
Virtual Synchronization Technique with OS Modeling
for Fast and Time-accurate Cosimulation

Youngmin Yi Dohyung Kim Soonhoi Ha
CAP Laboratory

Department of Computer Science and Engineering
Seoul National Univ., Seoul, Korea

+82 2 8807292

{ymyi, dhkim, sha}@iris.snu.ac.kr

ABSTRACT
Hardware/Software cosimulation is the key process to shorten the
design turn around time. We have proposed a novel technique,
called virtual synchronization, for fast and time accurate
cosimulation that involves interacting component simulators. In
this paper, we further extend the virtual synchronization technique
with OS modeling for the case where multiple software tasks are
executed under the supervision of a real-time operating system.
The OS modeler models the RTOS overheads of context switching
and tick interrupt handling as well as preemption behavior. While
maintaining the timing accuracy to an acceptable level below a
few percents, we could reduce the simulation time drastically
compared with existent conservative approach by removing the
need of time synchronization between simulators. It is confirmed
with a preliminary experiment with a multimedia example that
consists of four real-life tasks.

Categories and Subject Descriptors
B.7.2 [Design Aids]: Simulation and Verification

General Terms
Performance, Verification.

Keywords
Cosimulation, virtual synchronization, OS modeling

1. INTRODUCTION
Software modules are taking more and more roles in embedded
systems and it is crucial to enable software development
concurrently with the hardware development to reduce the design
time. This can be achieved by hardware/software cosimulation in
the hardware/ software codesign methodology that uses a virtual
prototype.

Cosimulation can be used to evaluate several candidate
architectures in the architecture selection stage of which the goal
is to find out an optimal architecture for a given application. A
popular cosimulation technique in this stage is to use host code
execution with delay annotation. A task is not cross-compiled to

target code but compiled and executed as host code and its timing
information is estimated a priori and annotated. Data exchange
between processing components is modeled and performed at the
transaction level. Since static timing estimation cannot take into
account any run-time variation of performance, timing accuracy of
cosimulation is limited. Recently, there have appeared many
research results ([3][4][6]) and commercial tools([14][15]) that are
considering this level of abstraction.

 Cosimulation can also be used for coverification of designed
system where timing accuracy is the key requirement. In this
stage, time-accurate instruction set simulator (ISS) and RTL
simulator are usually used for software component and for
hardware component respectively[1][14][15]. As a result,
cosimulation involves multiple component simulators running
concurrently and interacting with each other. It is known that
time-accurate cosimulation is much slower than delay-annotated
transaction level cosimulation by some orders of magnitude. Since
a time-accurate cosimulation may also be used for the last stage of
design space exploration such as fine-tuning of communication
architecture and memory systems, it is desirable to speed up the
cosimulation speed, which is the main concern of this paper.

There are two main causes for low performance of time accurate
cosimuation: one is slow simulation speed of each component
simulator, and the other is time synchronization overhead between
component simulators. There have been several efforts to speed
up time-accurate cosimulation. Compiled ISS[2] was proposed to
boost the simulation speed of software simulator. It achieves high
simulation speed by removing the overhead of instruction
decoding at run time. Instead, it translates each target instruction
directly to one or more host instructions at compile time. But it
has a drawback that it lacks of adaptability to the modification of
the architecture or the compiler. Also, it is difficult to apply this
approach to the dynamic program such as OS model. Moreover,
time synchronization overhead remains between component
simulators.

Recently, we have proposed the virtual synchronization technique
for distributed time-accurate cosimulation to reduce the simulation
time and the time synchronization overhead simultaneously[7].
The virtual synchronization technique eliminates the need for time
synchronization between component simulators at all:
synchronization appears accomplished only when events are
exchanged. Also it improves the performance of an individual
simulator by removing the overhead of redundant local clock
advancement.

However, there is a critical constraint on the simulated tasks to
apply the virtual synchronization technique. The task execution

Permission to make digital or hard copies of all or part of this work for
personal or classroom use is granted without fee provided that copies are
not made or distributed for profit or commercial advantage and that
copies bear this notice and the full citation on the first page. To copy
otherwise, or republish, to post on servers or to redistribute to lists,
requires prior specific permission and/or a fee.
CODES+ISSS ’03, October 1-3, 2003, Newport Beach, California, USA
Copyright 2003 ACM 1-58113-742-7/03/0010…$5.00.

1

model that virtual synchronization assumes is that the execution
results of the task do not depend on the arrival times of input
events but only on the arrival order of them. Once a task is
executed with a given set of input samples, it assumes completed
without interruption.

In this paper, we extend the virtual synchronization technique to
the case where multiple software tasks are executed under the
supervision of a real-time operating system (RTOS) in a processor.
Virtual synchronization cannot be directly applied in this case
since an RTOS does not satisfy the execution model that virtual
synchronization assumes: if the input samples for a task with
higher priority arrives at the processor, the RTOS preempts the
current task execution in the middle. On the other hand, it is a big
burden to run the RTOS itself on the processor ISS. The proposed
approach runs only application tasks on the ISS and models the
RTOS in the cosimulation backplane to achieve faster
cosimulation still preserving the timing accuracy to an acceptable
level below a few percents.

In the next section, we explain the time synchronization problem
between component simulators and the virtual synchronization
technique our work is based on. Section 3 presents motivation and
section 4 describes the proposed technique with RTOS modeling.
In section 5, we formulate the expected performance improvement
when the modeling is used. Experimental results are shown in
section 6. Related work and conclusions follow in section 7 and 8
respectively.

2. TIME SYNCHRONIZATION PROBLEM
AND VIRTUAL SYNCHRONIZATION
A time-accurate cosimulation environment consists of a set of
component simulators. Figure 1(a) illustrates a simple example
that involves a HW simulator and a SW simulator. The source
block models an environment and generates the triggering events
to the SW task periodically with period of 8 time units. The
number denoted inside a block indicates the simulated time
duration of event processing: for example, the SW task takes 4
time units for event processing. And we assume for simple
illustration that the SW simulator is twice faster than the HW
simulator to advance its local clock one time unit.

When multiple simulators are involved, the main difficulty is to
synchronize the simulators to avoid the causality error. A simple
but most popular scheme for time synchronization between
component simulators is conservative approach[11]. In this
approach, the local clock advancement is marshaled at every time
unit as illustrated in Figure 1(b). Then, the cosimulation speed is
bounded by the performance of the slowest simulator further
degraded by synchronization overhead. And the component
simulator takes simulation time for clock advancement without
doing any useful work during the idle time. To reduce the
synchronization overhead, some advanced techniques have been
developed: optimized approach[13] and optimistic approach[12].
Unfortunately, they usually assume special features of component
simulators so their applicability is severely restricted. Virtual
synchronization technique, on the other hand, does not assume
such special features of simulators. Instead, it assumes the
execution model of simulated tasks: they are functional and
monotonic meaning that the output results of the tasks depend
only on the arrival order not on the arrival times of input events.

SW

HW

simulation time

(0,0)(0,0) 0+40+4

(4) 4+1

(5,8)(5,8) 8+48+4

(12)(12) 12+112+1

local time

local time

global time

1 2 3 4 5 6 7 8

1 2

(c)

SW
(4)

HW
(1)

Source
(8)

(a)
synchronization pointsynchronization point

simulation time

SW

HW

n nth time unit of simulator
synchronization time

1 2 3 4 5 6 7 8

1 2 3 4 5 6 7 8

(b)

9 10 11 12

9 10 11 12

13

13

Figure 1. (a) A simple cosimulation example, (b) cosimulation
scenario of a conservative approach, (c) that of the virtual
synchronization approach.

A typical software function meets this requirement. Suppose a
software task is a function call with two arguments of which one
is supplied by the source block and the other by the hardware
block in Figure 1(a). Then, the execution of this task waits until
two arguments arrive at the input ports. At the second invocation
of the software block, one event arrives at time 8 from the source
block and the other at time 5 from the hardware block. Then, the
software block starts execution at time 8 and produces an output
event at time 12. It means that the software block does no useful
work from simulated time 4 to time 8.

 In virtual synchronization, the local clock of a component
simulator is not synchronized with the system-wide global clock.
Instead, a wrapper is inserted at the interface between the
component simulator and the cosimulation backplane as shown in
Figure 2(a). When a data sample d1 is delivered from the
backplane to the simulator at simulated time t1, the wrapper
translates the time stamp of the event to the current time of the
component simulator. When it receives an output event from the
simulator, it computes the elapsed time ∆(d1) and reconstructs the
correct time stamp of the output event with t1 + ∆(d1).

Simulator

wrapper

d1

t1

1 2 d1 ∆(d1)3

4 t1+∆(d1)
(a)

d1

t1

1 d2

t2 4 max(t1+ ∆(d1), t2)+ ∆(d2)

Simulator

(b)

wrapper

2 d2 ∆(d2)3

Figure 2. Cosimulation wrapper is inserted for virtual
synchronization to translate the time stamps of the input and
the output events.

Figure 2(b) illustrates how the wrapper adjusts the time stamp of
the next event assuming that input events d1 and d2 arrive at t1
and t2 respectively. If t2 is larger than t1+∆(d1), the output event
for d2 simply has the time stamp t2+∆(d2). Special care should be

2

taken when t2 is smaller than t1+∆(d1) meaning that the next
input event arrives while the component processes the current
event. Since a software simulator may accept the input event after
completion of the current execution. Then, the time stamp of the
output event would be t1+∆(d1) + ∆(d2).

Thus, time synchronization is accomplished when data samples
are exchanged. It means that virtual synchronization removes all
time synchronization overheads except the time stamp translation
overhead of the wrapper, which is negligible. Figure 1(c)
illustrates the scenario when the virtual synchronization technique
is used for the cosimulation of Figure 1(a). The software simulator
clock stops advancement at time 4 after sending an output event to
the hardware simulator. The hardware simulator receives the input
event at local time 0 and advances 1 time unit to produce an
output. Therefore, the wrapper of the hardware simulator
translates the time stamp of the input event from 4 to 0 and
reconstructs the time stamp of the output event from 1 to 5. The
software simulator resumes the second invocation after it receives
an event from the source block at simulated time 8.

Note that virtual synchronization not only removes the
synchronization overhead but also reduces the active duration of
component simulators. A simulator does not need to increase the
local clock until it receives a new input data after processing the
last data samples. Thus, the virtual synchronization technique
boosts the performance of the simulator itself.

3. MOTIVATION AND OS MODELER
While the virtual synchronization technique requires that a
software task runs to completion once invoked, it is not the case if
the task runs under the supervision of an operating system. A real
time operating system (RTOS) usually services a periodic tick
interrupt for real-time scheduling based on accurate time duration
in terms of real-time clock ticks. It may preempt the current task
execution with later arrived input samples if they trigger a task
with a higher priority. If there are multiple runnable tasks at the
same time, which task would be executed depends on the
scheduling policy of the RTOS.

Figure 3 illustrates an example case where a G.723 decoder task
and an H.263 decoder task are executed in the same software
component. Figure 3(a) shows the desired simulation behavior
when the G.723 decoder has a higher priority than the H.263
decoder and an input stream to the G.723 decoder arrives later.
Since virtual synchronization executes the H.263 decoder first
without interruption as shown in Figure 3(b), it fails to simulate
the preemption behavior.

�����������������
�����������������

��������������
��������������

���������������������
���������������������

(a)
30 47 5533 45

���������������������������
���������������������������

�������������������
�������������������

(b)
30 5038

G.723 dec

H.263 dec

Figure 3. Executing multiple tasks on a simulator: G.723
decoder has higher priority than H.263 decoder. (a) Correct
execution scenario, and (b) execution scenarios with virtual
synchronization of the previous section.

On the other hand, it is a big burden to run the RTOS itself on the
processor ISS, which we want to avoid for faster cosimulation.
Executing the applications with an RTOS involves execution of
RTOS kernel codes such as scheduler codes as well as context

switching routines. In addition, it also involves the execution of
idle tasks when CPU is in the idle state. In fact, during an idle
period, an RTOS generally runs an idle task that is merely a loop
without doing any meaningful work.

Another disadvantage of running the RTOS on the processor ISS
is that tick interrupt modeling is required to advance the global OS
tick for task scheduling. Most simulators supply the means to
model the periodic exception generator. However, we observe that
the use of this kind of simulation API degrades the overall
simulator performance. This is because the simulator must check
at every simulated cycle whether the scheduled (booked)
exception generator should be invoked or not.

Therefore, for fast cosimulation, we want to avoid running the
RTOS itself but run only the application tasks on the ISS. The
question is how to reconstruct the correct time stamp of the output
events from the software simulator considering the effects of the
RTOS supervision. The proposed solution is to model the effect of
the RTOS on the task execution time in the wrapper: we define
“OS modeler” to perform this job. An OS modeler that resides in
the wrapper of the software component simulator plays the role of
adjusting the time stamps considering the RTOS scheduling policy.

In the proposed technique, we execute a software task ignoring the
preemption possibility using the virtual synchronization technique.
As shown in Figure 3(b), H.263 decoder ends the execution at
time unit 38 and returns the output data to the associated OS
modeler. The OS modeler waits until it receives the next input
data from the backplane that will be sent to the simulator. When it
receives the input data for the G.723 decoder at time 30, it
compares the time stamp with that of the H.263 decoder output
data. Since the G.723 decoder has a higher priority and the time
stamp of its input data is earlier than that of the H.263 decoder
output, the OS modeler postpones setting the time stamp of the
output data until the G.723 decoder completes. After it completes,
the OS modeler marks the time stamp of the output data
considering the effect of preemption and the OS overhead. The
time stamp of the output data of the H.263 decoder is finally set to
be 55 as shown in Figure 3(a). Such adjustment mimics the
preemption behavior successfully without preemption in reality.
This approach achieves faster cosimulation, still preserving timing
accuracy to an acceptable level below a few percents. Detailed
OS modeling is the theme of the next section.

4. PROPOSED RTOS MODELING
An OS modeler models not only the preemption behavior but also
the RTOS overhead during task execution. Two main ingredients
of the RTOS overhead are the context switch overhead and the
tick interrupt handling overhead. Whenever a tick interrupt (timer
interrupt) occurs, the current task is preempted and the tick
interrupt handler is called. The handler clears the interrupt and
calls the scheduler. The scheduler of RTOS examines whether
there exists any ready (runnable) task that has a higher priority
than the current task. If this is the case, it calls the subsequent
context switching routine that saves the context of the current task
and restores the context of the newly scheduled task. Otherwise,
no further routine is called and the RTOS yields the control to
make the current task resume its execution. We assume that other
interrupt handling tasks are modeled as separate software tasks
that have higher priority than application tasks. To model the
RTOS scheduler accurately, therefore, the OS modeler should be

3

informed of the accurate context switch overhead and the
execution time of the tick interrupt handler. With a given
frequency of tick interrupt, the OS modeler can accurately
calculate how many interrupts occurs during task execution.

The OS modeler determines the response time, iR , of a software
task by the following formula for the priority-based preemptive
scheduler:
 ,

where,

−
=

tEsizetick
xxf)(is the number of tick interrupt

occurrences during x. Tick size is the time duration between the
consecutive timer interrupts. tE is the execution time of the tick

interrupt handler. iE is the execution time, is is the start time,

and iπ is the priority of task i. C is the context switch overhead.
The second term of the formula is the total preemption time and
the resultant context switch overhead that task i suffers by those
tasks with higher priority. The accuracy of the proposed OS
modeling approach depends on the accuracy of the estimated
overheads of context switch and tick interrupt handling. To
guarantee predictable timing behavior, an RTOS usually has the
constant overheads or at least bounded overheads. Therefore, the
proposed formula provides very accurate results as demonstrated
in the experiments.

A major source of inaccuracy is cache. If cache is used, the
estimated response time of a task from the proposed approach
might be different from the real one. Consider a situation
illustrated in Figure 4. Figure 4(a) and 4(b) describes the actual
task execution order and a possible task execution order in the
proposed scheme respectively. If the G.723 decoder is executed
consecutively as in Figure 4(b), it experiences smaller cache
misses than the real situation. It can shorten the estimated
execution time of the second instance of G.723. Moreover, the
G.723 decoder pollutes the cache states of the H.263 decoder task,
which cannot be modeled in the proposed approach.

Although the OS modeler approach cannot model these types of
cache misses, experiments show that the resultant inaccuracy is
negligible for most of the multimedia applications, which is the
main target application of our concern. Since multimedia
applications tend to have large size data of stream type, temporal
locality is less significant than spatial locality. The proposed
scheme fails to model accurately the effect of temporal locality.

����
����

����������
����������G.723 dec

H.263 dec

(a) (b)

������������
������������

����������
���������� ����������������������

����������������������

����������
����������

����������
������������������

��������

Figure 4. Task execution order (a) in reality and (b) in the
proposed approach before time adjustment

Finally, the proposed OS modeler enables us to choose an optimal
RTOS and its scheduling policy as well as task priorities without
modifying the real RTOS. Therefore, fast and time accurate
cosimulation with OS modeling can be effectively used for the last
stage of design space exploration: OS selection and optimization.

5. EXPECTED PERFORMANCE
IMPROVEMENT
In this section, we compute the expected performance
improvement from the proposed technique of RTOS modeling
against running the RTOS code directly on the ISS. The overheads
of running the RTOS code are three-folds. First, there is a run-
time overhead of kernel mode associated with tick interrupt
handling and context switching. We denote r as the ratio of this
overhead to the total simulation time. If the tick interrupt overhead
dominates the context switch overhead, as usually is the case, this
overhead is nearly equal to the ratio of the execution time of the
tick interrupt handler to the tick size. Second, the RTOS runs a
default idle task when there is no useful work to do. Therefore,
there is no visible idling duration during the simulation. On the
other hand, we can save this idle duration if we use the virtual
synchronization technique only to the application code. We denote
i as the ratio of the CPU idle duration to the total simulation time.
Third, we have to call a specific API provided in the simulator to
schedule (or book) the exception generator periodically inside the
simulator. We denote s as the degradation ratio of the simulation
time to advance one simulated time unit.

Now, we further define the following notations to establish a
formula of the expected performance improvement:

RTOSST : the total simulation time in case we run the RTOS
on the ISS

modelST : the total simulation time in case we execute the
application tasks only through the proposed scheme

T : the simulation time of the application tasks
R : the simulation time for the RTOS overheads
I : the simulation time for the idle task execution

Then, the performance improvement would be
RTOS

model

ST
ST

−1 .

Since IRTSTRTOS ++= and
)1(s

TSTmodel +
= , the performance

improvement can be expressed as

IRT
s

T

ST
ST

RTOS

model

++
+

−=−
)1(

11 (5.1)

Since rI)R(TR ⋅++= and iIRTI ⋅++=)(, equation (5.1) is
reduced to

s

irs
s

ir
ST
ST

RTOS

model

+
++

=
+
+−

−=−
11

)(111 (5.2)

Equation (5.2) indicates the expected performance gain we can get
from the proposed approach without taking the synchronization
overhead into account. If we consider the synchronization
overhead, the expected performance is further multiplied by the
gain due to the removal of the synchronization overhead.

In (5.2), and are constant once a specific RTOS and the
simulator are given. Therefore, if CPU idle ratio can be obtained
before simulation, designers can easily estimate the performance

itii EEEfE +⋅=)(∑
+≤≤>∀
++=

iRiSjSiSijj
jii CEER

,,
)(

ππ

4

gain of the proposed approach against the case when RTOS is
actually executed on the ISS.

6. EXPERIMENTS
In this section, we show some preliminary experimental results on
the performance improvement and on the accuracy. We consider a
real-life multimedia application, a video phone, which consists of
four tasks; an H.263 encoder, an H.263 decoder, a G.723 encoder
and a G.723 decoder. They are assumed to be mapped to an
ARM720T processor with 8KB unified cache. The RTOSes we
used in the experiments are eCOS[9] and uCOS-ii[10]. We used
ARMulator[8] for the processor simulator that runs on the dual
Xeon 1.8GHz machine.

Depending on which RTOS is used and whether cache is used or
not, different sets of task deadlines are used as shown in Table 1.
Also, the priorities of the tasks are assigned as shown in Table 1.
We assume that the period of a task equals to its deadline. The tick
size is set to 10 ms for both eCOS and uCOS.

Even though the OS modeling technique is proposed for
hardware/software cosimulation, we used the software simulator
only for experiments to focus on the performance improvement
due to the OS modeling. Thus we could ignore the effect of the
hardware simulator performance on the experiments.

Table 1. Timing constraints of the example task group; 1tick is
368,640 cycles (=10ms)

Deadline G.723 dec G.723 enc H.263 dec H.263 enc
eCOS,

cache ON 30 ticks 30 ticks 300 ticks 300 ticks

uCOS,
cache ON 20 ticks 20 ticks 200 ticks 200 ticks

eCOS,
cache OFF 400 ticks 400 ticks 4000 ticks 4000 ticks

uCOS,
cache OFF 300 ticks 300 ticks 3000 ticks 3000 ticks

Priority 1 2 3 4

6.1 Performance Result
In the performance experiments, we classified the performance
improvement into two factors. The first one is the improvement
due to OS modeling itself (apart from synchronization overheads)
and the second one is due to the removal of the time
synchronization overheads.

Table 2 shows the performance improvement due to OS modeling
itself. Simulation was performed with cache enabled and with the
corresponding timing constraints defined in Table 1. For eCOS
simulation, using the equation (5.2), the expected gain is 19.7%
while the measured improvement in Table 2 is 18.2%. For uCOS
simulation, we can obtain the expected gain similarly. It is 37.4%
and the measured value is 38.0%. Recall that is the degradation
ratio, the idle ratio and the RTOS ratio to the total simulation
time.

100

1000

10000

100000

1000000

OSM+VS RTOS+NS RTOS+FS RTOS+LS RTOS+RS

sync

exec

Figure 5. The time consumed to simulate uCOS-ii with cache
enabled. The processor utilization is 73.0%

Table 2. Performance improvement due to OS modeling

Estimated Measured
s

(%)
i

(%)
r

(%) RTOS

model

ST
ST

−1
 RTOSST

(sec)
modelST

 (sec) RTOS

model

ST
ST

−1

eCOS 15 4.2 3.4 19.7% 905 740 18.2%

uCOS 15 27.0 1.0 37.4% 668 414 38.0%

Figure 5 illustrates the gain we can obtain from the removal of
time synchronization. The first bar shows the simulation time
from the proposed virtual synchronization approach with OS
modeler. The time synchronization takes less than 1 second. It
confirms that the virtual synchronization technique has nearly
zero overhead of time synchronization. The second one shows the
case when we simulate the tasks with RTOS without any
synchronization. The third one is the case when we run RTOS
with conservative approach, where time synchronization is
performed every cycle with function call overhead of
approximately 5.0 usec per simulated cycle. The fourth and fifth
ones are the cases when we perform synchronization through
TCP/IP socket call locally and remotely respectively. The
measured the socket call overheads are 27.9 and 336.7 usec per
simulated cycle respectively. Compared with the conservative
approach where RTOS is run on the ISS, the proposed approach
gives significant performance improvement due to the removal of
time synchronization between component simulators

6.2 Accuracy Result
As the metric of time accuracy, we compute the error between the
proposed RTOS modeling and RTOS simulation in terms of
simulated times of task completion. Table 3 shows the results with
eCOS and uCOS assuming that the cache memory is disabled.
Since the RTOS overhead is accurately measured and almost
constant at run time, the error is quite low. The execution cycles
for the same task in two RTOSes are different because different
compilers are used for each RTOS and these compilers use
different library for floating-point arithmetic.

Since the proposed approach does not accurately model the cache
affects, the error grows as demonstrated in Table 4. The error
comes from the fact that the proposed approach underestimates the
cold miss rate when a task starts or resumes as explained in
section 4.

5

Table 3. Execution time error from the proposed approach for
eCOS and uCOS-ii with cache disabled (time unit: cycles)

 Instance
s eCOS uCOS exec. time

(eCOS)
exec. Time

(uCOS)
G.723

dec 100 0.06 % -0.02 % 26,948,018 15,649,829
G.723

enc 100 -0.02 % -0.05 % 31,101,618 17,629,837
H.263

dec 10 -0.03 % -0.03 % 125,734,905 76,448,526
H.263

enc 10 -0.08 % 0.01 % 713,685,303 395,145,693

Table 4. Execution time error from the proposed approach for
eCOS and uCOS-ii with cache enabled (time unit: cycles)

 Instances eCOS uCOS exec. time
(eCOS)

exec. Time
(uCOS)

G.723
dec 100 -1.4 % -7.3 % 1,765,217 921,301

G.723
enc 100 -1.5 % -1.0 % 2,209,160 966,276

H.263
dec 10 -0.9 % -1.3 % 11,610,644 6,707,270

H.263
enc 10 -0.6 % -0.7 % 55,996,252 19,920,577

7. RELATED WORK
There has been no work on RTOS modeling for time accurate
cosimulation with the ISS of a processor, to our best knowledge.
On the other hand, there are some research results on the RTOS
modeling for the transaction-level cosimulation with delay-
annotated C-level software simulation. The RTOS modeling is
addressed in Pia codesign environment[5]. In Pia, a software
simulator blocks and synchronizes whenever it meets a receive
operation. If an interrupt occurs, Pia preempts the current task
execution and performs roll-back if necessary. Although interrupt
handling is modeled with roll-back mechanism, preemptive
scheduler modeling was not mentioned. No timing accuracy is
reported in their work.

POLIS[3] also adapted RTOS scheduler modeling where a
software task is synthesized to a timing annotated C code. A
software task is executed atomically to produce the output results.
If it is detected later that an interrupt or an input event for higher
priority task arrives during task execution, the timing of the output
events produced by the current task is delayed by the execution
time of interrupt handler or higher priority task, which is similar to
the proposed idea of time translation. They report that the
accuracy was within 20% and this is due to the limit of host code
execution with delay annotation approach. Cockx[4] also
proposed a similar way of modeling of preemption. In his
codesign environment, TIPSY, to reduce the context switch
between software threads due to preemption, out-of-order
execution of software threads is allowed. And timing adjustment
is performed later for reconstruct the correct ordering of thread
executions.

Yoo et al[6] proposed a fast timed simulation method by
annotating delay in systemC simulation model. Instead of
modeling the OS, they annotate the execution time to the OS code
itself. The rationale is to make the simulation code and the
synthesis code as much similar as possible. Since time adjustment
is not used in this approach, synchronization should be performed
either conservatively or optimistically.

8. CONCLUSIONS
In this paper, we extend the virtual synchronization technique with
OS modeling for the case where multiple software tasks are
executed under the supervision of a real-time operating system.
The OS modeler models the RTOS overheads of context switching
and tick interrupt handling as well as preemption behavior.
While maintaining the timing accuracy to an acceptable level
below a few percents, we could reduce the simulation time
drastically compared with existent conservative approaches by
removing the need of time synchronization between simulators. It
remains as a future work to model OS more accurately when
cache is enabled

9. ACKNOWLEDGEMENTS
This work was supported by National Research Laboratory
Program (number M1-0104-00-0015) and Brain Korea 21 Project.
The ICT at Seoul National University provided the research
facilities for this study.

REFERENCES
[1] Seamless CVE, http://www.mentorg.com/seamless/
[2] V. Zivojnovic and H. Meyr, “Compiled HW/SW co-

Simulation”, In Proc. 33rd DAC., June 1996
[3] C. Passerone, “Fast hardware/software co-simulation for

virtual prototyping and trade-off analysis”, In Proc. 34th
Design Automation Conf., 1997

[4] J. Cockx, “Efficient modeling of preemption in a virtual
prototype”, In Proc. 11th RSP, 2000, pp 14 –19

[5] K. Hines, “Pia: a framework for embedded system co-
simulation with dynamic communication support”, Technical
Report UW-CSE-96-11-04, 1997

[6] S. Yoo et al. “Automatic generation of fast timed simulation
models for operating systems in SoC design”, In Proc.
Design Automation and Test in Europe, Mar. 2002

[7] D. Kim et al. “Virtual synchronization for fast distributed
Cosimulation of dataflow task graphs”, In Proc. 15th
International Symposium on System Synthesis, Jun. 2002

[8] ARMulator, http://www.arm.comr
[9] eCOS, http://sources.redhat.com/ecos
[10] uCOS, http://www.ucos-ii.com
[11] K. Hagen and H. Meyer, “Timed and Untimed hardware

software co-simulation: application and efficient
implementation”, In Proc. CODES, Oct. 1993

[12] S. Yoo and K. Choi, “Optimistic Distributed Timed
Cosimulation Based on Thread Simulation Model”, In Proc.
6th CODES, Mar. 1998

[13] W. Sung and S. Ha, "Efficient and Flexible Cosimulation
Environment for DSP Applications", IEICE Transactions on
Fundamentals of Electronics, Communications and
Computer Sciences, Special Issue on VLSI Design and CAD
algorithms, Vol.E81-A, No. 12, pp. 2605-2611, Dec. 1998

[14] CoCentric System Studio, http://www.synopsys.com
/products/cocentric_studio

[15] CoWare N2C, http://www.coware.com/cowareN2C.html

6

	Main Page
	CODES+ISSS'03
	Front Matter
	Table of Contents
	Author Index

