Note that in some cases the miss rate is
reduced and the performance is improved. This is because our op-
timization prevents the last-used data from competing for the cache
lines with live data. Figure 10 shows the impact of last use analy-
sis on the data cache energy consumption when used in conjunction
with the GC-controlled leakage management. Last use analysis can
also be combined with escape analysis to further conserve the leak-
age energy (denoted as “Escape + Last Use” in Figure 12). On the
average, we achieved 11% data cache energy savings through last
use analysis optimization. When it is combined with escape anal-
ysis, it saves 6% (on average) more energy as compared to using
escape analysis without last use analysis. It should be noted that, in
both cases, we use the GC-controlled leakage management as well.

7. ACCESS GAP ANALYSIS
The optimization schemes that we have presented so far focus on

the the RCLs of the objects that are no longer used by an applica-
tion. The merit of these schemes is that they do not increase cache
miss rate (except the last use analysis). Access gap analysis scheme
analyzes the intervals between two consecutive accesses to each ob-
jects and turns off RCLs when the intervals are long enough. The

217

Figure 10: Data cache energy of last use analysis optimization.
(The GC controlled scheme is also used.)

Figure 11: Data Cache energy of access gap analysis optimiza-
tion. (The GC controlled scheme is also used.)

advantage of this scheme is that it has more chances to turn off
cache lines. However, it also introduces extra cache misses since
we may turn off the RCLs of some of objects that may be used in
the near future. The cache miss rates of our benchmarks with ac-
cess gap analysis optimization and the increase of execution time
due to the extra misses are shown in the fifth and sixth columns of
Table 3.

Our access gap analysis is also trace-based. Let us assume that
bytecode b1 accesses object o at time t1. Assume further that the
next access to o is made by bytecode b2 at t2. We define “the access
gap associated with b1 ” as �t = t2 � t1. Note that if the access
made by b1 is the last access to o, then �t = T � t1 where T is
the overall execution time of the application. Based on the traces,
we calculate the average length of access gaps associated with each
bytecode. And then, we use our class file annotation tool to anno-
tate each bytecode with the average length of the access gaps larger
than the thresholdG. The threshold Gwe used is based on the min-
imum duration required for leakage energy savings to amortize the
penalties for the deactivate instruction and turn-on when the next
access to the same object happens. During the course of execution,
KVM marks the annotated bytecodes when the class file is loaded.
Right after the execution of each marked bytecode, KVM imme-
diately turns off the RCLs of the recently accessed object. The
last column of Figure 4 gives the number of instructions that were
marked in different applications.

Figure 11 shows the impact of this access gap analysis optimiza-
tion when used in conjunction with the GC-control scheme. We
achieve an average of 14% saving in the overall data cache energy
consumption. Similar to the last use analysis, the access gap anal-
ysis may also be combined with the escape analysis and the GC-
control scheme (denoted as “Escape + Access Gap” in Figure 12).
With such a combination, the average saving of data cache overall
energy is 21%.

Figure 12 shows how the different schemes compare with each
other and how a combination of schemes can achieve significant
energy savings.

Figure 12: Comparison of optimization schemes. (All schemes
use GC controlled approach as well.)

8. CONCLUSION
Leakage energy consumption is becoming an important concern

for designers for future processors. This work specifically focuses
on reducing the leakage energy in the data caches by exploiting the
state of the object during its life span. Our analysis reveals that
a major portion of leakage energy is wasted in retaining objects
beyond their last use. Based on this observation, we explore the use
of three different approaches that use the garbage collector, escape
analysis and last-use analysis to reduce leakage energy. Finally, we
also try to optimize the leakage energy consumed by the live objects
by tracking their access interval. A combination of our schemes
can reduce the data cache leakage energy by 21.3% on the average
across different applications in our default configuration.

9. REFERENCES
[1] J. A. Butts and G. Sohi, “A static power model for architects,” in the 33th

Annual International Symposium on Microarchitecture, Dec. 2000.
[2] K. Flautner, N. Kim, S. Martin, D. Blaauw, and T. Mudge, “Drowsy caches:

Simple techniques for reducing leakage power,” in the 29th International
Symposium on Computer Architecture, (Anchorage, AK, USA), May 2002.

[3] S. Kaxiras, Z. Hu, and M. Martonosi, “Cache decay: Exploiting generational
behavior to reduce cache leakage power,” in the 28th International Symposium
on Computer Architecture, (Sweden), June 2001.

[4] N. S. Kim, K. Flautner, D. Blaauw, and T. Mudge, “Drowsy instruction caches:
Leakage power reduction using dynamic voltage scaling and cache sub-bank
prediction,” in the 35th Annual International Symposium on Microarchitecture
(MICRO-35), (Istanbul, Turkey), 2002.

[5] H. Zhou, M. C. Toburen, E. Rotenberg, and T. M. Conte, “Adaptive mode
control: A static-power-efficient cache design,” in International Conference on
Parallel Architectures and Compilation Techniques (PACT’01), (Barcelona,
Spain), Sept. 2001.

[6] G. Chen, R. Shetty, M. Kandemir, N. Vijaykrishnan, M. J. Irwin, and
M. Wolczko, “Tuning garbage collection in an embedded java environment,” in
the 8th International Symposium on High-Performance Computer Architecture
(HPCA’02), (Cambridge, MA, USA), Feb. 2002.

[7] R. Riggs, A. Taivalsaari, and M. VandenBrink, Programming Wireless Devices
with the Java 2 Platform. Addison Wesley, 2001.

[8] J. Lyman, “Java’s surprising comeback.”
http://www.newsfactor.com/perl/story/18365.html.

[9] B. Cmelik and D. Keppel, “Shade: A fast instruction-set simulator for execution
profiling,” in the 1994 ACM SIGMETRICS Conference on the Measurement and
Modeling of Computer Systems, pp. 128–137, May 1994.

[10] “CLDC and the K Virtual Machine (KVM).” http://java.sun.com/product/cldc.
[11] P. Shivakumar and N. P. Jouppi, “CACTI 3.0: An integrated cache timing,

power, and area model,” tech. rep., Compaq Computer Corporation Western
Research Laboratory, 2001.

[12] J. Whaley and M. Rinard, “Compositional pointer and escape analysis for Java
programs,” in ACM SIGPLAN Conference on Object-Oriented Programming
Systems, Languages, and Applications (OOPSLA’99), (Denver, CO, USA),
Nov. 1999.

[13] J.-D. Choi, M. Gupta, M. J. Serrano, V. C. Sreedhar, and S. P. Midkiff, “Escape
analysis for java,” in the Conference on Object-Oriented Programming Systems,
Languages, and Applications (OOPSLA), pp. 1–19, 1999.

218

	Main Page
	CODES+ISSS'03
	Front Matter
	Table of Contents
	Author Index

