Programmers’ Views of SoCs
JoAnn M. Paul

Electrical and Computer Engineering Department
Carnegie Mellon University
Pittsburgh, PA 15213 USA

jpaul@ece.cmu.edu

Abstract

System-on-chip (SoC) designs have the potential to change the
way we organize computation. This potential has gone unrealized.
Future SoCs will have multiple heterogeneous processing elements,
most likely organized around an on-chip network. Thus, SoCs are
increasingly modeled as systems in the large. But a chip also has a
fixed set of programmable hardware elements that are much more
closely coupled than for systems in the large. New application types
will require the chip to be considered programmable along with the
individual processing elements on the chip. New programmers’
views of SoCs are required to capture this new design space. A set
of primitives for next generation design languages that support the
development of new programmers’ views of SoCs is motivated.

Categories and Subject Descriptors

C.0 [Computer Systems Organization]: General — hardware/
software interfaces.

General Terms
Performance, Design, Languages.

Keywords

Design Languages, Heterogeneous Multiprocessing, Networks on
Chip, Programmers’ Views, Systems-on-Chips (SoCs).

1. Introduction

Soon it will be possible to integrate a billion transistors on a
single chip. Currently, two points of view dominate how they will
be utilized. The first is that they will be applied to single processors
that preserve existing programming abstractions with increasingly
sophisticated hardware that is hidden from the programmer. The
second is that Systems-on-a-Chip (SoCs) will result.

SoCs have been likened to other system types including system
on a board that happens to be on a single chip, heterogeneous
multiprocessors on single chips [1], and more recently, networks on
chips (NoC) [2][3]. All of these views are borrowed from systems
in the large. Systems in the large are systems that can be built across
many chips. This includes virtually all computer systems other than
single chip systems. Similarly networks in the large may even be
wide area networks (WANs) which can describe systems with
elements that may be literally a world apart from each other.

Virtually all current SoC design and modeling approaches can be
applied to other kinds of custom systems, such as the traditional,
embedded functionality in automobiles [4]. A separation of
computation and communication [S][6] leads to the need to
partition and design the system around explicit communications
interfaces. Individual processing elements (PEs) have separately

Permission to make digital or hard copies of all or part of this work for
personal or classroom use is granted without fee provided that copies are not
made or distributed for profit or commercial advantage and that copies bear
this notice and the full citation on the first page. To copy otherwise, or
republish, to post on servers or to redistribute to lists, requires prior specific
permission and/or a fee.

CODES+ISSS’03, October 1-3, 2003, Newport Beach, California, USA.
Copyright 2003 ACM 1-58113-742-7/03/0010...$5.00.

156

compiled programs and memories for which all interactions are
static and determined at design time, much like low-level hardware
design. Many are left wondering if there is anything really new
about SoCs that will impact single chip computer organization.

Future technology will provide the opportunity to consider a
single chip as a network of heterogeneous processors, with the
potential for hundreds of ARM equivalent processors to be
integrated onto single chips within the next 5 years. The application
space of next generation computers will pose new challenges
beyond the present day focus on network processors, multimedia
and embedded applications as primary SoC design challenges. Size
and power constraints will result in a need to tune ever more
sophisticated software to the machine upon which it executes.
These systems will exhibit heterogeneous parallelism at the system
level, prompting an entirely new type of system design.

Approaches to SoC design that are limited to dataflow are
organized only around computation and communication, limiting
the view of the SoC as an embedded, reactive system. Without a
system-wide view of control, these approaches do not capture the
rich set of possibilities when an SoC is considered a programmable
entity. SoCs design languages such as SystemC are really only
extensions of hardware description languages, focusing only on the
net physical behavior of a reactive style of design.

Single chip hardware design has long permitted performance-
optimization of control flow for a custom application. For SoCs the
challenge will be in preserving the ability to optimize control flow
for a semi-custom set of applications when design elements are
parallel processors. The opportunity over that of systems in the
large is the optimization of control flow across a fixed set of PEs
tuned to a set of applications. New forms of programmable control
flow in SoCs can result in new programmers’ views.

A programmers’ view (PV) is to a heterogeneous multiprocessor
SoC what an Instruction Set Architecture (ISA) is to a single PE.
The SoC may contain many individual ISAs for the many
individual PEs it contains. However, the PV of the SoC captures the
programmable nature of the chip as a distinct design artifact.

The set of instructions in an ISA includes three classes: that of
computation, communication, and control of the underlying
machine. The class of control instructions is what permits the
machine to be considered programmable; this is so in single PEs
because control instructions permit the program counter to be
dynamically changed. A program counter is a pointer to a program
which may, itself, be updated as a result of the program execution.

New PVs for SoCs must be
defined and developed, organized
around fixed sets of heterogeneous
PEs and memories, ultimately
permitting SoCs to be new,
programmable devices that are not
just mere extensions of hardware
design. The PVs must include
computation, communication and
control as in Figure 1. We define
system state for heterogeneous
multiprocessing systems as the

Programs &

Memories

Computation
Communication
Control

SOC PEs

memories

Figure 1 Programmers’
View of an SoC

equivalent of a program counter in a single PE; it is finite state that
can be used as the basis for dynamic, data-dependent decision
making. An SoC can respond to situations programmatically, with
data-dependent control flow optimized to a fixed set of PEs.

We start by considering the future application space of SoCs,
motivating a need for effective implementation of sophisticated
software on parallel processors. Then, we consider how control
flow has been fundamental to both software and hardware
computer organization by comparing and contrasting it to
dataflow. We then consider how PEs might be organized on NoCs,
again comparing control and data flow organization at the highest
levels of design. By considering an SoC to have a fixed set of PEs,
we contrast it with systems in the large, ultimately motivating the
need to explicitly include coordination of PEs in support of system
level control flow in PVs of next generation SoC design.

2. Future Applications

Probably the most competitive arena for computer design is in
consumer electronics — where design time, size, speed, power,
and innovation come together to make for competitive advantage.
Most consumer-oriented future computing devices will be
portable. A subset of applications that might appear on these
devices includes that of current cell phones, current personal
digital assistant (PDA) applications, global positioning system
(GPS) sensing, Bluetooth, motion sensing, ad hoc networking, 3-D
image processing, compression/decompression, security, and a
broad set of human computer interaction (HCI) software.

Research in ubiquitous and pervasive computing results in new
scenarios for even more complex functionality with possibilities
only limited by the ability to design and technically realize these
scenarios in the individual computing devices [7]. No longer will it
be possible to consider computer systems as falling into
traditionally separate categories of embedded, general purpose,
multimedia or network processors; future systems will have
aspects of each. Novel applications will result from the interactions
of previously separate types of functionality as computers
simultaneously interact with the physical world, other computers,
and humans.

The term “embedded computing” resulted from thinking of a
computer system as being embedded in a non-computer system.
Embedded system design is often thought of in terms of designing
“hardware in the loop,” which resulted in thinking of a computer
system as reacting to the physical world with guaranteed response
times. A reactive style of design naturally captures the need to
communicate and compute in a fixed relationship with the non-
computer system. However, most computers already interact with
other computers in a networked sense.

HCI will become an increasingly important application area in
its own right as traditional means of interacting with the computer
(keyboard, mouse, display) will be replaced with multi-modal
forms of interaction that include various forms of human
“recognition” such as speech, handwriting and face recognition.
Advanced forms of HCI are like real time simulations; they
execute sophisticated models of humans in real time. Other kinds
of simulations have been a successful application of parallel
processing. HCI functionality that lies between the SoC’s input
and output pins will become increasingly sophisticated. While
some kinds of embedded systems have functionality that is
naturally limited by the requirements of the physical world, it is
almost impossible to conceive of limits to the benefits of additional
compute power applied to HCI.

The mix of new application types on these systems will result in
a variety of performance demands. Some tasks may continuously
execute while others may be event driven, and still others may be

157

considered appropriate for best effort models. Different operating
modes for the system may result in different performance demands
for entire sets of tasks, as when different applications execute on
today’s desktop computers.

The important point is that the anticipation of what is possible in
these systems must clearly utilize design principles that are at least
as powerful of those of the past. While there will be increased
ability to design for parallel execution of tasks, it will also be
necessary to design the chip as a programmable entity.

3. Control Flow and Data Flow

Hardware Design Languages (HDLs) remain organized largely
around the design of single FSMs. A significant feature of the
FSM is that computation decisions are made around global
machine state. The coordination of incoming data with the
machine state permits a control flow style of design, in which the
next state of the machine is computed as an interaction of
incoming data with current state. This is depicted in Figure 2.

The positive —
aspects of the FSM °
include the ability

Combinational
Logic

next
to sequence state
operations in a ok | Current State
programmatic style ——>| _ Register
reset

of design while the
drawbacks largely
center upon the serialization of execution. This serialization
extends to individual processors. A processor is an FSM where
machine inputs are separately categorized as program and data.
The interleaving of programmatic and data inputs at runtime
allows for processors to execute more complex forms of control
flow than FSMs, such as permitting design for conceptually
unbounded amounts of state.

Figure 3 shows a single PE as a
relationship between a program, its
data, an ISA and an FSM. The
figure shows that there are really
two kinds of state that contribute to
the overall performance of a
conventional processor, that of the
data and program stored in external
memory and that of the underlying
FSM. The state in the FSM is
thought of as the state in the registers, including not only the data
registers, but also the instruction pointer and program counter. This
permits the finite state of the processor to control the conceptually
unbounded state of the program it executes.

Unlike the state in an FSM, a processor memory location can
mean different things at different times during the execution of a
given program; this permits conceptually unbounded execution as
memory resources are allocated and deallocated at runtime either
explicitly by the program or implicitly by the context of the local
variables in nested function calls. The conceptually unbounded
execution allows a processor to approximate a Turing Machine; a
software program is fundamentally different from a hardware
description. System-level models that distill software and
hardware to single models over-restrict the design space [8].

The state relationships in a processor may be considered
layered; the memory external to the processor is in a layered
relationship to the state of the FSM in the underlying processor
[9][10]. This layered relationship permits software programs to
rely on only a few features in the underlying FSM in order to
execute on the FSM. However, one of the key features is the ability
to dynamically load the program counter.

Figure 2 Finite State Machine

Program & Data

Computation
Communication
Control

Figure 3 Single PE

A processor not only loads and stores instructions and data
(communication) and does arithmetic and logical operations on
them (computation), but it also can load the program counter in
response to specific situations, thus changing its execution
sequence in response to system data (control).

Note the similarities between Figure 3 and Figure 1. While
Figure 3 is a classic view of a PE, Figure 1 is what we propose for
future SoCs where the hardware is a collection of heterogeneous,
programmable processors. In section 5, we propose system state as
the equivalent of the program counter in the analogy. It is finite
state which can be updated dynamically as a result of computation
and around which data-dependent decisions can be made. However
its coordination across a fixed set of PEs must be explicitly
supported. The point is that PVs that permit designers to define
and effectively manipulate control flow across a collection of
programmable resources on an SoC are required.

In recognizing the parallel nature of
computation on SoCs, many have
proposed that SoC system-level design
should be organized around dataflow
style graphs such as shown in Figure 4.
The figure shows a dataflow graph in
which sequencing is unidirectional (no

feedback). In such graph-based Figure 4
approaches, computation is presumed to Dataflow
be triggered by tokens [4][5][6]. Static Graph

analysis is required so that response times are predictable and
queues need not be considered unbounded. The concept is not
unlike that of gate-level design where the execution of individual
gates is triggered by events.

Dataflow tends to result in a graph-based style of design with
static execution schedules; this is evidenced by the observation
that dataflow tends to be described by graphs with vertices and
edges while control flow often results in program-like descriptions.
Dataflow graphs are poorly suited to describe arbitrary, complex
software programs. Programmatic data dependencies resolved at
runtime permit the system to respond to a wider range of
situations. Programs can have conceptually unbounded loops on
single processors and multithreaded descriptions where M tasks
can be mapped to N resources on multiprocessors.

For the past several decades, the synchronous finite state
machine (FSM) and the programmed processor have been the
dominant design abstractions for digital computation. They have
conveniently captured the underlying hardware abstractions as
well as provided a basis for effective specification of system
functionality in no small part because it is easier to design
computer system functionality in terms of a control flow sequence.

Sequential specification of functionality requires some context
for global state. For single processor systems and FSMs, the global
state is not problematic, it is a natural part of the specification of
the behavior of the machine. But for parallel computer machines,
such as future SoCs, architecting global state so that dynamic
decision making across a set of parallel processors can be effective
has been challenging [11].

Heterogeneous multiprocessing on single chips and the
increasingly sophisticated applications that mobile computers will
execute are each virtual certainties. Some state will be private and
local to resources. Overall performance for many applications will
benefit from utilizing private state and the establishment of
dataflow across a number of PEs. However, the need to maintain
some forms of global control flow across a number of PEs will also
be important for many of these applications.

This leads us to the first of a set of modeling primitives. We
propose that future design languages that support the development

158

of PVs for SoCs must include:
PV-P1)trade-offs of control flow vs. data flow implemented
across a number of PEs.
We will number our proposed set of modeling primitives
throughout the paper as PV-Pn, for design primitive number n.

By considering SoCs as being organized around NoCs while at
the same time pointing out the differences between NoCs and
networks in the large, we next motivate possibilities for effectively
preserving control flow in high-level PVs of SoCs.

4. Networks on Chips

Networks on Chip (NoC) have been proposed to support
modular design while enabling high-performance circuits to
reduce latency and increase bandwidth. They also support the
globally asynchronous, locally synchronous (GALS) nature of
design as single clock domain systems will no longer scale to
future device densities and chip sizes. [2][3]

While NoC may be suitable for Network

solving problems related to on-chip .
communications it does not address how :
state will be advanced across the chip.
Concerns that single chip systems
conceived as networks of processors will
suffer from the same kinds of obstacles
that made it difficult to achieve
performance benefits from parallel
systems in the large seem valid. Yet,
while there are many similarities
between NoC and networking in the
large, there are differences between even
the most fundamental objectives of the
two. By taking advantage of the fixed .
and finite set of PEs on a chip in .
conjunction with the programmable :
nature of a network, new PVs for SoCs
become apparent.

IP1
IP2
IP3
IP4
IP5
IP6
IP7
IP8

IP9

Figure 5 9 nodes on an
Extensible Network

4.1 Finite, Programmable Networks

Networking in the large had a primary goal of robust
communications. The network protocol was designed so that
communications would take place despite the disabling of a large
portion of the infrastructure. Large portions of the network can be
disabled and communications will still work between remaining
portions of the network. Accordingly, networking in the large is
designed to support a conceptually infinite number of network
nodes; the network protocol was designed to support a system for
which the exact number of nodes on the network at any one time
need never be known, which is clearly the current reality!

By contrast, a chip has finite
extent. Consider a general
purpose network, as in Figure
5. The figure shows nine

nodes, labeled as nine
Intellectual ~ Property (IP)
elements. While a simple

diagram, Figure 5 contains
several implications. First, all
of the nodes in the network are
considered peers. There is no
dominant network node unless
one is established with some
higher level of programming
that sets up the cooperation of
the nodes. Second, the figure implies that there is no preferred
direction of information exchange between any two nodes on the

Figure 6 9 IP blocks with
NoC interfaces

network. Again, if one node is preferred to another, this must be set
up in a programming context. Third, the diagram implies that the
network is extensible; nodes may be added to (or subtracted from)
the network and the network abstraction will be preserved. The
number of nodes is conceptually unbounded. Finally, the state in
the system is presumed to be perfectly distributed. Each node in
the system may contain state, but the state of the system is the
aggregate state of all nodes in the system at any point in time.

While the network of Figure 5 is the inspiration for NoC, Figure
6 illustrates how nine intellectual property (IP) blocks with
common network interfaces might be placed on an SoC. For most
network models, each PE on a network includes support for
network communication. Figure 6 shows this for the single chip
where the nine I[P blocks are divided into computation and
communication parts. The similarities between Figure 5 and Figure
6 are that each of the IP blocks have equal access to a global
network that allows the blocks to communicate in a GALS manner.
Further, packets will be used for information exchange between
the IP Blocks.

However, there are significant differences between the networks
of Figure 5 and Figure 6. While the number of IP Blocks shown in
Figure 6 is conservative at only nine, the important point is that it
is a fixed set. While it will be possible to conceive of hundreds of
PEs in the next several years the actual number and types of PEs
on a single chip will be known at design time. Packet exchange can
take place in a pre-programmed manner; the state upon which
dynamic decision making is based can be finite.

Note that acknowledging the finite nature of an SoC does not
diminish the scalable properties of communications organization
around a network. It remains useful to have a communications
standard that applies for ever-larger systems. However, the
scalable abstraction must not constrain designers from taking
advantage of optimizing software and hardware around a fixed set
of programmable resources.

Because the chip has a fixed set of PEs, it is possible to
explicitly define and coordinate a level of global state around
which dynamic, control flow decisions can be made. This leads us
to our second modeling primitive:

PV-P2)selection of a fixed set of PEs to be considered a

programmable collection.
The fixed set of PEs can then be optimized to the applications for
which the chip is being architected.

4.2 Local vs. Global State

At the heart of the issue of SoC design is what state on the chip
should be local (private) vs. global (shared). Current design
languages and methodologies do not permit designers to reason
about trade-offs between the two. Clearly not all state should be
global to the chip. However, design paradigms that consider all
state to be privatized in individual PEs or IP blocks from the start
fail to capture the singular strength of single chip designs — that
large collections of PEs can be more closely coupled than ever
before with sets of PEs and the method of communication between
them more tuned to applications than ever before.

With advances in the ability to integrate multiple computers
onto single boards and then chips, shared memory gains
advantages [12]. On single chips, busses that support shared
memory can become major bottlenecks. However, the use NoCs
need not result in the abandonment of global state.

NoCs can create a new class of network, with more specificity
of than the prioritization of packets for Quality of Service (QoS)
for networks in the large, and less specificity than networks on
FPGAs where the network is intended to mimic static routing.

NoCs can be programmed to dynamically make routing
decisions for different types of packets. Some packets can be

159

exchanged with greater efficiency than others. Some state can
appear shared among resources because it can be exchanged far
more efficiently, while other state appears distributed — even
though all state is exchanged across the network. This can be based
solely on how the network is programmed. This leads us to two
additional modeling primitives:

PV-P3) trade-offs of global vs. local state.

PV-P4) customization of the on-chip network protocol.
These provide a basis for distinguishing system level state around
which decisions are made across multiple programmable resources
[13], and state which supports other computation.

5. System State

While some problems are designed to scale with the number of
resources in a system, others require the optimization of a fixed set
of processing resources to a problem of fixed size. Applications
that have near perfect scalability are rare. Thus, explicitly tuning a
set of heterogeneous, interacting resources to specific portions of
computation can provide a vast performance improvement over
that of a purely scalable or extensible solution. Design
optimization for this class of problems must be achieved by
optimizing the coordination of a fixed set of elements to carry out
the behavior of one or more computational problems. This can be
considered analogous to the design of an application specific
processor (ASIP) for a class of applications, except that the
processor is now a collection of individually programmable,

networked PEs.
4

We define system state as
- (86

state which supports the
coordination of information
flow among a set of PEs.
Like a program counter, | _
system state is finite but may " (s
be dynamically updated at e 4
runtime. System state can
support programmatic, data-
dependent decision making
across a set of PEs.
Computation state is all
other state in the system,
such as that of individual
PEs that compute the net
system functionality.

Figure 7 shows the same nine IP blocks on a single chip. The
state in each block has been divided into computation state (ci) and
system state (si). System state can be used as a basis for
coordinating information flow among a set of processing resources
in a variety of ways.

The mechanisms for coordination of system state can be
architected at design time. But it can also support run-time
decision making. Thus, system state is more like a chip-level
program counter than a schedule synthesized at design time.
System state directly supports chip-level programming of SoCs.
As such, it is more of an architectural feature which is a by-product
of the fact that the design elements of the SoC are heterogeneous
multiprocessors. This leads us to our next modeling primitive:

PV-P5) chip-level architectural infrastructure, such as finite

system state, distinguished from computation state,
around which runtime decisions concerning the
coordination of collections of PEs are made.

Figure 7 System State (s) &
Computation State (c)

5.1 Two Forms of System State

Network interfaces coordinate network routing decisions
according to a common protocol. While it may be the goal of
system designers to keep the amount of packets stored in network

queues to a minimum, only in a purely statically scheduled system
will there be no information stored in the network. When decision
making is made in the presence of state, programming is possible.

Thus, the programming of
a network can be a primary
factor in coordinating state
advancement across the
elements of the chip. In
addition to state in individual
processor resources, the state
of the network can also
contribute to the system
state. This situation is shown
in Figure 8, where the system
state is shown to have two
parts. At each node, i, where
i=1...9 for the SoC, there is a
contribution to system state
from the network as routing state, ri, as well as from the
computation at each IP block, the bi. In general, system state at
each node, i, is si=(ri,bi), while the overall system state, S, on the
SoC, is the set of all system state contributed by each node, or
S={sl,...s9}={(rl,bl),...(r9,b9)}.

While the non-ideal properties of a network may be thought of
as a liability, the possibility to program the network to make
decisions about which packets are routed next can be an asset. For
instance, system state may be routed at a much higher priority than
computation state so that control flow constructs may be set up
across collections of PEs. Unlike quality of service (QoS) for
networking in the large, which must be based largely upon
statistical and analytical techniques because of the lack of a priori
knowledge about applications and underlying resources, a chip
with a fixed set of PEs permits a network to be considered
programmable, setting up a richer set of possibilities for the
coordination of PEs than pure dataflow or pure control flow.

Figure 8 Routing (r) and IP
Block (b) Forms of System State

5.2 Coordinating System State

Currently approaches
simplify the problem of
multi-element coordination
on SoCs by considering the
chip to fall into one of two
broad categories, that of
control flow based upon a
central controller and that
of data flow where static
forms of scheduling route
information between
elements. In each case,
system state, S, is greatly
simplified. We illustrate
each of these on our simple
SoC diagrams, thus motivating why they are overly simplistic for
the rich design space of next generation SoCs.

(o3
(o]
m

-]
TVEOD

Figure 9 Central Controller

5.2.1 Control Flow Central Controller

Control flow is easiest to realize when a central controller
coordinates all system resources as master-slaves; this is shown for
the nine node SoC in Figure 9 where block 5 is a central controller.
In this case the network might be designed with a naive protocol.
All system state resides in the central controller, i.e., S=s5. The
main advantage of coordinating system state in this way is in the
preservation of a sequential control flow scheme for programming
the chip; this is largely a programmatic solution in which distinct
blocks of software may be accelerated by execution on custom

160

hardware or on many blocks in parallel, if not both. Many current
SoCs fall into this category of design, where a general purpose
processor serves as the central controller.

The main disadvantage of this approach is that the central
controller can be a bottleneck The system can only execute as fast
as the sequential fractions of software [14] can execute on block 5.
In general, the software executing on the central controller must be
as simple as possible or the central controller must have
sophisticated scheduling that tunes the application to the slave
processors so that throughput can be maintained.

For certain applications with highly independent parallel
threads, this can be a valid solution. However, most of these
applications fall into two categories which differ from that
anticipated for future SoCs: highly regular computations such as
matrix product or server applications in which multiple users
access the same set of resources. However, new PVs that permit
tuning the application to a heterogeneous set of processors on a
programmable network can reveal how control flow can be
effectively supported.

5.2.2 Dataflow

Many designs can benefit from optimizations when information
flows through a fixed number of hardware resources in a fixed
pattern. This dataflow style of design is suited to algorithms for
which computation can be effectively pipelined. This situation is
depicted in Figure 10 for the nine node SoC.

In the figure, the data is
routed from node to node
in a statically scheduled
manner that allows the
nodes to be thought of as
interconnected as in a
graph. Information is
shown entering the system
on node 1, then pipelined
to exit the system via nodes
6 and 8. The first pipeline
isnodes 1,2,3,5,9,8,7,
and the second pipeline is
nodes 1, 2, 4, 6. All of the
system state can be thought
of as being in the network where packets act as tokens that trigger
computation elements in a static manner, i.e., S={rl,...19}.

A significant amount of information about both the application
and the processing capabilities of each node needs to be known in
advance of designing a statically scheduled system. For data-
independent functionality, static scheduling can give the greatest
performance; it is much like the pipelining of a processor. For an
SoC, with many computation units, the possibility that certain
pipeline stages can take advantage of parallel computation units
can further enhance system performance. However, the limitations
of data flow all focus on the need to consider the system statically
scheduled with no data dependencies. Thus, the next primitive:

PV-P6) system state as residing in both the programmable

network and the programmable IP blocks.
Beyond either of these two categories, better techniques for
coordinating sets of PEs are needed for future SoC designs.

V=00

-

N
o V=200
o] E°

\,
V=0
-
\‘

Figure 10 Dataflow on Chip

6. The Need for New Programmers’ Views

We assert that in the absence of new PVs for SoCs, the demands
that future computer system applications place on designers will
not be met. Optimal SoC designs will most likely lie between that
of a central controller residing on a single PE (Figure 9) and pure
dataflow designs (Figure 10) with no central controller to
dynamically direct resource cooperation. More complex models of

S will appear in new forms of control flow coordinated across
multiple PEs. Designers must be able to effectively consider trade-
offs between system state and local state in next generation SoCs.
A PV for an SoC is distinguished from an ISA because it must
represent not only the available set of computation,
communication and control primitives, but must also include a
means by which control flow is coordinated around system state.
For example, when system-level control flow does not reside in a
single processor accessing a single memory (i.e. unlike Figure 9),
system infrastructure must be defined and coordinated in new PVs.

6.1 Finite, Distributed Control Flow

Consider the central controller of Figure 9. While many
programming models include the controller as a PE, SoCs afford
the possibility that the state and functionality upon which control
flow decisions are made does not reside on a central PE. This
situation can be likened to the way a single scheduler can be
formed by the cooperation of schedulers on individual PEs. In
distributed system design in the large, the coordination of
separately cached copies of data must be explicitly considered.
Currently this problem is solved by various operating systems and
middle-ware. However, the problem of achieving performance
enhancement over a collection of resources is difficult for systems
in the large, where extensibility is prioritized. The overall
philosophy is one of hiding the properties of the underlying
hardware platform from the distributed software applications so
that net performance is relative to the available resources. This is
an extension of the philosophy that software design should be
considered independent of as many properties of the underlying
machine upon which it executes as possible. Mechanisms for state
coordination across multiple resources in the form of middleware
provide the means of thinking in terms of distribution primitives
without the need to think in terms of the actual size and capacity of
the underlying machine.

However, once a chip is designed, nodes will not be added or
subtracted. Control flow can be optimized over a fixed set of PEs
by explicit coordination of finite system state if explicit support is
provided for design of system infrastructure as a part of the PV of
the chip. Finite, distributed control flow is one optimization
possible when support is provided for viewing the chip as a
programmable set of heterogeneous PEs.

6.2 Multi-path Control

Dynamically scheduled datapaths may be established across sets
of PEs on an SoC. Either a central controller or distributed, finite
control may dynamically set up patterns of cooperation among PEs
where the patterns are tuned to specific programming situations.
We refer to this property as multi-path control.

Consider PE 1 of Figure 10 to be a central controller, which
implements all of the functionality of a present-day personal
digital assistant (PDA), plus enhanced HCI and computer-
computer networking, as discussed in section 2. Figure 10 shows
one way the central controller (PE 1) might set up the cooperation
of the remaining PEs in the system when the PDA is acting as a
cell phone in the middle of a call. However, when the PDA is not
actively processing a call, PE 1 might well set up a different
pattern of dataflow among the PEs in the system. In multi-path
control, multiple data paths are set up by a scope of control flow,
either a single processor or a cooperative collection of processors;
PE 1 need not be considered a single processor when control
decisions are made using distributed, finite control. This leads us
to our final proposed modeling primitive:

PV-P7)novel architectural views for coordinating system state

and control flow across a finite number of PEs such as
finite, distributed control flow and multi-path control.

7. Conclusions and Future Directions

The set of proposed primitives that new design languages must
support as discussed throughout this paper might seem
straightforward. However, the important point is that existing
system design approaches and languages such as SystemC do not
directly include them.

Current languages do not permit designers to think in terms of
systems in which not only will individual PEs be programmable,
but the chip, as a whole, is considered programmable, including
the network that supports information exchange across the chip.
SoC hardware is a fixed set of PEs; its PVs can significantly differ
from past forms of system organization.

Next generation design languages must enable the architecting
of novel SoC designs, focusing on explicit support for the design
and programming of system infrastructure that coordinates
information flow across a fixed set PEs. The modeling primitives
of such languages must capture the performance cost-benefit of a
rich middle ground, between pure dataflow, pure control flow, pure
global state, and pure distributed state. Design languages must also
support the design of custom networks and the selection of the PEs
that are programmed as a collection, forming the basis of new
programmers’ views of SoCs.

8. Acknowledgements

This work was supported in part by ST Microelectronics,
General Motors, and the National Science Foundation under Grant
0103706. Any opinions, findings, and conclusions or
recommendations expressed in this material are those of the
authors and do not necessarily reflect the views of the NSF.

I would like to thank Alex Bobrek, Jeffrey E. Nelson, and
Joshua J. Pieper for their valuable comments on this paper. Much
appreciation to Donald E. Thomas for his feedback on this paper
and his incomparable support.

9. References

[1] ““Are Single-Chip Multiprocessors in Reach?”” IEEE Design
& Test, Jan - Feb 2001.

[2] W. Dally, B. Towles. “Route Packets, Not Wires: On-Chip
Interconnection Networks,” DAC 2001.

[3] L. Benini, G. De Micheli, “Networks on chips: A New SoC
Paradigm,” IEEE Computer, January 2002.

[4] F. Balarin, et al. Hardware-Sofiware Co-design of Embedded
Systems. The Polis Approach. Boston: Kluwer. 1997.

[S] W. Cesario, G.. Nicolescu, et al. “Colif: A Design Representa-
tion for Application-Specific Multiprocessor SOCs,” IEEE
Design & Test of Computers, Sept. - Oct. 2001.

[6] K. Keutzer, et al. “System-Level Design: Orthogonalization
of Concerns and Platform-Based Design,” IEEE T. CAD. “00.

[7]1 Special Issue on Ubiquitous Computing, Communications of
the ACM, December 2002.

[8] B. Grattan, G. Stitt, F. Vahid. “Codesign-extended applica-
tions.” CODES 2002.

[9] J. Paul, D.Thomas. “A Layered, Codesign Virtual Machine
Approach to Modeling Computer Systems,” DATE 2002.

[10] A. Cassidy, J. Paul, D. Thomas. “Layered, Multi-Threaded,
High-Level Performance Design,” DATE 2003.

[11] D. Skillcorn, D. Talia. “Models and Languages for Parallel
Computation,” ACM Computing Surveys. 1998.

[12] D. Culler, J. Singh. Parallel Computer Architecture, A Hard-
ware/Software Approach. S.F.: Morgan Kaufman. 1999.

[13] J.Paul, A.Bobrek, J. Nelson, J. Pieper, D. Thomas. “Schedul-
ers as Model-Based Design Elements in Programmable Het-
erogeneous Multiprocessors,” DAC 2003.

[14] G. Amdhal. “Validity of the Single Processor Approach to
Achieving Large Scale Computing Capabilities,” AFIPS 1967
Spring Joint Computer Conference. pp. 483-485.

	Main Page
	CODES+ISSS'03
	Front Matter
	Table of Contents
	Author Index

