
A Low Power Scheduler Using Game Theory

N. Ranganathan and Ashok K. Murugavel
Dept. of Computer Science and Engineering

Nanomaterials and Nanomanufacturing Research Center
University of South Florida

Tampa, Florida 33620

ABSTRACT
In this paper, we describe a new methodology based on game the-
ory for minimizing the average power of a circuit during schedul-
ing in behavioral synthesis. The problem of scheduling in data-path
synthesis is formulated as an auction based non-cooperative finite
game, for which solutions are developed based on the Nash equi-
librium function. Each operation in the data-path is modeled as a
player bidding for executing an operation in the given control cycle,
with the estimated power consumption as the bid. Also, a combined
scheduling and binding algorithm is developed using a similar ap-
proach in which the two tasks are modeled together such that the
Nash equilibrium function needs to be applied only once to accom-
plish both the scheduling and binding tasks together. The combined
algorithm yields further power reduction due to additional savings
during binding. The proposed algorithms yield better power re-
duction than ILP-based methods with comparable run times and no
increase in area overhead.

Categories and Subject Descriptors
B.5.1 [Design]: Data-path design

General Terms
Algorithms, Low Power Design, High-level Synthesis, Game The-
ory, Auction Theory

1. INTRODUCTION
The advent of portable and wireless computing has increased

the need for low power high performance compute intensive VLSI
circuits. Increased power consumption, reduces the battery life in
portable systems as well as the reliability and increases the pack-
aging costs [12]. The various steps of behavioral synthesis are:
scheduling, allocation and binding [12]. Scheduling is the process
of determining when a resource is to be executed, allocation is the
process of determining the number of instances of a required re-
source, and binding is the process of attaching a resource to an
operation that needs to be performed [13]. A detailed treatment

Permission to make digital or hard copies of all or part of this work for
personal or classroom use is granted without fee provided that copies are
not made or distributed for profit or commercial advantage and that copies
bear this notice and the full citation on the first page. To copy otherwise, to
republish, to post on servers or to redistribute to lists, requires prior specific
permission and/or a fee.
CODES+ISSS’03, October 1–3, 2003, Newport Beach, California, USA.
Copyright 2003 ACM 1-58113-742-7/03/0010 ...$5.00.

on low power behavioral synthesis can be found in [2]. Numer-
ous algorithms have been proposed in the literature for low power
scheduling. In [15], a force directed low power scheduling algo-
rithm based on heuristics is described. Minimizing the number of
times the input operands to a functional unit change reduces the
power consumed by the functional units, which is explored in [7].
In [9], a module assignment algorithm for pipelined datapath’s is
formulated as a max-cost multi-commodity flow problem. A com-
bined register and module assignment algorithm for low power
data-path synthesis is presented in [18].

Power reduction through combined scheduling and binding has
been investigated in the following works. A scheduling and binding
algorithm that minimizes switching activity with simulated anneal-
ing is investigated in [1]. In [2], an iterative mechanism based on
an initial solution with efficient pruning techniques is used for low
power synthesis. A novel approach involving the use of constrained
logic programming to minimize the switched capacitance, during
scheduling and binding is described in [8]. A heuristics based al-
gorithm under a resource constraint can be found in [13]. In [5],
a stepwise approximation algorithm for combined scheduling and
binding is described. In [3], a scheduling and binding algorithm,
that reduces glitches through clock gating is investigated. Most re-
cently, an integer linear programming (ILP) method for scheduling
and a linear programming (LP) method for binding are given in
[19].

In this work, we model the problems of low power scheduling
and binding as auction based game theoretic problems and solve
them using the Nash equilibrium function. The scheduling and
binding algorithms achieve power reduction through the use of neigh-
borhood operations, path balancing, functional unit sharing to re-
duce switched capacitance and glitch reduction. The proposed al-
gorithms do not increase the area overhead, since there is no ad-
dition of modules or multiplexors. The application of economic
models and game theory as well as the Nash equilibrium for power
optimization for the scheduling task in high-level synthesis is being
attempted for the first time in this work.

2. GAME THEORY
Game theory is a tool for analyzing the interaction of decision

makers with conflicting objectives. Economists have used game
theory as a tool to understand the action of economic agents. The
basic building blocks of game theory are based on theories pro-
posed by von Neumann in 1928 [10] and Nash in 1950 [11]. A
game, in which the rules can be previously stated or agreed upon
by the players for use in deducing common strategies, is called a co-
operative game. A game in which such agreements cannot be made
is called a non-cooperative game [11]. Non-cooperative games are
played with fully rational players who know the complete details

126

of the game, including each others preferences and outcomes. One
of the first works in applying game theory to VLSI CAD problems
was attempted in [17], a 2-person zero sum game theoretic formu-
lation has been used to solve the system-level power management
policy problem. A game theoretic solution to the problem of bind-
ing is described in [4].

The salient features of game theory that aid in the formulation of
the behavioral synthesis problem are: (i) Rationality:Each player is
always selfishly trying to optimize its gain. (ii) Coalition: Coali-
tion formation is significant when a subset of players have the same
agenda in terms of strategies for optimization can pool in their re-
sources during resource allocation. (iii) Competition: In game the-
ory, multiple decision makers who control a specified set of sys-
tem variables and seek to optimize their conflicting objectives. (iv)
Equilibrium: A solution is in an equilibrium state when all the play-
ers’ objectives have been optimized with respect to one another.

The first step is to transform the behavioral synthesis problem
into a performance model considering power, delay and area as re-
sources. The second step is to transform the performance model
into an economic optimization model based on auction theory, with
a set of buyers and a seller, all selfishly trying to optimize their in-
dividual resources. The goal is to achieve a stable solution which
is good for everyone including the seller and the buyers. The Nash
equilibrium proposed in [11], is an elegant solution to achieve the
stable point. Auction theory is the science of studying the selling of
objects among different buyers, such that the seller and the buyers
optimize their gain [6]. The cost that each buyer is willing to pay
is called a bid. Among the different types of models available in
auction theory, the first-bid sealed auction model is most suitable
for modeling power optimization in behavioral synthesis. In the
first bid sealed auction, the buyer places sealed bids to the seller
that cannot be changed and the seller decides, to which buyer the
seller is willing to sell his item based on the bids from the potential
buyers.

A finite game can be generalized to consist of � players who can
choose from a set of strategies �� where, � � �� ���� �, and a set
of payoff functions �� where, � � �� ���� � � �� � ��� � �� � �,
where,� is the set of all real numbers and a payoff value is assigned
to each pair of strategies chosen by the players. The rationality
or the equilibrium point is a set of strategies that maximizes the
payoff of the player assuming that all other players strategies are
held fixed. The game is played until each players strategy is optimal
with respect to the strategies of others. The following example is
useful in understanding the concepts.

��
� �� � �

�� � � � ��
�� � �� �

The game consists of two players, P1 and P2, and the matrix
given above. The entries in the matrix are the possible outcomes of
the game, corresponding to the selections made by the two players.
The various possible alternatives for player P1 are the rows of the
matrix and for player P2 are the columns of the matrix. The alter-
natives are the strategies that each of the players can choose from.
In this game, for P2, column 1 is the best since at most he loses 1
and for P1, rows 2 and 3 are the best since at most he loses 2. These
are the secure strategies of the two players. If P2 plays the game
first then his strategy will be to choose column 1, and the unique
strategy of P1 is row 3, with an outcome gain of 1 by P1. But, if P1
plays first, he can choose either row 2 or row 3. If P1 chooses row
2, then the best strategy for P2 is column 1, but, if P1 chooses row
3, then the best strategy for P2 will be column 4. In this game, we

could assume that the players do not make their decisions indepen-
dently, and there is a predetermined ordering for the players. If P1
decides first and passes the choice of his row to P2 then P2 has an
advantage over P1. If the best choice for P1 (��), and the optimal
response of P2 (��), is given as,

����� � ��	
�

���� �
	 � ���
�
���	

�
���� (1)

where, the ��� and ��	 operations are specified in the order in
which they are to be performed. The outcome of the game when
P1 follows P2 is a gain of � by player P1. When P2 follows P1,
the outcome of the game is a gain of 2 by P2. If the two play-
ers choose independent of each other which is normally the case,
player P2 gains 2, which is the equilibrium solution for this game.
Determining this equilibrium solution is complex for games with
multiple players. Hence, we apply the rational Nash equilibrium to
find such a solution.

Let �� be the set of various possible strategies of player �, where,
� � �� ����
 , and �� be the payoff for player �. Nash equilibrium
can be stated as: a set of strategies ��� � ���� ���� �

�
� � �� �

such that �����
�
�������

�
�������

�
� � �����

�
�������������

�

�
� for all i, �� � ��.

In words, this translates to, a player’s payoff does not increase
if any of the players unilaterally deviate from the Nash equilib-
rium strategy. The Nash equilibrium
�, defines the payoff func-
tion for all the players in the game. The result that we are inter-
ested in, is the global payoff
� of all the players in the game, or
the average payoff of each player due to the combined strategies,

� � ����� ���� �

�
��. Mathematically, this can be given as,

� �
��
���

�
�
���

�
�������

�
� (2)

The Nash equilibrium for an
 -player finite game is a
 -tuple
set of strategies ���� � �

�
�� ���� �

�
��, given by
 inequalities such

that, no single player can gain by individually changing his strat-
egy. The inputs needed to calculate the Nash equilibrium are: (i)
the strategies available for each player, (ii) the number of players in
the game, and (iii) the number of alternatives �� that are available
for each player �. The steps for calculating the Nash equilibrium
are: (i) determine all possible outcomes for the given game were
the number of possible outcomes for the given game is (

��

��� �
�
�),

where �� denotes the number of alternatives for player �, (ii) deter-
mine the inequalities for each player � such that his departure from
the Nash equilibrium will lead to no increase in his gain which is
stated formally as (��

�

� �����
�
�������

�
�������

�
� � �����

�
�������������

�

�
�),

and (iii) the outcome that satisfies all the inequalities defined in step
(ii) forms the Nash equilibrium solution of the game.

An elegant proof for the existence of equilibrium points for a
finite game is given in [11]. An interesting fact about the Nash
equilibrium is that, there is a guaranteed existence of a solution if
we allow �� to be of mixed strategies [11].

3. SCHEDULING
We model the scheduling problem as an auction based first-bid

sealed auction and then describe a game theoretic solution.The auc-
tioning of items by a seller through bidding can be extended to the
auctioning of operations in the DFG, �� , among the modules of
the architecture, �� as, with an operation being bought by only
one module and the sale entity being power consumption. In the
presence of multiple operations and modules, an equilibrium point
needs to be achieved. An auction consists of a set of available re-
sources , and a set of interested buyers �, where is not equal
to � and a buyer can only buy a single item at a time. The buyer
(� � �) may also have some preference for some resources over
the others, and this can be specified in terms of a cost function

127

��	
, These functions are mappings from the buyers domain to the
resource domain. Let ��	
, be the cost function that maps buyer �
in the buyers domain to the resources �� � in the resource domain.
If the buyer prefers � � �, then, ��	
�� �� � ��	
�� ��.

input : Data flow graph (DFG) �� , Architecture ��

output : Scheduled data-flow graph (S-DFG) ���

�	 �;
% initially level � is set to top level;

��	 ���;
**: Perform breadth first search of current data-flow graph

��;
�	� 	 Operations in the top level of the ��;
for each set of operations ��� � �	� do

% ��� is the set of operations of same type � at level � that can
be assigned to the same module;
���	
� ���	
 	 Payoff matrix (��� ��� � �);

��	
��	Nash sol. (���	
� ���	
��� � �);

% Nash equilibrium solution at control step � - see Alg 2;
��� 	 Set of operations that form the Nash equi.;
��	 ������� ��� ;

% Remove operations that are scheduled and their edges;
��� 	 ���
��� ��;

% Assign operations that form the Nash equilibrium to step �;
if �� != ���� then

�	 �� �;
goto **;

end
else

return;
end

end

Algorithm 1: Game theoretic scheduling algorithm

Formally, we can look at the preference mapping as: A buyer
has a preference to an allocation, such that � � �, i.e., resource
� is preferred over resource �, where �� � � , where is the
set of all available resources at the time instant and � ��. If
a buyer has no preference between resources � and �, then it is
denoted as � � �. We assume that the preferences are transitive,
i.e., if � � � and � � �, then it implies � � �, where �� �� � � .
The scheduling of the feasible resources under a given resource
constraint for power optimization can be given as,

����� � �� � �� � � �� (3)

where, ����� is the feasibility set for all the operations and their
resources and �� is the cost vector corresponding to the resources.
If there exists a preference for an operation towards a particular
resource, the preference set for the operation is a set of allocations
with that preferred module, operation pair. The preference set is a
subset of the feasibility set. The preference set �����, is defined
mathematically as,
����� � �� � � � ������ ��	
�� � ��	
�

��� ��� � ������
(4)

The power cost function of a module � for operation � at control
step � is mathematically given as,

���	
��� �� � ���� � �	���
�

����
���

���� � �	���
� (5)

where, ���� is the power consumed by module � for operation
� at level �, �	���

is power consumed by communication between
the modules with� being the destination at level � and the last term

3v v4

v7

v1 2v

6v

o 3

v8

o 4

v5

9v

o 1 o 2

+ *

+ +
add1

add2

mult1

Operations

a b

c d

e f

o1 o2Modules

(i) (ii)

Figure 1: (i) Data-flow graph (ii) Cost matrix

is the average power consumed by the given module from level �.
The delay cost function of a module � for operation � at control
step � is mathematically given as,

���	
��� �� � ������	���
�

����
���

���� ��	���
� (6)

input : Cost Matrix � , Number of player
 , Set of var-
ious possible strategies �

output : Nash equilibrium solution
��	

for each player �, where �	 � to
 do
for each set of strategies (�� � ��),...,(�� � ��) do

Calculate ������������ � � � ��� ���;
end

% The payoff for strategy set ��� ���� �� � is calculated;
for each strategy (�� � ��) do

��� 	 Nash equi. strategy for player � given by the
inequality �����

�
�������

�
������� � � �����

�
�������������� �;

end

� 	
�
 ��� ;

end
%
� � ���� � ���� �

�
� � ���� �

�
��, set of optimized strategies for

all
 players;

Algorithm 2: Algorithm to calculate the Nash equilibrium

where, ���� is the delay of module � for executing operation �
at level �, �	���

is communication delay between the modules �
at level � and the modules to which it was connected in the previous
cycles and the last term is the average delay for the given module
from level �. In our formulation, the two optimizing parameters,
namely delay and power are considered as a single optimizing pa-
rameter. This helps to simplify the formulation and solve problem
as a simple resource allocation game.

Consider an architecture with two adders and a multiplier for
the data-flow graph given in Figure 1. From the example given in
Figure 1-(1), operations o1, o2 can be scheduled in control cycle
1. We will discuss the game for control cycle 1 to help in under-
standing the problem, Figure 1-(ii) gives the power cost matrix for
cycle 1. Let, �� �� � be the cost associated with scheduling opera-
tion o1 to the modules add1, add2, mult respectively and �� � � the
cost associated with scheduling operation o2 to the modules add1,
add2, mult respectively. Simply, ���� �� is the cost of scheduling
operation o to module m. The bidding strategy, is the bids by the
operation for the modules add1, add2, mult. The Nash Equilibrium
is the set of bids for the modules, such that no operation can gain
by deviating unilaterally (i.e. operations changing their bids).

128

The complete set of module and operation pairs that are possi-
ble for a given cycle is referred to as �. In the examples, if
adder 1 is combined with operation 1 and adder 2 with operation
2, the � will be �(1,1),(2,2)�. For the set �, the total cost
�� � ���� �� � ���� ��. Another such combination is adder 1
with operation 2 and adder 2 with operation 1, the corresponding
� is �(1,2),(2,1)�. Now, for each control step, the problem is to
find the minimum of all ��’s (�����),

����� � ������������� ��������� �� � ����� ��� (7)

This work is based on the assumption that Nash equilibrium
strategies exist for the scheduling of operations such that the total
power for the set � is minimized. In other words the compe-
tition drives the operations to choose the modules such that power
minimization is achieved. Normally, in a bid, the bidder has a profit
but in the case of the modules, they don’t have a profit of their own
and so the bid is a value from the cost matrix. The bid by module
1 for operation 1 will be given as, ��� �� � ���� ��. The general-
ized cost matrix � of size �� x �� is given as,

input : Nodes ��� , modules �� , control step �

output : Power pay off matrix ���	
, delay pay off ma-
trix ���	

for each module � ��� do
for each operation � � ��� do

���� 	power to execute oper. � on module � in �;
���� 	delay for oper. � on module � at step �;
�	���

	power to communicate data to module � at
step � from a previous step;
�	���

	communication delay for module � at step
� from a previous step;
���� 	

����
������� � �	���

�;
���� 	

����
������� ��	���

�;
���	
��� ��	 ���� � �	���

� ����;
���	
��� ��	 ���� ��	���

�����;
end

end

Algorithm 3: Payoff matrix calculator for scheduling

� �

�
�

���� �� ��� ���� ���
��� ��� ���

���� � �� ��� ���� � ���

�
�

The set of module-operation pairs ! � � is given as ! �
��� ���� ���� ��� � ��� �, where ��� ���� ��� � �� are the mod-
ules, ��� ���� ��� � ��� are the operations, and � is the set of all
possible module-operation pairs. ! is a feasible set of module-
operation pairs, there could be several such possible ”!” sets within
�. The module set corresponding to ! is, �� � ������ ����
������. The Nash equilibrium solution !�, represents the set of
module-operation pairs satisfying the Nash equilibrium inequality.
The total power (��) due to all the modules in a given set ! is,

��!� �
�

����������

������� �� (8)

The proposed algorithm is aimed at minimizing the above equa-
tion. Thus, the total power ��!�� corresponding to the power
optimal set !� is,

��!�� � ����� � ���
���

��!� (9)

where, !� � ������� ��� � � �� ���� ���� is the Nash equilib-
rium set of module-operation pairs and ��� is the set of modules
for !�. The pseudo-code for scheduling is given in Algorithm 1.

Notations and Definitions
�� directed data-flow graph
��� scheduled data-flow graph
��� �� operations scheduled during control step �
�� architecture
�� number of modules of type j in the architecture
�� number of operations of type j in the architecture
�� set of all modules of type j in control step i
��� set of all operations of type j in control step i

��	
�� Nash equilibrium solution at control step i
�� current data-flow graph
�	� operations in the top level of the levelized DFG
���� �� power for executing operation � on module �
���	
 power cost matrix, ���	
 � ����� ���
���	
 delay cost matrix, ���	
 � ����� ���
� set of all module-operation pairs available
! ! � � is any feasible set of module-operation pairs
�� module set of A, �� = �m�, where � � �� ���� ��
�� total cost for a specific ! � �
����� the minimum total cost of any ! � �

The inputs to the scheduling algorithm are the data-flow graph
�� and the architecture ��, and the output from the algorithm is
the scheduled data-flow graph ��� . A breadth first search of the
data-flow graph is performed and the input nodes to the DFG form
the nodes in the top level of the DFG. For each set of compatible
operations in the top level nodes of the DFG, the payoff matrixes
���	
� ���	
 are compiled Nash equilibrium solution
�
for the game is determined. The Nash equilibrium solution gives,
the power optimal schedule for the given DFG at each control step.
The payoff matrix equations 5 and 6 are used in Algorithm 3. The
nodes that have been scheduled are removed from the data-flow
graph. For the current data-flow graph the process is repeated. If
all the nodes in the DFG are scheduled, the S-DFG is given as the
union of all the Nash equilibrium solutions.

4. SCHEDULING AND BINDING
The algorithm for scheduling and binding can be applied in se-

quence to obtain a power optimal behavioral synthesis solution.
However, this involves applying the Nash equilibrium twice. In
this section, we propose a combined scheduling and binding algo-
rithm that applies the Nash equilibrium only once and results in
better power reduction than applying the separate algorithms in se-
quence. The most important step in the combined algorithm is the
determination of the payoff matrix, such that the power optimiza-
tion is maximized. The first-bid sealed auction discussed in the
previous sections is used here and hence is not explained again.
The algorithm to calculate the payoff matrix used in Algorithm 4 is
given in Algorithm 5.

The cost function aims at reducing the delay and the switching
activity of the circuit. The power consumption for a module opera-
tion pair is,

��� � ���� � �	���
�

����
���

���� � �	���
� (10)

where, ���� , is the power consumed by the module � for the op-
eration � in cycle �, similarly �	���

is the power consumed due
to the communication between the modules with � as the desti-
nation at cycle �, the final term is the total average power of the
module from level � to level �� �. For binding we identify neigh-
borhood operations that can be grouped for the same module to
reduce switching activity. If the power due to the neighborhood
operations is ���, then the power cost equation is given as,

�� ��� �� � ��� � ��� (11)

129

The combined scheduling and binding problem is formulated as
a resource allocation game with two inter-related parameters to be
optimized among the N-players. The notations in Sections 3 are
also applicable here.

The inputs to the algorithm are the data-flow graph �� and the
architecture ��, and the output of the algorithm is the binding ma-
trix ". A breadth first search of the data-flow graph is performed
and the input nodes to the DFG form the nodes in the top level
of the DFG. For each set of compatible operations in the top level
nodes of the DFG, the payoff matrix � is calculated. The payoff
matrix is given in Algorithm 5. The Nash equilibrium for the game
is calculated using Algorithm 2 to determine the optimal binding
of the operations to the modules and also obtain the power optimal
schedule. The register binding task determines the optimal binding
for the variables to the registers in each control cycle. Each func-
tional unit that was active in the current control cycle is determined
if it was active in the previous control cycle. Then, the input vari-
ables to the functional unit in the current cycle are bound to the
same registers as in the previous cycle. If the functional unit was
inactive in the previous control cycle, then variables are assigned
to registers that are equidistant from the functional unit in-terms of
the interconnect length.

input : Data flow graph (DFG) �� , Architecture ��

output : Binding matrix B
�	 �;

% initially level � is set to top level;
��	 ���;

**: Perform breadth first search of current data-flow graph
��;
�	� 	 Operations in the top level of the ��;
for each set of operations ��� � �	� do

����� 	 Payoff matrix (��� ��� � �);

� 	 Nash equi. solution (�������� � ��;

% Nash equilibrium solution at control step � - see Alg 2;
Represent !� as a binary binding matrix ";
��	 ��������;

% Remove edges and operations that have been scheduled;
if �� != ���� then

for each active functional unit � ���� in con-
trol step � do

for each control step #, where # 	 � to � � �
do

if Functional unit � was active in step #
then

Assign the input variable to the same
registers as in step #;

end
else

Assign the variables to new registers
with balanced paths;

end
end

end
�	 �� �;
goto **;

end
else

return;
end

end

Algorithm 4: Combined scheduling and binding algorithm

input : Nodes �, modules , level �
output : Power pay off matrix �� , delay payoff matrix

��
for each module � � do

for each operation � � � do
���� 	 power to execute oper. � on module � in �;
���� 	 delay for operation � in module � at step �;
�	���

	 power to communicate data to module � at
step � from a previous step;
�	���

	 communication delay for module � at step
� from a previous step;
���� 	 ����

������� � �	���
�;

���� 	 ����
������� ��	���

�;
��� 	 ���� � �	���

� ���� for scheduling to
module � at step �;
Identify power reducing neighborhood operations;
Determine the # of inputs to the oper. that change;
��� 	 power reduction due to neighborhood oper.;
�� ��� ��	 ��� � ���;
����� ��	 ���� ��	���

�����;
end

end

Algorithm 5: Payoff matrix calculator for the combined algo-
rithm

5. RESULTS AND CONCLUSIONS
The experimental results on benchmark circuits for scheduling

and their resource constraints are given in Table 1. The power
values for the circuits and the individual modules were obtained
by simulation with 100,000 input vectors using the Synopsys RTL
power estimation tool ”Power Arc”. The input vectors are random,
16-bit, two’s complement integers. A library for all the functional
units and the registers has been developed based on the TSMC
����$� technology. This library is used by the algorithms to pro-
vide a realistic comparison of the various algorithms. The proposed
scheduling algorithm (���) is compared with an integer linear pro-
gramming (ILP) based methodology (����) proposed in [19] and
a latency based scheduler (��) [14]. It should be noted that the
latency based scheduler is not optimized for power. Column 2 in
Table 1 specifies the resource constraint for the algorithms as the #
of adders (A) and the # of multipliers (M). The results for the com-
bined scheduling and binding algorithm are tabulated in Table 2.
The ILP-based methodology was obtained by applying in sequence
the ILP-based scheduling algorithm and the LP-based binding al-
gorithm proposed in [19]. The Nash equilibrium is computed using
Gambit: Software tools for game theory [16]. The algorithm has a
% power savings of about 11.8 % and 41.3 % on an average over
the ILP-based methodology and the algorithm with a random bind-
ing and latency based schedule respectively.

Since, the Nash equilibrium algorithm is NP-complete, the pro-
posed game theoretic algorithms are of exponential time complex-
ity. However, it should be noted from the Tables 1 and 2, that the
run-times are small, which is due to the fact that the time complex-
ity of the algorithm is a function of the number of players in the
game and the set of strategies for each player of the game. In our
algorithm, we have restricted the number of players in each game
to be less than �, and there are multiple games for each control
step in the behavioral synthesis process. Hence, the run-times are
much smaller than one would expect if all the games in a single
level are combined into a single game. The time complexity of
the Nash equilibrium for an
 player game with � strategies for
each player is given as �
�
�� [16]. Assuming this to be the

130

Table 1: Experimental results for scheduling
Benchmark Resource Sehwa scheduler [14] (��) ILP approach [19] (����) Game-theoretic approach (���)
Circuits constraint Latency Power Latency Power % savings Runtime Latency Power % savings Runtime

A, M cycles mW cycles mW w.r.t. �� s cycles mW w.r.t. �� s
Diff. eqn 2, 2 4 26.5 4 24.8 6.4 18 5 23.9 9.8 22
FIR 3, 3 9 99.7 9 82.8 16.9 113 10 78.7 21.1 107
IIR 2, 2 8 18.9 8 15.6 17.4 48 9 14.8 21.7 52
Lattice 3, 3 8 121.0 9 91.3 24.5 105 9 82.9 31.5 90
EWF 2, 2 16 386.6 17 262.8 32.0 182 19 251.0 35.1 153
WAVE 2, 2 25 352.1 26 258.2 26.6 254 27 232.8 33.9 215
NC filter 2, 2 27 507.2 27 389.7 23.1 295 27 363.4 28.4 256
Average 20.9 25.9

Table 2: Experimental results for combined scheduling and binding
Latency scheduler ILP-based scheduling & LP-based Latency scheduler & Game-theoretic Game-theoretic scheduling &

Bench- & random binding binding [19] binding binding
mark (�� ��) (���� ����) (�� ����) (��� � ���)
circuits Latency Power Latency Power % sav Run- Latency Power % sav Run- Latency Power % sav Run-

cycles mW (1) cycles mW w.r.t. (1) time (s) cycles mW w.r.t. (1) time (s) cycles mW w.r.t. (1) time (s)
Diff. eqn 4 26.6 4 22.9 13.9 35 4 20.1 24.4 59 5 16.0 40.0 37
FIR 9 95.7 10 61.7 35.5 221 9 57.7 39.7 216 10 50.4 47.3 165
IIR 8 18.3 8 12.8 30.0 100 8 12.3 32.8 110 9 11.2 39.0 96
Lattice 8 113.0 9 66.3 41.3 207 8 64.1 43.2 215 10 55.9 50.5 161
EWF 16 317.2 17 204.0 35.6 259 16 210.0 33.8 285 19 191.3 39.6 204
WAVE 25 291.9 26 201.2 31.0 427 25 196.3 32.7 427 27 179.2 38.6 332
NC filter 27 438.1 27 324.3 25.9 501 27 312.8 28.6 528 27 286.7 34.6 377
Average 30.5 33.6 41.4

complexity of the Nash equilibrium, the complexity of the schedul-
ing algorithm is given as, �%�
�
��, where % is the number of
levels for the given DFG and � is the number of sets of compati-
ble operations at each level of the DFG. The space complexity of
the algorithms is given as, ���, where is the number of
modules and � the number of operations in the game. The algo-
rithm can be further improved by incorporating voltage scaling and
dynamic frequency clocking. We plan to incorporate interconnect
binding in our game theoretic formulation since, interconnects will
play a significant role in synthesis of data-path circuits as we move
into deep sub-micron and nano regimes.

6. REFERENCES
[1] A. Dasgupta and R. Karri. Simultaneous scheduling and

binding for power minimization during micro-architecture
synthesis. In Proc. Intl. Symp. on Low Power Electronics and
Design, pp 69-74, 1995.

[2] A. Raghunathan and N.K. Jha. SCALP: An iterative
improvement based low-power data path synthesis system.
IEEE Trans. on CAD, 16(11):1260-1277, Nov. 1997.

[3] A. Raghunathan, S. Dey and N.K. Jha. Register transfer level
power optimization with emphasis on glitch analysis and
reduction. IEEE Trans. on CAD, 18(8):1114-1131,Aug.1999.

[4] A.K. Murugavel and N. Ranganathan. A game-theoretic
approach for binding in behavioral synthesis. In Proc. Intl.
Conf. on VLSI Design, pp 452-458, 2003.

[5] C. Park, T. Kim and C.L. Liu. An efficient data path synthesis
algorithm for behavioral-level power optimization. In Proc.
Intl. Symp. on Circuits and Systems, v 1, pp 294-297, 1999.

[6] D.F. Ferguson, C. Nikolaou, J. Sairamesh and Y. Yemini.
Economic models for allocating resources in computer
systems. In Clearwater S., editor, A Paradigm for Distributed
Resource Allocation. World Scientific, 1996.

[7] E. Musoll and J. Cortadella. Scheduling and resource binding
for low power. In Proc. Intl. Symp. on System Synthesis, pp
104-109, 1995.

[8] F. Gruian and K. Kuchcinski. Operation binding and
scheduling for low power using constraint logic

programming. In Proc. Euromicro Conf., v 1, pp 83-90,
1998.

[9] J.-M. Chang and M. Pedram. Module assignment for low
power. In Proc. European Design Automation Conf., pp
376-381, 1996.

[10] J. von Neumann. Zur Theorie der Gesellschaftsspiele. Zur
Theorie der Gesellschaftsspiele, pp 295-320, 1928.

[11] J.F. Nash. Non-cooperative games. Annals of Mathematics,
54(2):286-295, Sep. 1951.

[12] L. Benini and G. Micheli. System-level power optimization:
Techniques and tools. ACM Trans. on Design Automation of
Electronic Systems, 5(2):115-192, Apr. 2000.

[13] L. Kruse, E. Schmidt, G. Jochens, A. Stammermann, A.
Schulz, E. Macii and W. Nebel. Estimation of lower and
upper bounds on the power consumption from scheduled
data flow graphs. IEEE Trans. on VLSI, 9(1):3-14, Feb. 2001.

[14] N. Park and A.C. Parker. Sehwa: A software package for
synthesis of pipelines from behavioral specifications. IEEE
Trans. on CAD, 7(3):356-370, Mar. 1988.

[15] P.G. Paulin and J.P. Knight. Scheduling and binding
algorithms for high-level synthesis. In Proc. Design
Automation Conf., 1989.

[16] R.D. McKelvey, A. McLennan and T. Turocy. Gambit:
Software tools for game theory. California Inst. of Tech.,
Uni. of Minnesota and Texas A & M Uni., v 0.97, Sep. 2002.

[17] S.K. Shukla and R.K. Gupta. A model checking approach to
evaluating system level dynamic power management policies
for embedded systems. In Proc. Intl. High-level validation
and Test Workshop, pp 53-57, 2001.

[18] V.K. Srikantam, N. Ranganathan and S. Srinivasan.
CREAM: combined register and module assignment with
floor-planning for low power data-path synthesis. In Proc.
Intl. Conf. on VLSI Design, pp 228-223, 2000.

[19] W.T. Shiue and C. Chakrabarti. ILP-based scheme for low
power scheduling and resource binding. In Proc. Intl. Symp.
on Circuits and Systems, v 3, pp 279-282, 2000.

131

	Main Page
	CODES+ISSS'03
	Front Matter
	Table of Contents
	Author Index

