
Extending the SystemC Synthesis Subset by
Object-Oriented Features

Eike Grimpe
OFFIS Research Institute

Escherweg 2
26121 Oldenburg, Germany

grimpe@offis.de

Frank Oppenheimer
OFFIS Research Institute

Escherweg 2
26121 Oldenburg, Germany

oppenheimer@offis.de

ABSTRACT
In this article we present an approach to object-oriented
hardware design and synthesis based on SystemC. We will
give an introduction to an extended SystemC synthesis sub-
set which we propose, and, in particular, its object-oriented
features. We will also briefly outline our basic synthesis con-
cepts for object-oriented hardware specifications. Finally we
will present some examples for the application of the ex-
tended synthesis subset, which are directly processable by a
first synthesis tool prototype which we have developed for
this purpose.

Categories and Subject Descriptors
B.6.3 [Logic Design]: Design Aids—Automatic synthesis,
Hardware description languages ; B.7.1 [Integrated Cir-
cuits]: Types and Design Styles—VLSI ; C.0 [General]:
System specification methodology ; C.3 [Special-Purpose
and Application-Based Systems]: Real-time and em-
bedded systems

General Terms
Design, Languages

Keywords
SystemC, C/C++ based design, hardware description lan-
guage, hardware synthesis, system level design, object-orien-
tation, high-level synthesis

1. INTRODUCTION
One of the most serious challenges in embedded system

design today is the growing design productivity gap. Driven
by the enormous technological advances in semiconductor
manufacturing and by ever increasing demands for extended
functionality the complexity of embedded systems is rapidly
growing. Unfortunately the designer’s productivity does not

Permission to make digital or hard copies of all or part of this work for
personal or classroom use is granted without fee provided that copies are
not made or distributed for profit or commercial advantage and that copies
bear this notice and the full citation on the first page. To copy otherwise, to
republish, to post on servers or to redistribute to lists, requires prior specific
permission and/or a fee.
CODES+ISSS’03,October 1–3, 2003, Newport Beach, California, USA.
Copyright 2003 ACM 1-58113-742-7/03/0010 ...$5.00.

grow at the same rate causing a growing gap between what
can be technically realized on a single chip, and what can
be effectively mastered by a design staff of reasonable size,
in reasonable time.

Most probably, there will not be a sole solution to this
problem, but rather a combination of different ones, includ-
ing, for example, IP-centric modelling, application specific
processor synthesis, a growing portion of software, and so
on. However, we believe that increasing the level of ab-
straction which can be directly applied to hardware design
is another important building block. A lesson which can be
learned from software engineering is that the object-oriented
modelling paradigm can help a lot in successfully handling
systems of great complexity. Additionally, a convergence be-
tween hardware and software modelling paradigms is quite
desirable for making a further step towards real system level
design. Most embedded systems today consist of hardware
as well as of software, and a unified modelling approach
would allow one to make the decision on hardware/software
partitioning later in the design process, maybe even auto-
matically.

For this reason the goal of our research work is the devel-
opment of design methodologies, languages, and tools which
support hardware synthesis from object-oriented specifica-
tions. Existing hardware design languages, such as VHDL
and Verilog, do not support object-oriented modelling, and
lack respective language concepts. The still emerging system
level design language SystemCTM [2, 7] would principally al-
low for applying object-oriented modelling, since it is in fact
a C++ class library which provides the possibility of mod-
elling and simulating hardware based on C/C++. But exist-
ing synthesis tools which are able to process SystemC spec-
ifications, such as the CoCentricTMSystemC Compiler1 [13,
14], only support a synthesis subset that is widely equiv-
alent to common RT/Behavioral level VHDL and Verilog
synthesis subsets, excluding almost all object-oriented C++
features. We try to overcome these limitations with new syn-
thesis techniques, and also with some additions to SystemC
which provide some object-oriented concepts in a way which
better suits the requirements from hardware synthesis.

The remainder of this article will first give a short overview
of related work. Section 3 will very briefly define the terms
structural and data type based object-orientation in order to
allow for a better classification of the approach presented in

1In fact this is the only working synthesis tool at the mo-
ment, the authors of this paper are aware of, which is able
to process SystemC

25

this work. Section 4 will introduce and discuss our proposed
extended SystemC synthesis subset. Section 5 outlines our
basics synthesis concepts for object-oriented language con-
structs, and section 6 will present some examples illustrating
the application of the extended subset. The article will close
with the conclusions, and an outlook on future work.

2. RELATED WORK
Over the last years there have already been several ap-

proaches on object-oriented hardware design. Some of these
approaches are based on object-oriented programming lan-
guages and augment them by capabilities for hardware mod-
elling [4, 3, 15], whilst other approaches are based on exist-
ing hardware description languages and augment them by
object-oriented language features [12, 11, 1]. None of these
approaches reached a general breakthrough so far, because
they either primarily focus on simulation rather than on syn-
thesis, lack sufficient tool support, or, like SystemC, make
only use of an object-oriented programming language in or-
der to add hardware modelling capabilities, but basically
do not allow for object-oriented modelling. However, espe-
cially the VHDL based approaches [9, 11, 1] have strongly
motivated and influenced our work.

3. STRUCTURAL VS. DATA TYPE BASED
OBJECT-ORIENTATION

We distinguish basically two principle approaches to object-
oriented hardware design. Structural approaches model whole
hardware components/entities as concurrent objects. That
means, for instance, that components like multiplexer, arith-
metic logical units (ALU), decoders, registers, and register
files are modelled as self-contained objects. Although this
modelling style seems to be quite natural at first sight, it
raises various problems. The combination of parallelism and
object-oriented modelling poses some fundamental problems
that are well known and discussed in object-oriented concur-
rent programming, for several years now. For example, the
fundamental object-oriented concept of inheritance can only
be hardly combined with the concept of concurrent, objects,
i.e., objects with an own thread of control. This problem is
known as so called inheritance anomaly [5]. Up to now, the
authors of this article are not aware of a general solution to
this problem.

Data type based approaches make use of object-orientation
as a way to create new user defined data types, but not struc-
tural objects, as used from programming languages, such as
C++ and Java. Objects in this sense do not have an own
thread of control, and they are not going to be independent
entities as discussed above. First class objects are user de-
fined data objects, such as data packages, data containers,
computational elements, like complex numbers, vectors, ma-
trices or filters, etcetera. These elements are used within a
sequential context, usually a process, and may move from
place to place in a design, but do not determine the structure
of a system.

Our approach focuses on data type based object-oriented
modelling for mainly two reasons; first, because of the prob-
lems of the structural approaches as mentioned above, and
second, because it can be applied relatively easy, and in
a straightforward way, for extending the limited System-
C/C++ subset which is supported for synthesis by exist-
ing tools. The application of a kind of structural object-

orientation is also possible, based on so called global objects
(refer to section 4.3), but only in a very limited way, thus
avoiding most of the problems of object-oriented concurrent
programming.

4. EXTENDING THE SYSTEMC SYNTHE-
SIS SUBSET

The modelling language SystemC is gaining increasing im-
portance as system level design language for several rea-
sons. First of all it allows one to model hardware based
on C/C++, since it is in fact a C++ class library compris-
ing hardware modelling and simulation features. C/C++
is presumably the most widespread and known program-
ming language most designers are familiar with even more
likely than with any hardware description language, such
as VHDL or Verilog. And C/C++ is supported by a wide
range of established tools and development environments, a
lot of them even available as freeware. A SystemC design
can just be compiled with most common C++ compilers,
and then be simulated by running the resulting executable
without requiring an external simulator. Starting the de-
sign process with a ‘golden model’ written in C/C++ is a
common practice in embedded system design. SystemC al-
lows one to keep this language whilst refining a design down
to a cycle accurate or even synthesizable level. Moreover
modelling at different levels of abstraction and new design
methodologies, such as transaction level modelling, provide
for the possibility of a quick and flexible design space explo-
ration.

Although SystemC does not limit the use of C++ in prin-
ciple, existing synthesis tools for SystemC do not support
object-oriented features, as mentioned in the introduction.
But by applying some additional synthesis techniques, as
being outlined in section 5, this restricted synthesis subset
can be extended by a wide range of object-oriented C++
features which are discussed in the following.

4.1 Classes and Co.
The basic language feature of C++ that allows for object-

oriented modelling is its class concept in combination with
inheritance. Therefore our extended synthesis subset in-
cludes most of the class related language constructs provided
by C++. In particular, this means the ability to:

• declare classes;

• create new classes by means of inheritance from al-
ready existing classes;

• derive classes from multiple and virtual parent classes;

• declare data members of scalar and complex type, in-
cluding class types and array types;

• declare member functions and operators;

• redefine member functions and data members in de-
rived classes;

• declare constructor methods;

• declare class templates with scalar and type parame-
ters.

26

As being common practice in C++, classes can be used
as types for objects in a design, for instance, as type for a
variable, a signal, or port, as a return type for a function,
or as a type for a formal parameter. A class type can just
be used wherever another type can be used. Data members
and member functions can also be used and accessed in the
same way as in C++.

Supporting these features should provide for the possibil-
ity of declaring and using classes and objects in basically
the same way as usual in C++, but there are, of course,
also some restrictions and limitations with respect to hard-
ware modelling and synthesis. For instance, dynamic object
creation, and destruction by means of the new and delete

operators are excluded from the synthesis subset for obvious
reasons. Pointer variables, or, more precisely, pointer arith-
metic, is also excluded. We believe that pointer synthesis,
although possible in principle, tends towards producing in-
efficient hardware, in terms of area and speed, but, at the
same time, offers only very little modelling benefit in the
absence of dynamic memory allocation.

4.2 Polymorphism
Polymorphism is a modelling concept which, simply speak-

ing, allows one to handle objects, or references to objects, of
different classes but with common features uniformly. Ob-
jects of different classes may provide the same abstraction of
an operation—which means with the same signature—but
with different implementations. An operation that is re-
quested on a reference that may refer to objects of different
classes is dynamically bound2 to a concrete implementation
at runtime, dependent on the class of the object actually
being referenced. Whoever requests this operation does not
have to explicitly take care about that. A classical example
from software engineering for the application of polymor-
phism is a class hierarchy of geometrical objects, like Circle
and Square, being derived from a common base class, all
providing a draw()-method. If an instance of a geometrical
object should be drawn to a screen just this draw()-method
has to be invoked without having to know the concrete type
of the geometrical object. A runtime system will automati-
cally bind the correct method implementation to the call.

There is also a wide range of potential applications for
polymorphism in hardware. For instance, different formats
of data packages, or datagrams, may differ in several as-
pects but may share the same address format. A hardware
component with the purpose to route data packages could
handle packages of different formats, even dynamically at
runtime, since it only would have to deal with the address,
whose format is always the same. Another example are dif-
ferent kinds of filters which could be dynamically exchanged
at runtime dependent on actual needs, e.g., for best fitting
varying kinds of data streams. Further examples include
instructions and operations that could be grouped accord-
ing to common features. For instance, a store instruction
usually has a source and a destination, no matter, if it op-
erates on registers or memory addresses, and whether it in-
cludes immediate operands or not. Likewise, binary arith-
metical operations, as illustrated by Figure 1, always have
two operands and return a result on execution. A concrete
example for the application of these operations is given in
section 6.

2Regarding runtime, or dynamic, polymorphism.

virtual execute()virtual execute()

Add

Add()
virtual execute()

Mult

Mult()

virtual execute()

m_leftOp
m_rightOp

ArithOp

ArithOp()

Sub

Sub()

Figure 1: Class hierarchy of arithmetic operations

The polymorphism mechanism provided by C++, and
therefore by SystemC, too, is based on the use of point-
ers. A pointer may reference instances of different classes
at runtime, and thus methods invoked on a pointer are dy-
namically dispatched. As explained in the previous section,
pointers are excluded from our synthesis subset, making an
alternative polymorphism realization necessary.

What we propose as alternative, and what is also sup-
ported by our synthesis tool prototype, is a tagged object
approach. A tagged object—we call this also a polymorphic
object—is a self-contained object, with an own state space,
which means it is not just a reference to an object, like a
pointer. This makes reference resolution for a polymorphic
object at runtime obsolete. Only its actual class must be
determinable at runtime. In the synthesised hardware the
actual class of a polymorphic object is tracked by an arti-
ficial attribute, called tag. More details on this are given
in section 5. The important point for modelling is, that a
polymorphic object provides for dynamic binding of oper-
ations, and that it behaves widely similar to a pointer in
C++, for instance, in respect of assignment rules. Making
use of polymorphic objects requires for including an addi-
tional C++ class library, called ‘OOHWLib’, which is freely
available. An application example is given in section 6.

4.3 Global Objects
Communication modelling is one of the key aspects in

the design of complex embedded systems. Methodologies
and techniques that would help to improve the modelling of
communication between subcomponents could also signifi-
cantly improve the whole design process. For this reason
SystemC provides the concept of channels for communica-
tion. A channel can be used to abstract from the details
of a certain form of communication—for instance, a certain
protocol—, and allows processes to communicate and ex-
change data with each other, based on method calls instead
of signals. This concept already has led to a new kind of
design methodology, called transaction level, or transaction
based, modelling, actually being intensively discussed in the
SystemC community [10].

Indeed the channel concept provides for modelling com-
munication at a higher level of abstraction, and to separate
communication and behavior more cleanly. But unfortu-
nately, channels do not generally possess a clear synthesis
semantics. And, although being intended for communica-
tion between concurrent components, they do not posses
built-in mechanisms for handling concurrent accesses. This
makes channels quite useful for creating un-timed models
and for simulation but not for synthesis.

27

For this reason we offer an alternative concept to SystemC
channels, based on so called global objects. A global object
is, in principle, an object which is declared as member of a
SystemC module, like a port or signal. Therefore it is visible
and accessible by all processes declared in the same module.
Like any other object a global object may specify a set of
methods which forms its interface. This allows processes to
communicate and exchange data via global objects based on
method calls, as illustrated in Figure 2, similar to SystemC’s
channels. Like ports and signals, global objects which are
located in different modules can be bound to each other, thus
making communication throughout a hierarchy of modules
possible.

global object process
get()

process

FIFO

put()

Producer Consumer

Figure 2: Method based communication via global
object

In contrast to channels, a global object possesses built-in
mechanisms for handling concurrent accesses, a clear syn-
thesis semantics, and it exhibits a timed behavior during
simulation. Handling concurrent accesses is basically re-
alised by means of a scheduler which has to be specified
for each global object by the user. The scheduler deter-
mines which client process is granted to access the global
object in the case of concurrent requests. All other request-
ing clients are blocked meanwhile. As a consequence ac-
cesses to a global object are mutual exclusive. In addition
this is supported by a guard mechanism which allows one to
associate a Boolean expression—the so called guard—with
a member function. Clients requesting an operation whose
guard is ‘false’ at that moment are ignored for scheduling
and are blocked. The timed behavior of global objects gives
the designer an early and realistic impression on the tempo-
ral behavior of the modelled system during simulation even
before preforming synthesis.

In order to declare and to use global objects in a design,
the user has to include the same additional class library,
that also provides the polymorphic objects discussed in the
previous section.

5. SYNTHESIS BASICS
In this section we will give a very brief overview of our

basic synthesis concepts. More details can be found in [8]
which builds the foundation of our work.

The key of the synthesis concept we apply to object-
oriented hardware specifications forms a mapping of objects
to bit vectors. Data members of an object are represented
by slices of the generated bit vector. Therefore, the width of
a bit vector representing an object is given by the sum of the
bit widths of all individual data members of the object. For
instance, for a Boolean member 1 bit is added, and for an
arbitrary sized integer (sc bigint<>) the respective number
of bits which were used for its declaration. If a data member
is itself an object, it is transformed into a bit vector first and
then contributes to the size of its super object. Wherever a
class type was used before, it is replaced by a bit vector of
appropriate size during synthesis. Access to data members

of an object is replaced with access to the appropriate slice
of the bit vector representing the original object. Member
functions, also including constructors and overloaded oper-
ators, are transformed into ordinary non-member functions
which operate on the synthesised bit vectors instead of the
original objects.

Bit vectors representing polymorphic objects are chosen
big enough to store objects of different classes, which basi-
cally means as big as the biggest object ever being assigned.
Additionally, an artificial attribute—the tag mention in sec-
tion 4.2—is added to the state space of a polymorphic ob-
ject allowing for tracking its actual class. With the ability
to dynamically determine the class of a polymorphic object
by means of the tag, dynamic binding of operations can be
easily realised, for instance, by means of a set of ‘if state-
ments’, or a ‘switch statement’, which select from different
implementations dependent on the current value of the tag.

From a global object a set of synchronous and asynchronous
processes is generated which implement the scheduling of
concurrent accesses, the evaluation of the guard conditions,
the operations provided by a global object, and all the nec-
essary multiplexing. The communication between a global
object and its client processes is mapped to a signal based
communication with a fixed handshake protocol.

5.1 The ODETTE Synthesizer
The ODETTE synthesizer is a synthesis tool prototype

which was developed—and which is still under development—
in the course of the European project ODETTE [6]. It is
able to process the extended SystemC/C++ subset which
is described in the previous section. Starting from a Sys-
temC description, which is based on this subset, the synthe-
sis tool generates behavioral equivalent SystemC or VHDL
code that can be further processed with existing tools and
technologies. As shown in Figure 3 the tool is settled on top
of existing tool chains and does neither perform behavioral
synthesis nor logic synthesis at the moment. It just maps
object-oriented language elements in the input specification
to behavioral equivalent lower lever constructs, according to
the basic synthesis concepts outlined in the previous section.

Design Compiler
Behavioral Compiler
SystemC Compiler

Synthesiser
ODETTE

TM

TM

TM

RT/Behavioral Level
SystemC or VHDL

RT/Behavioral Level
SystemC

Object Oriented

Figure 3: Synthesis flow

The synthesis tool prototype has now reached a state
where it provides for the possibility of performing concrete

28

modelling and synthesis experiments. That means that it ef-
fectively supports all the features that are listed in section 4,
and that it allows one to start the automated synthesis flow
from a higher level of abstraction. But it is still a prototype
offering a high potential for improvements. In particular,
more sophisticated optimization techniques could be inte-
grated which aim at producing better results in terms of
circuit area and speed.

6. EXAMPLES
The following code excerpts will demonstrate the applica-

tion of some higher level language concepts, namely global
objects and polymorphic objects, included in our extended
SystemC synthesis subset. The presented code is directly
processable with the ODETTE synthesis tool prototype with-
out any need for further manual refinement. The generated
output is a SystemC or VHDL specification which can be
fed into off-the-shelf synthesis tools, such as the CoCentric
SystemC Compiler, or the Synopsys Design CompilerTM.

In the first example a classical producer/consumer sys-
tem is modelled which is also often used as an example for
demonstrating the benefits of channels in SystemC. Pro-
ducer and consumer are exchanging data via a bounded
buffer, which represents a shared resource (see also Figure
2). In ‘plain’ SystemC the bounded buffer would be mod-
elled as a channel. According to our approach it is imple-
mented as a global object now combining high level mod-
elling with automated synthesis.

#include ”systemc.h”
#include ”oohwlib.h”

SC MODULE(ProdCons) {
sc in< bool > clock;
sc in< bool > reset;
sc out< ElementType > output;

// Declaration of a global object with scheduler ‘RoundRobin’
// and user defined class template ‘FIFO<>’:
GlobalObject< RoundRobin, FIFO< int, 12 > >

sharedBuffer;

void producerOdd() {
int val ;
sharedBuffer.reset ();
sharedBuffer.subscribe ();
val = 1;
wait();
while(true) {

// Blocking global method call to ’sharedBuffer’:
GLOBAL PROCEDURE CALL(sharedBuffer, put(val));
val += 2;
wait();

}
}

void producerEven() {...}

void consumer() {...}

SC CTOR(top)
{

SC CTHREAD(producerOdd, clock.pos());
watching(reset .delayed() == true);

SC CTHREAD(producerEven, clock.pos());
watching(reset .delayed() == true);

SC CTHREAD(consumer, clock.pos());
watching(reset .delayed() == true);

}
};

Figure 4: Using a global object

Three client processes are connected to the global object
sharedBuffer; two producers, one producing odd numbers,
the other producing even numbers, and a consumer which
reads elements from the buffer and writes them to an output
port. In the same way any further client process could be
connected. In a real world application instead of numbers
any kind of data could be exchanged via the buffer, e.g.,
data packages, frames, or samples.

The following code shows an excerpt from the implemen-
tation of class template FIFO that was used in the above
example. In principle it is an ordinary C++ class declaring
some data members and member functions. Modelling it as
a template which is parameterized with the element type
and the size of the buffer makes it possible to use it very
flexible. What makes the implementation different from an
implementation in plain C++ is the declaration of some
methods as guarded methods. But this does not prevent the
class from being used like any other class, since the guard
mechanism is only invoked on global objects (cf. 4.3).

#include ”oohwlib.h”

template< class Type, unsigned int SIZE >
class FIFO {

public:
FIFO() {

reset ();
}

GUARDED METHOD(void, // return type
put(const Type &t), // signatue
! isFull ()) { // guard

m buffer[m bottom] = t;
m bottom = nextIndex(m bottom);
m empty = false;
m full = (m bottom == m top);
m numberOfEntries = m numberOfEntries + 1;

}

GUARDED METHOD(void, reset(), true) {...}
GUARDED METHOD(Type, get(), !isEmpty()) {...}
GUARDED METHOD(void, remove(), !isEmpty()) {...}
GUARDED METHOD(bool, isFull() const, true) {...}
GUARDED METHOD(bool, isEmpty() const, true) {...}

protected:
... // further member declarations

};

Figure 5: Declaration of class FIFO

The next example picks up the polymorphic arithmetic
operations illustrated in Figure 1. The execute method is
dynamically dispatched which means that one does not have
to take care about the concrete type of an operation being
sent via input port operation, as demonstrated in process
behavior. Dependent on the actual type of the operation
always the correct implementation of execute will be in-
voked. Like the previous example, the presented code can
be directly processed by the ODETTE synthesiser. Note,
that this is a very simplified example due to spacial limita-
tions in this article.

#include ”systemc.h”
#include ”oohwlib.h”

class ArithOp {
// ’tag ’ the class for polymorphic usage:
POLYMORPHIC(ArithOp)

public:
ArithOp(const int leftOp, const int rightOp) :

m leftOp(leftOp), m rightOp (rightOp) {

29

}

virtual void execute(int &result) {
// nothing to do here. Will be implemented in derived classes.

}

protected:
int m leftOp;
int m rightOp;

};

class Mult : public ArithOp {
// ’tag ’ the class :
POLYMORPHIC(Mult)

public:
virtual void execute(int &result) {

return(m leftOp ∗ m rightOp);
}

};

class Add : public ArithOp {
// ’tag ’ the class :
POLYMORPHIC(Add)

public:
virtual void execute(int &result) {

return(m leftOp + m rightOp);
}

};

SC MODULE(PolyALU) {
sc in< bool > clock;
sc in< bool > reset;
sc out< int > acc;
// Declaration of a ’polymorphic’ port:
sc in< PolyObject< ArithOp > > operation;

void behavior() {
PolyObject< ArithOp > localOp;
int result ;
wait();
while(true) {

localOp = operation.read();
opResult = acc.read();
// The following function call is dynamically dispatched
localOp−>execute(result);
acc.write(result);
wait();

}
}

SC CTOR(PolyALU) {
SC CTHREAD(behavior, clock.pos());
watching(reset .delayed() == true);

}
};

Figure 6: Applying polymorphism

7. CONCLUSIONS AND OUTLOOK
In this paper we have illustrated how the limited Sys-

temC synthesis subset which is supported by existing syn-
thesis tools can be simply extended by most object-oriented
C++ features, and we have proposed an appropriate synthe-
sis technique for this purpose. We have also discussed how
hardware design can benefit from the application of object-
orientation modelling techniques. We have further presented
a tool prototype which is able to process the proposed ex-
tended synthesis subset by performing the illustrated syn-
thesis techniques, and which generates SystemC or VHDL
specifications that are further processable with existing off-
the-shelf tools.

Future work will mainly consist in improving the synthesis
tool prototype. One major focus will be the integration of
more sophisticated optimisation techniques and strategies in
order to produce better results in terms of circuit area and

speed. Another focus will be the further extension of the
supported synthesis subset, and, in the mid- or long-term,
the integration of concepts from behavioral synthesis.

8. REFERENCES
[1] P. Ashenden, P. Wilsey, and D. Martin. Suave:

Object-oriented and genericity extensions to vhdl for
high-level modeling. In Proceedings of Forum on
Design Languages (FDL98), pages 109–118,
September 1998.

[2] T. Grötker, S. Liao, G. Martin, and S. Swan. System
Design with SystemC. Kluwer Academic Publishers,
2002.

[3] T. Kuhn, T. Oppold, C. Schulz-Key, M. Winterholer,
W. Rosenstiel, M. Edwards, and Y. Kashai. Object
oriented hardware synthesis and verification. In
ISSS’01, pages 189–194, October 2001.

[4] T. Kuhn, W. Rosenstiel, and U. Kebschull. Object
oriented hardware modeling and simulation based on
java. In International Workshop on IP Based
Synthesis and System Design, Grenoble, France, 1998.

[5] S. Matsuoka and A. Yonezawa. Analysis of inheritance
anomaly in object-oriented concurrent programming
languages. In G. Agha, P. Wegner, and A. Yonezawa,
editors, Research Directions in Concurrent
Object-Oriented Programming, pages 107–150. MIT
Press, 1993.

[6] ODETTE. Object-oriented co-DEsign and functional
Test TEchniques. http://odette.offis.de.

[7] Open SystemC Initiative. SystemC Version 2.0 User’s
Guide. Update for SystemC 2.0.1, 2002.

[8] M. Radetzki. Synthesis of Digital Circuits from
Object-Oriented Specifications. PhD thesis, University
of Oldenburg, 2000.

[9] M. Radetzki, W. Putzke-Röming, and W. Nebel.
Objective vhdl: The object-oriented approach to
hardware reuse. In J.-Y. Roger, B. Stanford-Smith,
and P. T. Kidd, editors, Advances in Information
Technologies: The Business Challenge, 1998.

[10] H.-J. Schlebusch, G. Smith, D. Sciuto, D. Gajski,
C. Mielenz, C. K. Lennard, F. Ghenassia, S. Swan,
and J. Kunkel. Transaction based design: Another
buzzword or the solution to a design problem? In
Proceedings of DATE’03, 2003.

[11] G. Schumacher. Object-Oriented Hardware
Specification and Design with a Language Extension to
VHDL. PhD thesis, University of Oldenburg, 1999.

[12] S. Swamy, A. Molin, and B. Covnot. Oo-vhdl
object-oriented extensions to vhdl. IEEE Computer,
28(10):18–26, October 1995.

[13] Synopsys, Inc. CoCentric(R) SystemC Compiler
Behavioral Modeling Guide, 2002.

[14] Synopsys, Inc. CoCentric(R) SystemC Compiler RTL
User and Modeling Guide, 2002.

[15] S. Vernalde, P. Schaumont, and I. Bolsens. An object
oriented programming approach for hardware design.
In IEEE Computer Society Workshop on VLSI’99,
Orlando, April 1998.

30

	Main Page
	CODES+ISSS'03
	Front Matter
	Table of Contents
	Author Index

