
Design Optimization of Mixed Time/Event-Triggered
Distributed Embedded Systems

Traian Pop, Petru Eles, Zebo Peng
Dept. of Computer and Information Science, Linköping University

{trapo, petel, zebpe}@ida.liu.se
Abstract
Distributed embedded systems implemented with mixed, event-
triggered and time-triggered task sets, which communicate over bus
protocols consisting of both static and dynamic phases, are emerging
as the new standard in application areas such as automotive
electronics. In a previous paper, we have developed a holistic timing
analysis and scheduling approach for this category of systems. Based
on this result, in the present paper, new design problems are solved,
which we identified as characteristic for such hybrid systems:
partitioning of the system functionality into time-triggered and event-
triggered domains and the optimization of parameters corresponding
to the communication protocol. We addressed both problems in the
context of a heuristic which performs mapping and scheduling of the
system functionality. We demonstrated the efficiency of the proposed
technique with extensive experiments.
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1. Introduction
There are two basic approaches for handling tasks in real-time appli-
cations [7]. In the event-triggered approach (ET), activities are initi-
ated whenever a particular event is noted. In the time-triggered (TT)
approach, activities are initiated at predetermined points in time.
There has been a long debate in the real-time and embedded systems
communities concerning the advantages of each approach [1, 8, 12].

If we look at the communication infrastructure, message passing
activities can be triggered either dynamically, in response to an
event, as with the controller area network (CAN) bus [3], or stati-
cally, at predetermined moments in time, as in the case of time-di-
vision multiple access (TDMA) protocols and, in particular, the
time-triggered protocol (TTP) [7].
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In [8] the authors compare the ET and TT approaches from an in-
dustrial perspective (considering, in particular, automotive applica-
tions). Their conclusion is that one has to choose the right approach
depending on the particularities of the actual tasks. This means not
only that there is no single “best” approach to be used, but also that
inside a certain application the two approaches can be used togeth-
er, some tasks being TT and others ET.

In this context, it is not surprising that several activities have been
started aiming at the development and standardization of bus proto-
cols which support both static (ST) and dynamic (DYN) communi-
cation. Such a protocol has been suggested in [9] and [10]. Also, the
first mixed protocol has been proposed by a consortium, to be used
in automotive applications [6]. In [4], the authors describe the so
called Universal Communication Model (UCM), a framework for
modelling at a high level of abstraction the communication infra-
structure in automotive applications.

New, highly sophisticated automotive applications consist of both
TT and ET task sets implemented on top of complex distributed ar-
chitectures based on mixed ST/DYN bus protocols. In [13] we have
presented an approach to scheduling and schedulability analysis for
such mixed time/event triggered systems. Such an analysis and
scheduling procedure constitutes the fundament for any synthesis ap-
proach aiming at an efficient, highly optimized implementation of a
distributed application which is also guaranteed to meet the timing
constraints.

Starting from such a holistic scheduling and analysis, this paper is
the first one to address specific design issues of hybrid ET/TT sys-
tems like those outlined above. The proposed approach solves the
problems of partitioning a certain functionality into ET and TT,
mapping the functionality on a distributed architecture and adjusting
the parameters of the communication protocol such that the timing
constraints of the final implementation are guaranteed.

The paper is organized in 7 sections. In the next section we
present the architecture of the distributed systems and the applica-
tion model that we are studying. Section 3 describes briefly the ho-
listic scheduling and schedulability analysis we have developed in
[13]. Some specific optimization issues are presented in Section 4.
Section 5 states the design problem we intend to solve and outlines
our solution, while Section 6 presents some experimental results.
The last section presents our conclusions.

2. System Architecture and Application Model

2.1 Hardware Architecture and Bus Access
We consider architectures consisting of nodes connected by a
unique broadcast communication channel. Each node consists of a
communication controller, a CPU, memories (RAM, ROM), and an
I/O interface to sensors and actuators (see Figure 1).

We model the bus access scheme using the Universal Communica-
tion Model [4]. The bus access is organized as consecutive cycles,
each with the duration Tbus. We consider that the communication cy-
cle is partitioned into static and dynamic phases (Figure 1). Static
phases consist of time slots, and during a slot only one node is allowed
to send ST messages; this is the node associated to that particular slot.



During a dynamic phase, all nodes are allowed to send DYN messages
and the conflicts between nodes trying to send simultaneously are
solved by an arbitration mechanism based on priorities assigned to
messages. The bus access cycle has the same structure during each pe-
riod Tbus. Every node has a communication controller that implements
the static and dynamic protocol services. The controller runs indepen-
dently of the node’s CPU.

2.2 Software Architecture
For the systems we are studying, we have designed a software ar-
chitecture which runs on the CPU of each node. The main compo-
nent of the software architecture is a real-time kernel which
supports both time-triggered and event-triggered activities. An ac-
tivity is defined as either the execution of a task or as the transmis-
sion of a message on the bus. For the TT activities, the kernel relies
on a static schedule table which contains all the information needed
to take decisions on activation of TT tasks or transmission of ST
messages. For the ET tasks, the kernel maintains a prioritized ready
queue in which tasks are placed whenever their triggering event has
occurred and they are ready for activation, or when they have been
pre-empted.

The real-time kernel will always activate a TT task at the particular
time fixed for that task in the schedule table. If at that moment, an ET
task is running on that node, that task will be pre-empted and placed
into the ready queue according to its priority. If no tasks are active,
ET tasks are extracted from the ready queue and are (re)activated. ET
tasks can pre-empt each other based on their priority.

The transmission of messages is handled in a similar way: for
each node, the sending and receiving times of ST messages are
stored in the schedule table; the DYN messages are organized in a
prioritized ready queue. ST messages will be placed at predeter-
mined time moments into a bus slot assigned to the sending node.
DYN messages can be potentially sent during any dynamic phase
and conflicts are solved by the communication controllers based on
message priorities. Once the transmission of a DYN message has
started, no other message will be sent on the bus until the current
transmission finishes.

TT activities are triggered based on a local clock available in each
processing node. The synchronization of local clocks throughout the
system is provided by the communication protocol.

2.3 Application Model
We model an application as a set of task graphs. Nodes represent
tasks and arcs represent communication (and implicitly dependen-
cy) between the connected tasks.
• A task can belong either to the TT or to the ET domain.
• Communication between tasks mapped to different nodes is per-

formed by message passing over the bus. Such a message pass-
ing is modelled as a communication task inserted on the arc
connecting the sender and the receiver tasks. The communica-
tion time between tasks mapped on the same node is considered
to be part of the task execution time. Thus, such a communica-
tion activity is not modelled explicitly. For the rest of the paper,

when referring to messages, we consider only the communica-
tion activity over the bus.

• A message can belong either to the static (ST) or the dynamic
(DYN) domain.

• All tasks in a certain task graph belong to the same domain,
either ET, or TT, which is called the domain of the task graph.
However, the messages belonging to a certain task graph can
belong to any domain (ST or DYN). Thus, in the most general
case, tasks belonging to a TT graph, for example, can communi-
cate through both ST and DYN messages.

• Each task τij (belonging to the task graph Γi), has a period Tij, and
a deadline Dij and, when mapped on node Prock, it has a worst
case execution time Cij(Prock). Each ET task also has a given
priority Prioij.

• All tasks τij belonging to a task graph Γi have the same period Ti
which is the period of the task graph.

• For each message we know its size (which can be directly con-
verted into communication time on the particular communica-
tion bus). The period of a message is identical with that of the
sender task. DYN messages also have given priorities.
Figure 2 shows an application modelled as two task graphs

mapped on two nodes.
In order to keep the separation between the TT and ET domains,

which are based on fundamentally different triggering policies,
communication between tasks in the two domains is not included in
the model. Technically, such a communication is implemented by
the kernel, based on asynchronous non-blocking send and receive
primitives (using proxy tasks if the sender and receiver are on dif-
ferent nodes). Such messages are typically non-critical and are not
affected by hard real-time constraints.

3. Holistic Scheduling
In [13], we introduced a scheduling and schedulability analysis ap-
proach for applications as those presented in Section 2. The algo-
rithm constructs a correct static schedule for the TT tasks and ST
messages (a schedule which meets all time constraints related to
these activities) and conducts the schedulability analysis in order to
check that all ET tasks meet their deadlines. Two important aspects
should be noticed:
1. When performing schedulability analysis for the ET tasks and

DYN messages, one has to take into consideration the interfer-
ence from the statically scheduled TT tasks and ST messages.

2. Among the possible correct schedules for TT tasks and ST mes-
sages, it is important to construct one which favours, as much as
possible, the schedulability of ET tasks and DYN messages.
In [13], first we developed a schedulability analysis algorithm for

a set of ET tasks and DYN messages, considering a fixed given stat-
ic schedule of TT tasks and ST messages. Then, we introduced a
method for building a valid static schedule for the TT tasks and ST
messages, which favours the schedulability of ET tasks and DYN
messages. This static schedule is computed over a period TSS which
is equal to the least common multiplier of the periods of TT task
graphs.

In order to guide the static scheduling process towards “good” so-
lutions, we use a metric which captures the “degree of schedulabil-
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ity” of the ET task set. For this purpose we used a cost function
similar with the one described in [15]:

• where N is the number of ET task graphs, Ni is the number of
activities in the ET task graph Γi, and Rij is the response time com-
puted by the schedulability analysis for task τij.
If the ET task set is not schedulable, there exists at least one task

for which Rij > Dij. In this case, f1 > 0 and the cost function is a met-
ric of how far we are from achieving schedulability. If the set of ET
tasks is schedulable, f2 ≤ 0 is used as a metric. A value f2 = 0 means
that the task set is “just” schedulable. A smaller value for f2 means
that the ET tasks are schedulable and a certain amount of processing
capacity is still available.

4. Design Problems
Considering a hard real-time system like the one described in Sec-
tion 2, several design problems emerge. There are, of course, the
classical issues as selection of an architecture (e.g. number and kind
of nodes), the mapping of tasks on the processing nodes, or the as-
signment of priorities to ET tasks and DYN messages [1, 5, 11].
However, due to the heterogeneous ET and TT nature of the appli-
cation and the mixed synchronous/dynamic bus protocol, some new
and very interesting problems can be identified:
• Partitioning of the system functionality into time-triggered and

event-triggered activities. During the design process, a decision
should be made on which tasks and messages will be imple-
mented as TT/ET and ST/DYN activities, respectively. Typi-
cally, this decision is taken, based on the experience and
preferences of the designer, considering aspects like the func-
tionality implemented by the task, the hardness of the con-
straints, sensitivity to jitter, etc. There exists, however, a subset
of tasks/messages which could be assigned to any of the
domains. Decisions concerning the partitioning of this set of
activities can lead to various trade-offs concerning, for example,
the size of the schedule table or the schedulability properties of
the system. For example, in Figure 3 we show a system with two
nodes on which three tasks are mapped: τ1 on Node1, τ2 and τ3
on Node2; τ2 is data dependant on τ1; worst case execution times
(Ci) and deadlines (Di) are shown in the figure. In order to keep
the example simple, communication delays between τ1 and τ2
are ignored. When all three tasks belong to the TT domain, the
system is unschedulable. In this case, either τ2 (scheduling alter-
native depicted in Figure 3.a) or τ3 (Figure 3.b) misses its dead-
line. If, however, τ3 is moved into the ET domain (Figure 3.c),
all tasks are schedulable (in this case, τ2 will pre-empt the exe-
cution of τ3).

• Determining the optimal structure of the bus access cycle. The
configuration of the bus access cycle has a strong impact on the
global performance of the system. The parameters of this cycle
have to be optimized such that they fit the particular application
and the timing requirements. Parameters to be optimized are the
number of static and dynamic phases during a communication
cycle, as well as the length and order of these phases. Consider-
ing the static phases, parameters to be fixed are the order,
number, and length of slots assigned to the different nodes. For
example, consider the situation in Figure 4, where task τ1 is
mapped on node N1 and sends a message m to task τ2 which is
mapped on node N2. In case a), task τ1 misses the start of the ST
Slot1 and, therefore, message m will be sent during the next bus
cycle, causing the receiver task τ2 to miss its deadline D2. In
case b), the order of ST slots inside the bus cycle is changed, the
message m will be transmitted earlier and τ2 will meet its dead-
line. The resulted situation can be further improved, as it can be
seen in Figure 4.(c), where task τ2 finishes even earlier, if the
first DYN phase in the bus cycle can be eliminated without pro-
ducing intolerable delays of the DYN messages (which have been
ignored in this example).
The optimization problems identified above can be approached

once we have solved the holistic scheduling problem outlined in
Section 3 and presented in [13]. In the following section, we discuss
a heuristic aiming at such a global optimization.

5. Design Heuristic
We consider a system specification and an architecture as described
in Section 2. We also consider that some of the tasks are already
mapped to nodes and their domain (TT or ET) is fixed. This can be
the result of decisions already taken by the designer or/and because
part of the functionality is inherited from previous generations of the
product. However, we assume that there are tasks which are not
mapped yet and some of the task graphs are not yet partitioned be-
tween the two domains. We denote with ΨP the set of all tasks which
are not yet assigned to any of the ET or TT domains and with ΨM the
set of all tasks which are not mapped to any node. Note that
ΨP∩ΨM may be not-empty, which means that some tasks have nei-
ther a fixed domain, nor are they mapped on any node. The tasks in
the set ΨP∪ΨM are those to which we refer in the rest of this paper
when we discuss mapping and partitioning. None of the other tasks
is affected, in terms of partitioning and mapping, by any of the de-
sign decisions. Our goal is threefold:
1. to partition the task set ΨP among the ET and TT domains;
2. to map the tasks in the set ΨM onto the nodes in the architecture;
3. to optimize the parameters of the communication protocol.

The above design tasks have to be performed with the overall
goal that the timing constraints of the resulted system are satisfied.
If this is achieved, we say that we have obtained a schedulable im-
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plementation of the system, which implies that the following two
conditions are satisfied:

1) The tasks in the TT domain are schedulable, meaning that we
were able to build a static schedule (Section 3) for all the tasks in
the TT partition such that their deadlines are satisfied;

2) The tasks in the ET domain are schedulable. This means that
after running the scheduling process described in Section 3, the
function DSch, expressing the schedulability degree of the ET ac-
tivities, will have a value DSch ≤ 0.

Before starting to discuss the actual heuristics, some further ob-
servations have to be made. According to the application model pre-
sented in Section 2.3, all tasks in a task graph belong to the same
domain. Thus, the task set ΨP contains complete task graphs and,
by deciding on the partitioning of a certain task, the whole task
graph is assigned to either the TT or ET domain.

A similar partitioning problem, as formulated above for tasks,
could be also defined at the level of messages: considering a set of
messages, for each message it has to be decided if it should be trans-
mitted in an ST phase (statically scheduled) or in a DYN phase (dy-
namically scheduled). In order to keep the presentation reasonably
simple and given the space limitations, in this paper we consider that
all messages are preassigned as ST or DYN. For the same reason, we
also consider that all tasks in the set ΨP have a pre-assigned priority
which is used if the task is assigned to the ET domain.

The design problem outlined above is a combination of subprob-
lems, each of exponential complexity. Therefore, we have elaborated
a design space exploration strategy based on the application of sever-
al heuristics in three successive steps, as shown in Figure 5:
1. The first step (lines 01-06) starts by generating an initial map-

ping, partitioning and bus structure, using several basic criteria
(line 01). If this initial solution is not schedulable, successive
transformations are applied to the partitioning, mapping, and the
bus cycle, with the aim of finding a solution such that the TT
tasks are schedulable. This is performed by generating configu-
rations (in terms of partitioning, mapping and bus cycle) which
are more and more favourable to the TT partition.
The first step is stopped once a solution with a schedulable TT
partition has been reached. If at the end of the first step no such
solution has been found, we conclude that, given the amount of
available resources, no correct implementation of the system can
be generated. This decision is justified by the fact that, if under
the most favorable conditions no static schedule could be gener-
ated for the TT tasks, no further design transformations could
lead to a globally schedulable solution, except for modifications
of the underlying system architecture (e.g adding a new node, re-
placing a node with a faster one or a similar replacement of the
bus). If the configuration generated after the first step is not glo-
bally schedulable, but a correct schedule of the TT tasks and ST
messages has been found, the heuristic moves into the second
step.

2. During the second step (line 09), a partitioning and mapping
algorithm tries to produce a solution such that not only the TT
static schedule is correct, but also the degree of schedulability of
the ET partition is as good as possible. The cost function driving
the design space exploration during this step is DSch (see Sec-
tion 3). Simultaneously with each partitioning and mapping
decision, also the bus cycle is modified in order to fit the new
configuration.

3. If the second step did not succeed in producing a schedulable ET
partition, the third step (line 11) tries to further improve the
degree of schedulability by an aggressive optimization of the bus
cycle.
In the following subsections we further elaborate on the optimi-

zation steps outlined above.

5.1 The first step: Building an initial configuration
The first step starts with generating, based on a very simple and fast
heuristic, a mapping and partitioning of the tasks, as well as a bus
cycle (line 01 in Figure 5):
• The partitioning is performed with the only constraint to evenly

distribute the load between the TT and the ET domains.
• The mapping is based on a very fast heuristic aimed at minimising

inter-processor communication while keeping a balanced proces-
sor load.

• The initial bus cycle is constructed in the following two steps:
1. The ST slots are assigned in order to the nodes such that
Nodei transmits during Sloti (Figure 1). The length of Sloti is set
to a value which is equal to the length of the largest ST message
generated by a task mapped on Nodei. Considering an architec-
ture of 4 nodes, a structure like the one in Figure 6.(a) is pro-
duced after this step.
2. Dynamic phases are introduced in order to generate a mixed
ST/DYN bus cycle. We start from the rough assumption that the
total length of the dynamic phases over a period TSS (TSS is the
length of the static schedule, see Section 3) is equal to the total
length of the DYN messages transmitted over the same period,
which is:

,
where Ti and Li are the period and the length (expressed in time
units) of the DYN message mi. We set the length of a DYN phase
to the length of the largest DYN message Lmax

DYN. The number
n of dynamic phases in each cycle can be determined from the
following equation:

,

where LST is the total length of the static slots in a bus cycle and
LST + n Lmax

DYN is the length of the bus cycle. Finally, the dy-
namic phases are evenly distributed inside the bus cycle. Figure
6.(b) illustrates such an initial bus configuration.
Once we have decided on the above configuration, we can run the

holistic scheduling algorithm, which will lead to one of the follow-
ing outcomes:

a) the system is found schedulable;

01 Gen_Part, Gen_Map, Gen_Bus_Cycle
02 if TT not schedulable then
03 change partitioning (TT to ET)
04 change mapping
05 change bus cycle
06 endif
07 if TT not schedulable then stop endif
08 if ET not schedulable then
09 Mapping_and_Partitioning
10 if ET not schedulable then
11 Optimize_Bus_Access
12 endif
13 endif

Figure 5.  Overview of the Design Heuristic
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b) the TT activities are schedulable but the ET ones are not (a val-
id static schedule has been built but the analysis has identified at
least one ET activity for which Rij > Dij);

c) the ET activities are schedulable but the TT ones are not;
d) both ET and TT activities are not schedulable.
In the first case, the design goal has been achieved and, therefore,

no further optimizations are performed. In the cases c) and d), we
perform the following successive operations, aimed at achieving a
schedulable TT domain (lines 03-05 in Figure 5):

1) Task graphs are moved, one by one, from the TT to the ET do-
main, until either the remaining TT activities are schedulable or
there are no more task graphs to be moved (whole task graphs are
moved and not individual tasks, because, as mentioned earlier, all
tasks in a task graph belong to the same domain). The order in
which task graphs are moved is based on a priority function that
captures the mobility of tasks in the graph:

where ni is the number of tasks in the task graph Γi, and ASAPij is
the earliest possible start time for task τij. Task graphs with a low
average relative mobility are moved first, because, in principle, they
are the most difficult to be scheduled statically.

2) If the TT domain still is unschedulable, TT tasks are remapped
with the goal of avoiding unbalanced node utilization by TT tasks.

3) If no schedulable TT domain has been yet produced, transfor-
mations of the bus cycles are performed such that the delays pro-
duced by ST messages are reduced. In this step, a simpler and faster
version of the heuristic presented in Section 5.3 is used.

If no schedulable TT domain has been produced by the above
transformations, no correct implementation can be obtained with
our heuristic given the available resources. If both the TT and ET
domains are schedulable, we have achieved our design goal, while
in the case of an unschedulable ET domain, the heuristic is contin-
ued with the second step.

5.2 The second step: Mapping and Partitioning
The mapping and partitioning step (line 09 in Figure 5) receives as
an input a configuration in which the TT activities are schedulable
and the ET ones are not. The algorithm is illustrated in Figure 7. It
selects iteratively tasks τij∈ ΨP∪ΨM (line 03) in order to be
remapped and/or repartitioned. The order in which tasks are pro-
cessed is defined by the following two rules, similar to those used
in list scheduling:
1. τij is selected only after all its predecessors in the task graph Γi

have already been processed (these tasks are called ready).
2. Among the ready tasks, the selection is based on a priority func-

tion PF similar to the one proposed by us in [14] (line 03). This
function is based on a critical path metric and it also takes into
consideration the delay introduced by message passing consid-
ering the particular communication protocol, as well as the
nature of the messages (ST or DYN).
Once a task τij has been selected, its mapping and domain will

be decided in a greedy fashion. If τij∈ ΨM (the task mapping is not
fixed), it will be successively mapped to each node (lines 06-15)
and for each alternative, the schedulability analysis (Section 3,
[13]) returns the cost DSch, which captures the degree of schedula-
bility of the produced configuration. If the domain, ET or TT, is also
to be decided (τij∈ ΨP), both alternatives are evaluated (line 08).
This is performed using the function partition (lines 25-29).
Finally, that node and domain are selected for τij which produce
the smallest value for DSch. If only the domain of τij is to be de-
cided, but the mapping is fixed, the best of the two alternatives is se-
lected (line 19). It should be mentioned that a mapping or

partitioning alternative is considered only if, with the resulted con-
figuration, the TT domain is still schedulable (this aspect is not cap-
tured in Figure 7).

Whenever the mapping of a task is modified, the bus cycle has to
be adjusted so that it can ensure the minimum requirements for
transmitting the messages (for example, in line 07). Such an adjust-
ment of the bus access cycle is illustrated in Figure 8, where 4 TT
tasks are mapped on 3 nodes (N1, N2 and N3). The number at the side
of each message represents its length. Tasks mapped on different
nodes communicate through ST messages and an ST slot should be
able to accommodate the longest message transmitted by the associ-
ated node. The figure shows how the lengths of the slots associated
with N1 and N2 are modified after a task has been remapped. In one
case, task τ2 is moved from N2 to N1and therefore, the message m1,2
will disappear (τ1 and τ2 are both mapped on N1), while message
m2,4 will be transmitted in Slot1 instead of Slot2. In the second case,
τ3 is moved from N2 to N1, which means that m1,3 disappears, while
m3,4 is transmitted in Slot1.

5.3 The third step: Optimization of the bus cycle
It may be the case that even after the mapping and partitioning step,
some ET activities are still not schedulable. In the third step (lines
10-12, Figure 5), our algorithm tries to remedy this problem by
changing the parameters of the bus cycle, like ST slot lengths and
order, as well as the number, length and order of the ST and DYN
phases. The goal is to generate a bus access scheme which is adapt-
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Figure 7. Mapping and Partitioning algorithm

01 while (ΨP∪ΨM ≠ ∅ and BestCost > 0) do
02 update priority function PF
03 select task τij∈ ΨP∪ΨM with highest PF
04 BestCost = ∞
05 if τij∈ ΨM then -- task τij is not mapped
06 for (p = 1 to NrNodes)do
07 map τij on Nodep and adjust bus access cycle
08 if τij∈ΨP then Cost,d = partition(τij) -- τij is not partitioned
09 else Cost = DSch; d = domain of τij
10 endif
11 if BestCost > Cost then
12 BestCost = Cost; BestDomain = d;
13 BestNode = p; BestCycle = BusCycle;
14 endif
15 endfor
16 else
17 BestNode = Node on which τij is mapped
18 BestCycle = BusCycle;
19 BestCost, BestDomain = partition(τij);
20 endif
21 τij.node = BestNode; BusCycle=BestCycle;
22 set domain(Γi) to BestDomain
23 ΨP=ΨP \ {τij}; ΨM = ΨM \ {τij}
24 end while
25 function partition(τij)
26 τij.domain = ET; Cost1 = DSch; d1 = ET;
27 τij.domain = TT; Cost2 = DSch; d2 = ET;
28 return min(Cost1, Cost2) and associated di
29 end partition

N1 N2 N3
2 1

34

τ1

τ3

τ4

τ1 τ2,τ3 τ4

Slot1 = max (2, 1) = 2
Slot2 = max (4, 3) = 4

Remap τ2 from N2 to N1
Slot1 = max (1, 4) = 4
Slot2 = max (3) = 3

Remap τ3 from N2 to N1
Slot1 = max (2, 3) = 3
Slot2 = max (4) = 4

Initial slot lengths:

Figure 8. Adjustment of the Bus Access Cycle
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ed to the particular task configuration. The heuristic is illustrated in
Figure 9. The algorithm iteratively looks for the right place and size
of Sloti used for transmission of ST messages from Nodei (outer-
most two loops). Sloti is swapped with all the slots of higher order
(line 03), and all alternative lengths (lines 04-05) of Sloti larger than
its minimal allowed length (which is equal to the length of the larg-
est ST message generated by a task mapped on Nodei) are consid-
ered. For any particular length and position of Sloti, alternative
lengths of the adjacent ET phase Phi are considered (innermost
loop). For each alternative, the schedulability analysis evaluates
cost DSch, and the solution with the lowest cost is selected. If DSch
≤ 0, the system is schedulable and the heuristic is stopped..

It is important to notice that the possible length π of an ET phase
(line 6) includes also the value 0. Therefore, in the final bus cycle,
it is not needed that each static slot is followed by a dynamic phase
(see also Figure 1). Dynamic phases introduced as result of the pre-
vious steps can be eliminated by setting the length to π=0 (such a
transformation is illustrated in Figure 4.c). It should be also men-
tioned that enlarging a slot/phase can increase the schedulability by
allowing several ST/DYN messages to be transmitted quickly im-
mediately one after another. At the same time, the following slots
are delayed, which means that ST messages transmitted by nodes
assigned to upcoming slots will arrive later. Therefore, the optimal
schedulability will be obtained for slot and phase lengths which are
not tending towards the maximum. The number of alternative slot
and phase lengths to be considered by the heuristic in Figure 9 is lim-
ited by the following two factors:
1. The maximum length of a static slot or dynamic phase is fixed

by the technology (e.g. 32 or 64 bits).
2. Only frames consisting of entire messages can be transmitted,

which excludes several alternatives.

6. Experimental Results
In order to evaluate the proposed heuristic, we have generated a
large set of applications with different characteristics. All experi-
ments were run on an AMD Athlon 850 MHz PC. For our first ex-
periments we considered an architecture consisting of 6 nodes. We
have generated 4 sets of applications composed of 60, 75, 90, and
120 tasks respectively. Each set consists of 40 applications. The
number of unmapped tasks was between 10 and the total number of
tasks in the application. 10 task graphs are considered to be unas-
signed to any of the two domains (ET and TT). The average load on
the processors is 60%. Figure 10 shows the percentage of schedula-
ble applications obtained after the successive steps of our heuristic.
By straight forward configuration we mean the mapping, partition-
ing and bus cycle generated at the start of step 1 (line 01 in Figure
5).This is a configuration which, in principle, could be elaborated
by a careful designer without the aid of optimization tools like the
one proposed in the paper. Out of the total number of applications

consisting of 60 tasks, for example, only 10% were schedulable
with the straight-forward configuration and 90% continued the op-
timization process. 9% of the total number of tasks have been found
schedulable with the configuration generated by step 1. As expect-
ed, the mapping, partitioning and bus cycle adjustment performed
in step 2 are leading to a huge improvement, adding 61% of the total
number of applications to the group of schedulable ones. An addi-
tional 4% of the total number of applications is found schedulable
after performing the bus optimization in step 3. A similar trend can
be followed in the experiments with 75, 90 and 120 tasks. It is easy
to observe that by performing the proposed optimizations, huge im-
provements over the straight-forward configuration could be pro-
duced.

An interesting question is to what extent the partitioning of tasks
into the ET and TT domains is contributing to the results illustrated
in Figure 10. Or, ar these results mostly due to the optimized map-
ping? The same question can also be put relative to the bus cycle op-
timization. In order to answer these questions, we considered a
second set of applications consisting of 60, 80 and 100 tasks grouped
into 12, 15, 18 or 20 task graphs and mapped on 4 or 6 nodes. We
have run our heuristic for each of these applications considering four
cases. First, with a subset of tasks that have to be partitioned but no
tasks to be mapped (|ΨM| = 0). Second, with the same subset of tasks
open for mapping but not for partitioning (|ΨP| = 0). The third case
does not allow any bus access optimization, so we switched off the
optimizations in lines 5 and 11 in Figure 5 (however, we keep the
bus cycle adjustment which is needed in Step 2, line 7 in Figure 7).
The fourth case represents the reference, the complete heuristic.
The results are presented in Figure 11, which shows the percentage
of schedulable applications (relative to the total number of applica-
tions) that have been produced by each optimization step. For ex-
ample, after step 2, 45% additional applications were schedulable if
we only allow to perform re-mapping (|ΨP| = 0), as opposed to 74%
in the case when both optimizations are performed. The same num-
ber is 40% if we only allow to perform re-partitioning (|ΨM| = 0).
The percentage of unschedulable tasks after the three steps is 34%
when |ΨP| = 0, 44% for |ΨM| = 0, and 24% when no bus optimiza-
tion was performed, as compared to 7% in the case of the complete
heuristic. The conclusions which we can draw are the following:

1. An efficient partitioning into the ET and TT domains is con-
tributing essentially to the overall optimization, to an extent compa-
rable to the mapping.

01 for i = 1 to NrNodes
02 for j = i to NrNodes
03 swap Sloti with Slotj
04 for all slot lengths λ > min_len(Sloti)
05 len(Sloti) = λ
06 for all DYN phase lengths π do
07 len(Phi) = π
08 if DSch ≤ 0 then stop endif
09 keep solution with smallest DSch
10 end for
11 end for
12 swap back Sloti and Slotj
13 end for
14 bind best position and length of Sloti
15 bind length of Phi
16 end for

Figure 9. Bus Access Optimization

Figure 10. Percentage of Schedulable Applications
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2. When applied together, the three techniques provide much bet-
ter results than the ones obtained when any of the techniques is
eliminated.

Concerning the runtime needed for the optimization process, we
have analyzed each of the three steps separately. For the examples
leading to the results in Figure 10, the average run time for step 1
was 11.7s (60 tasks), 40.1s (75 tasks), 73.2s (90 tasks), and 150s
(120 tasks).

The execution time for step 2 is presented in more detail in Figure
12 and Figure 13. Figure 12 illustrates the time needed for step 2 as
a function of the total number of task graphs to be partitioned (the
characteristics of the applications and the number of nodes are
shown in the figure). The upper curve illustrates the average execu-
tion times for those applications which are running through step 2
without reaching a system configuration which makes them sched-
ulable. This curve can be considered as an upper bound for the ex-
ecution time in step 2. The second curve in Figure 12 gives the
average execution times of those applications that have been found
schedulable during step 2.

In Figure 13, we show, in a similar way, the average execution times
as a function of the number of unmapped tasks. The execution times
needed for the third optimization step are given in Figure 14. As this
step is concentrating only on the communication aspect, the average
execution time is given as a function of the number of nodes.

Finally, we considered a real-life example from the automotive
area, implementing a vehicle cruise controller and a control appli-
cation related to the Anti Blocking System (ABS) on an architec-
ture consisting of 5 nodes. The cruise controller consists of 42 tasks
organized in 11 task graphs. One of these task graphs is fixed into
the TT domain, and the other 10 are unpartitioned. 10 out of the 42
tasks are unmapped. The ABS system consists of 35 tasks already
mapped over the 5 nodes and assigned to the ET domain. Running
our optimization heuristic, step 1 was able to generate a correct stat-
ic schedule for the TT domain, but without producing a globally
schedulable system. Step 2 manages to improve the degree of
schedulability of the system (function DSch) by two orders of mag-
nitude without, however, producing a schedulable system. A correct

implementation has been produced after the bus optimization in
step 3. It is interesting to mention that for the final schedulable so-
lution, out of the 10 unpartitioned task graphs, 2 were assigned to
the ET and 8 to the TT partition. The run times for the three optimi-
zation steps were 5.3s, 708s and 164s respectively.

7. Conclusions
Distributed embedded systems based on mixed static/dynamic
communication protocols are becoming the new standard for auto-
motive applications. Such systems typically run applications con-
sisting of both ET and TT tasks. We have identified a new class of
system optimization issues typical for the heterogeneous systems
considered in the paper: partitioning of the system functionality
into TT and ET domains and the optimization of the bus access
scheme. Both problems were considered in the context of a heuris-
tic which performs the mapping and scheduling of the system func-
tionality. We have shown that the quality of the system
implementation can be significantly improved by the proposed op-
timization heuristics.
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