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Abstract – In this paper we propose a frequency-separation 
methodology to generate system-level macromodels for analog 
and RF circuits. The proposed macromodels are similar in form 
to those based on Volterra kernel calculations, but are much 
simpler in terms of characterization and overall model 
complexity, and can be derived from existing device models. This 
simplicity is realized by applying some basic assumptions on the 
form of the input excitations, and via separation of the 
nonlinearities from the dynamic behavior. In addition, by 
further separating the ideal model functionality, this 
macromodel is applicable to strongly nonlinear components such 
as mixers. While time-varying Volterra series models have been 
proposed for mixers with a fixed local oscillation (LO) signal, the 
proposed frequency separation model is completely general and 
can capture the variations of the LO input during a system-level 
simulation. The proposed macromodels are demonstrated in a 
system-level simulation tool based on Simulink for efficient 
evaluation of the entire RF system and associated components. A 
GSM receiver system in 0.25µm CMOS process is used to 
demonstrate the efficacy of these macromodels in our system-
level simulation environment. 
 

I. Introduction 
Today’s remarkable evolution of wireless communication 

technologies has brought about several new challenges for design of 
RF circuits. High-performance RF front-ends are required for 
today’s IC communication systems to reduce the signal degradation 
caused by noise, nonlinear distortion, etc. These design issues have 
highlighted the need for advanced RF macromodeling techniques for 
primarily two reasons. First, in top-down designs, high-level 
simulations based on macromodels can provide fast prediction of 
system performance, which helps to select proper architectures for 
circuit implementation and to analyze tradeoffs at the early design 
stages. Secondly, for bottom-up verification, transistor-level 
simulation is too expensive in memory space and computation time 
to facilitate the verification of an entire mixed-signal front-end 
containing a large number of analog and digital components. Clearly 
for both cases it is necessary to analyze the interaction of the various 
components at a higher level of abstraction. 

During the past decade, various methods have been developed 
for RF circuit modeling [1]-[5]. Block diagrams are employed by 
these approaches as proper macromodel structures because the block 
diagram form can be easily included in system-level simulation tools 
such as MATLAB SIMULINK. The modeling approaches proposed 
in [1]-[5] extract the Volterra kernels directly from the circuit. They 
are mathematically elegant and have a solid theoretical background 
based on Volterra series theory [6]-[7]. However, direct Volterra 
kernel calculations in [1]-[5] require high order derivative 
information of each nonlinear device, which is not explicitly 
available in commercial device models, such as the BSIM3 model. 
Moreover, the modeling approaches proposed in [1]-[5] generate 
extremely complicated macromodels. For example, [4] converts each 
nonlinearity in the circuit into several corresponding signal paths, 
resulting in a great number of coefficient blocks and transfer 
function blocks in the macromodel. In addition, the modeling 

techniques in [1]-[5] are only applicable for weakly nonlinear 
circuits, based on the fundamental limitations of the Volterra series 
theory in general [2], [6]-[7]. In [8] the authors proposed a time-
varying-system-based Volterra series model for the mixer circuit 
which is a typical example of strongly nonlinear systems. However, 
the LO input of the mixer circuit must be fixed so that the input-
output behavior from the RF input to the IF output can be 
represented by a weakly nonlinear periodically time-varying system. 
Such a modeling approach, unfortunately, cannot predict the system 
behaviors when the LO input signal is varying. 

In this paper we develop a frequency-separation macromodel 
for RF circuits that is suitable for system-level simulation. The 
proposed modeling approach presents several promising features 
compared with those of other models. First, by considering some 
basic assumptions on the input excitations, e.g. suppose the circuit 
input is a single-tone or two-tone signal, we derive a very simple 
model structure that facilitates efficient system-level evaluations. 
Note that restricting the input excitation as a single-tone or two-tone 
signal will not limit the application of our macromodel in most 
simulation and verification scenarios, since performance 
specifications of RF circuits are generally measured using a single-
tone or two-tone test [9]-[10]. Secondly, the model structure 
proposed in this paper is a frequency-separation one, whereby the 
nonlinearities are separated from the frequency-dependent (linear 
dynamic) portions to simplify the modeling problem. As a result, the 
transfer functions of the linear dynamic blocks can be efficiently 
extracted and simplified by model order reduction techniques [11]-
[13] with guaranteed stability. Lastly, but most importantly, by 
further separation of the ideal functionality, our modeling approach 
can be applied to strongly nonlinear circuits without loss of 
generality. These models can be then incorporated into a system-
level simulation environment. Such a modeling capability presently 
appears to be impractical for Volterra-series-based methodologies. 

The remainder of this paper is organized as follows. In Section 
II we review the background for Volterra series. In Section III we 
develop our macromodel structure from our frequency-separation 
methodology, then illustrate the method for model parameter 
extraction in Section IV. A GSM receiver system in 0.25µm CMOS 
process is employed in Section V to demonstrate the accuracy and 
efficiency of the macromodels in system-level simulations. 
 

II. Background 
A. Volterra Series Theory 

Volterra series theory has been introduced in [6]-[7] to analyze 
and model weakly nonlinear analog systems. A Volterra series 
describes a nonlinear system by expanding its output response into a 
number of components at various orders. In general, the Volterra 
series representation of a nonlinear system can be written as [6]-[7]: 
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where ( )tyn  is the nth order response given by 
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( )tx  and ( )ty  are system input and output respectively, 

( )nnh ττ ,,1 L  is the nth order Volterra kernel, and N is the maximum 

order of system nonlinearities. 
Volterra series theory also provides an explicit formula for the 

steady-state response of the weakly nonlinear system. Consider the 
excitation of a multi-tone input defined by 
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where *
ii AA =−  denotes the conjugate of iA , and ii ωω −=− , then 

the nth order response of the system can be described as 
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is the nth order kernel transfer function. The steady-state response 
evaluated by (3)-(5) plays an important role in analyzing and 
modeling RF circuits, because most performance specifications of 
RF circuits, such as total harmonic distortion, intermodulation 
distortion, etc., are defined and measured by their steady-state 
behaviors. 

The Volterra series representation, however, suffers from two 
limitations. First, it is only applicable for weakly nonlinear systems. 
For a strongly nonlinear system, the nonlinearity order N in (1) will 
become very large, or the Volterra series will not even converge in 
some extreme cases. Secondly, the Volterra series representation for 
multi-input systems will involve tensor calculations [2], [6], which 
are quite awkward for many practical applications. 
 
B. Macromodeling by Volterra Series 
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Fig. 1. Nonlinearity propagation in RF circuits 

In [4]-[5], a block diagram for Volterra kernels of a nonlinear 
circuit is proposed for macromodeling. To understand this model 
structure, consider the 2nd order nonlinearity caused by the 
nonlinear MOSFETs in a CMOS RF or analog circuit. As shown in 
Fig. 1, a 2nd order nonlinearity squares the voltage gsiV  over its 

controlling terminal, then multiplies the result with its 2nd order 
nonlinearity coefficient to produce a 2nd order nonlinear current 

dsiI . This current propagates to the output through a linear network, 

which is simply the linearized circuit at the DC operation point [2], 
[4]. The total 2nd order output is the sum of the contributions of all 
those 2nd order nonlinear currents. 

A major disadvantage of such a modeling approach is that 
every nonlinearity coefficient in the circuit generates several 
corresponding signal paths in the macromodel. For example, every 
2nd order nonlinearity coefficient produces a 2nd order nonlinear 
signal path, and two 2nd order nonlinearities can be further 

combined to generate a 3rd order nonlinear signal path [4]. 
Therefore, the final block diagram model in [4] includes a great 
number of coefficient blocks and transfer function blocks, even if a 
simplifying algorithm is applied to eliminate those signal paths with 
negligible contributions. 
 

III. Macromodel Structure 
In this section, we first derive a simple frequency-separation 

macromodel for the LNA. Then, based on that simple model, we 
further develop a more advanced LNA model, which can predict the 
3rd order intermodulation distortion (the only in-band distortion for 
LNA) accurately. Finally, we extend our modeling method to 
strongly nonlinear/multi-input circuits and introduce a frequency-
separation macromodel for RF mixers. 
 
A. Simple LNA Model 

As illustrated in the previous section, the modeling approach 
presented in [4]-[5] produces a complex macromodel which 
significantly impacts the runtime efficiency of the system-level 
simulation. Here we propose a much simpler macromodel which 
considers all signal paths associated with the same nonlinearity order 
as merged together under single-tone input. 

For notational simplicity, we first consider the 2nd order 
nonlinear effect. If the LNA is excitated by a single-tone input at 
frequency ω, the 2nd order harmonic of the nonlinear current dsiI  in 

Fig. 1 is located at frequency 2ω and its magnitude can be 
approximately expressed as a function of input amplitude and 
frequency: 
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where A is the input amplitude and ωjs =  specifies the input 
frequency. According to the Volterra series theory [2], [6]-[7], we 
simplify (6) as 
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because the 2nd order nonlinear current should be proportional to the 
square of the input amplitude A. Expanding ( )sGdsi  as a Taylor 

series 
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the contribution of the 2nd order harmonic current nd
dsiI 2  at the 

system output can be written as 
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Where ( ) ( )
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dsi =  is the linear transfer function from the 

current source dsiI  to the system output. The total 2nd order 

harmonic at the system output is the sum of the contributions of all 
2nd order harmonic currents, i.e. 
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Since different transfer functions of the same linear network share 
the same poles, 
 ( ) ( ) ( ) ( )sDsDsDsD dsdsKdsds ==== L21  (11) 

Substituting (11) into (10) yields 
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where ( )sN ds 2  is a polynomial in s defined by 
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The above equations show that all signal paths associated with 
the 2nd order nonlinearity are merged together. According to (12), 
we can model the 2nd order nonlinearity by a square term cascaded 
with a linear transfer function. In addition, similar results can be 
obtained for other higher order nonlinearities. For an LNA, we only 
need to consider the nonlinearities up to 3rd order [4]-[5], because of 
its weakly nonlinear property, as shown in Fig. 2. 

Input
H1(s)

Output

X2 H2(s)

X3 H3(s)

X

 
Fig. 2. Simple macromodel for LNA 

The small-signal transfer function ( )sH1  in Fig. 2 

characterizes the ideal functionality of the LNA, and the other two 
signal paths are used to predict its 2nd and 3rd order nonlinearity 
respectively. The ideal functionality is separated from the nonideal 

effects in our macromodel. Furthermore, the nonlinear blocks 2X  

and 3X  in Fig. 2 are not frequency-dependent, which implies the 
frequency-separation property of the proposed LNA model. 

The simple LNA model in Fig. 2 can be considered as an 
extension of the Hammerstein model in system identification 
community [14]. The Hammerstein model in [14] represents the 
nonlinear dynamic system as a static nonlinear function followed by 
a linear transfer function, i.e. the same transfer function is used for 
different order nonlinearities. However, from the analysis in (6)-
(13), we know the dynamic behaviors of different order 
nonlinearities are different in general, because the polynomial 
coefficients in (8) vary for different order nonlinearities. Therefore, 
in Fig. 2, we employ different transfer functions ( )sH 2  and ( )sH3  

to characterize the nonlinearities 2X  and 3X  respectively. 
The accuracy of this LNA model can be justified by the 

following theorem. 
Theorem 1: 
If (a) the LNA circuit is a weakly nonlinear system and its 

maximum order of nonlinearity is equal to 3; 
(b) the LNA circuit is a narrow band system and its bandwidth 
is much smaller than the center frequency; 
(c) the LNA circuit is driven by a single-tone sinusoidal input 
at frequency ω, where ω is located in the passband of the LNA 
circuit; 

then there exist a set of transfer functions ( )sH1 , ( )sH 2  and ( )sH 3  

such that the steady-state response generated by the macromodel in 
Fig. 2 is identical to the steady-state response of the original LNA 
circuit at the frequencies ω, 2ω and 3ω. 

The detailed proof of the theorem can be found in [15]. Note 
that our macromodel is accurate only for steady-state response and 
the DC component generated by the macromodel is not guaranteed 
to be equal to that of the original circuit. However, this is not an 
important issue, since most performance specifications of RF circuits 
are measured by their steady-state behaviors and the DC component 
is generally not included in evaluating the circuit performance [9]-
[10]. For example, the DC component is not used when the total 
harmonic distortion of the LNA circuit is measured [2]. 
 

B. Advanced LNA Model 

The simple LNA model displayed in Fig. 2 is a sufficient one 
to estimate the circuit response with single-tone input; however, it 
cannot accurately predict circuit behaviors under multi-tone 
excitations. This issue can be illustrated by the following example. 

LNA

900 905 (MHz) 900 905 (MHz)

Case 1

Case 2 LNA

Intermodulation

 
Fig. 3. Intermodulation distortion of LNA 

Consider a two-tone input case where the two input 
frequencies are 900MHz and 901MHz respectively and the input 
amplitudes are both a constant value A. As shown in Fig. 3, the LNA 
circuit will produce a harmonic component at 899MHz due to its 3rd 
order nonlinearity. Now, consider another two-tone input case in 
which the two input frequencies are 901MHz and 903MHz and the 
input amplitudes are still equal to A. Again, a harmonic component 
at 899MHz is generated by the LNA circuit as intermodulation 
distortion. Based on the macromodel in Fig. 2, the harmonic 
components at 899MHz shall be identical in the above two cases, 
because the linear transfer function ( )sH 3  in the macromodel 

presents the same attenuation at the same frequency 899MHz. For 
the original LNA circuit, however, the intermodulation distortions at 
899MHz shall be different in these two cases. For instance, the RLC 
network for input impedance match in the LNA circuit will attenuate 
the input signal differently at different input frequencies [9]-[10], 
and therefore produce different intermodulation distortions in the 
above two cases. 

This simple example indicates an important fact that the 
macromodel in Fig. 2 only exhibits different attenuations at different 
output frequencies. It performs the same operation on input signals 
at all frequencies, because there doesn’t exist any frequency-
dependent block at the input port of the model. In order to eliminate 

such a limitation, we add a pre-filter before the nonlinear blocks 2X  

and 3X , and result in the following advanced LNA model shown in 
Fig. 4. 
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Fig. 4. Advanced macromodel for LNA 

The accuracy of the LNA model in Fig. 4 is justified in a 
manner similar to that in Theorem 1. Details can be found in [15]. 

It should be noted that the modified macromodel in Fig. 4 can 
only estimate the 3rd order intermodulation distortion accurately 
under two-tone input. Such a restriction will not limit the application 
of our macromodel in most practical cases, since the intermodulation 
distortion of LNA is only simulated and verified using a two-tone 
input [9]-[10]. 
 
C. Mixer Model 

The differences between the mixer and the LNA lie in the 
following two points. First, a mixer has two input ports, RF input 



 

and LO input. This requires extension of the nonlinear blocks in Fig. 

4 to two-variable power functions, i.e. XY , YX 2 , 2XY , etc. X and 
Y correspond to the RF input and the LO input respectively. Second, 
a mixer is a strongly nonlinear system because the LO signal is 
chosen large enough to drive the transistor switch on and off 
periodically [9]. The ideal functionality of a mixer, therefore, is 
equivalent to multiplying the RF signal by a square wave ( )LOsign , 

where ( )•sign  denotes the signum function [9]. In such cases, the 
Volterra series representation converges very slowly and cannot be 
applied as a model directly. Considering the ideal functionality of 
the mixer circuit, we add some additional signum function blocks, 

( )YsignX ⋅ , ( )YsignX ⋅2 , etc., into the mixer model. With this 
modification, the strongly nonlinear property of the mixer circuit can 
be captured efficiently. 
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Fig. 5. Macromodel for mixer 

The result is the mixer model shown in Fig. 5. Note that the 
signal path ( )YsignX ⋅  in the macromodel now represents the ideal 
functionality and all other paths contribute to the nonideal effects in 
the mixer circuit. The mixer circuit is regarded as a strongly 
nonlinear system in general, because the Volterra series 
representation will apply a great number of high order terms for 
accurately expanding the signum function ( )YSign . However, the 
proposed macromodel in Fig. 5 includes the strongly nonlinear 
function ( )YSign  directly. Then, after the strong nonlinearity of the 
mixer circuit is separated, the remainder input-output relation is 
weakly nonlinear which is characterized by the power functions 

XY , YX 2 , 2XY , etc in our model. Under such a model 
representation, the behavior of the macromodel converges to the 
actual behavior of the original mixer circuit very quickly, as i and j 
increase. In many applications, it is sufficient to choose the 
nonlinearity order i and j in Fig. 5 up to 3. 

Finally, it is worth mentioning that we model the mixer circuit 
as a strongly nonlinear two-input system in this paper, but not as a 
simple weakly nonlinear single-input time-varying system in [8]. 
Therefore, the proposed model structure in Fig. 5 is general and can 
accommodate changing values for the LO input during system-level 
simulations. 
 

IV. Model Parameter Extraction 

Recall from Section 2.2 that all nonlinear currents dsiI  at 

different nonlinearity orders propagate to the circuit output through 
the same linear network. In addition, different transfer functions of 
the same linear network share the same poles, as described in (11). 
Hence, we use the same poles for all transfer functions in our 
macromodel. For the purpose of model simplicity and stability, order 

reduction techniques [11]-[13] are employed to extract and simplify 
the transfer functions of the linearized circuit at the DC operation 
point, resulting in a compact group of stable poles. 

The zeros in the macromodel can be obtained simply by a data-
fitting approach because they will not influence the model stability. 
The least-square approach [14] is employed in this paper to estimate 
the optimum values of the zeros based on steady-state response data. 
We first build a set of nonlinear equations using steady-state 
simulation results at different input amplitudes and frequencies, then 
nonlinear iteration schemes, such as the Newton-Raphson method, 
are employed to solve these equations and produce correct zero 
values. 

It is important to note that no high order derivative information 
is required during our process of model parameter extraction. From 
this point of view, our macromodeling scheme is not restricted to 
special device models, as is the case for direct Volterra kernel 
calculations. 
 

V. Simulation Results 
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Fig. 6. Block diagram of GSM receiver 

Shown in Fig. 6 is a GSM receiver system in 0.25µm CMOS 
process which is employed in this section to demonstrate the 
accuracy and efficiency of the proposed macromodels in system-
level simulations. For modeling and simulating the entire GSM 
receiver system we first represent each component in the system, i.e. 
low noise amplifier, RF mixer and IF amplifier, by a frequency-
separation macromodel. Next, we connect all these components 
together and construct a signal flow graph in our system-level 
simulation tool. Such a signal-flow-graph-based GSM receiver is 
then simulated by our tool to verify its performance at the system 
level. All the simulations are run on a Pentium IV - 1.4GHz 
computer with 256 MB of memory. 
 
A. Low Noise Amplifier 
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Fig. 7. Circuit schematic of LNA 

Fig. 7 shows the circuit schematic of an LNA that includes 6 
MOS transistors. This unusually large number of transistors for an 
LNA is a good example since it produces highly complex nonlinear 
behaviors to test the proposed macromodel for nonlinear distortions. 
The center frequency of the LNA is 900MHz and its small-signal 
gain is around 16 at the center frequency. Employing the 
macromodel structure in Fig. 4 we extract the zeros and poles of the 
transfer functions ( )sH P , ( )sH1 , ( )sH 2  and ( )sH 3  with order set 



 

to 11 for this example. 
We run steady-state analysis and test the developed 

macromodel using a single-tone input with an amplitude range of 
2µV~20µV and frequency range of 700MHz~1100MHz. The 
maximum, minimum and average modeling errors are respectively 
1.36%, 0.53% and 0.85%. Here, the modeling error is defined by 
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where iŶ  is the ith order output harmonic obtained by the original 

LNA circuit and iY  is the corresponding result estimated by the 

macromodel. In (14), N is chosen large enough so that those high 
order harmonics beyond N are negligible. 
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Fig. 8. Exact total harmonic distortion from LNA circuit 
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Fig. 9. Estimated total harmonic distortion from macromodel 

Fig. 8 and Fig. 9 depict the total harmonic distortion from the 
original LNA circuit and that from the macromodel respectively as a 
function of the input amplitude and the input frequency. The “exact” 
values in Fig. 8 represent the exact distortions calculated by 
Harmonic Balance method. The maximum absolute error between 
Fig. 8 and Fig. 9 is less than 0.02dB, which demonstrates the 
accuracy of the LNA model under single-tone inputs over a 
reasonably wide frequency range. 

In order to test the simulation speed of the macromodel, we 
run steady-state simulation on both the LNA circuit and its 
macromodel. The computation costs are 1.71 seconds for the original 
LNA circuit and 0.0047 seconds for the macromodel respectively. 
 
B. Double-Balanced Mixer 

Fig. 10 shows the double-balanced mixer in the GSM receiver 
system, which is used in this subsection to verify the macromodel 
structure in Fig. 5. We consider the down-conversion case. The 
amplitude and frequency ranges for the RF input are 10µV~50µV 
and 935MHz~960MHz respectively. For the LO input, its amplitude 
and frequency are varied from 0.8V~1V and 864MHz~889MHz 
respectively. The maximum value of i and j in Fig. 5 is set to 3, and 
the transfer function order in the macromodel is set to 5. There are 
19 signal paths included in the mixer model. We run steady-state 

analysis to test the macromodeling accuracy. The maximum, 
minimum and average modeling error are respectively 6.92%, 2.47% 
and 4.62%. 
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Fig. 10. Circuit schematic of mixer 

In order to investigate the strongly nonlinear behavior of mixer 
circuits, we rebuild the mixer model with different options. TABLE I 
shows the average modeling errors where the signal paths containing 
signum functions ( )LOsign  and ( )RFsign  are included or excluded. 
Two observations can be made from the data in TABLE I. First, the 
average modeling error more than doubles if the signum function 

( )LOsign  is excluded. It, in turn, indicates that the signum function 

( )LOsign  in Fig. 5 plays a significant role in the modeling accuracy, 
and the mixer circuit presents strong nonlinearities in terms of its LO 
input. Secondly, the average modeling error is almost unchanged if 
the signum function ( )RFsign  is also used. This implies that the 
mixer circuit only exhibits weakly nonlinear behaviors for its RF 
input and it is not necessary to include strongly nonlinear functions 
for RF input in our macromodel. 

TABLE I. MODELING RESULT FOR THE MIXER CIRCUIT 

( )LOsign  ( )RFsign  Average Error 

Include Exclude 4.62% 
Exclude Exclude 9.44% 
Include Include 4.42% 

The macromodel described above can be further simplified 
since a signal path is negligible if its relative gain is smaller than a 
user-specified threshold ε. The relative gain of ith signal path is 
defined as 

 ( )i

iR
i GMAX

G
G =  (15) 

where iG  is the absolute gain of ith path and ( )iGMAX  is the 

maximum absolute gain of all signal paths. For ε = 1%, 13 signal 
paths are rejected and we obtain a new mixer model only containing 
6 paths. All nonlinear signal paths corresponding to even order 
distortions are neglected in this example because the even order 
distortions should be very small for the double-balanced mixer in 
Fig. 10. The average error of such a simplified macromodel is 
4.64%, which is almost identical to that of the original 19-signal-
path model. 

For testing the simulation speed of the macromodel, we run 
steady-state simulation on both the mixer circuit and its macromodel. 
The computation costs are 10954 seconds for the original mixer 
circuit and 0.0247 seconds for the macromodel respectively. 
 
C. IF Amplifier 

The IF amplifier in the GSM receiver system is a bandpass 



 

filter, whose small-signal gain is 25dB at the center frequency 
71MHz. In this paper, we only model the ideal functionality of the IF 
amplifier by a linear transfer function, since our interest focuses on 
the nonlinearities introduced by the low noise amplifier and the RF 
mixer. In system-level simulations, it is necessary to use different 
level models for different component blocks. In such a way, many 
important tradeoffs can be explored at early design stages. 
 
D. System-level simulation 
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Fig. 11. Output frequency spectra of low noise amplifier 
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Fig. 12. Output frequency spectra of mixer 
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Fig. 13. Output frequency spectra of IF amplifier 

We connect the macromodels for all these components 
together and construct a signal flow graph in our system-level 
simulation tool. A transient simulation is run for such a signal-flow-
graph-based GSM receiver in time domain [ ]sµ1 ,0 . Then, we 
perform FFT on the output signal of the low noise amplifier after the 
steady state is reached. Fig. 11 gives the frequency spectra of the 
LNA output, whose fundamental frequency is 935MHz. In Fig. 11, 
the higher order harmonic distortion is almost invisible. This 
observation is consistent with the results in Fig. 8 and Fig. 9, where 
the total harmonic distortion is less than –120dB in the current case. 
After the LNA output passes through the mixer, the RF signal is 
transferred to IF signal in Fig. 12, whose fundamental frequency is 
71MHz. Note that a great number of higher order harmonics are 
generated by the mixer, because the mixer circuit is a strongly 
nonlinear system due to the large LO input. Finally, those higher 

order harmonics from the mixer are filtered out by the IF amplifier, 
and we obtain a clear IF signal as shown in Fig. 13. 

For the transient simulation in [ ]sµ1 ,0 , the overall 
computation time is 36.21 seconds. Note that, by employing the 
macromodels, the system-level simulation is quite efficient and can 
enable efficient system-level exploration and verification. 
 

VI. Conclusions 
Modeling and representing nonlinear behaviors of RF circuits 

by simple macromodels is challenging due to the numerous 
nonlinear components that contribute to the overall circuit 
performance. In this paper, a frequency-separation approach is 
proposed to generate simple high-level macromodels (3 signal paths 
for LNA and 6 signal paths for mixer) for both weakly nonlinear and 
strongly nonlinear RF circuits. By employing these macromodels, 
system-level simulations can be accomplished with rarely low 
computation cost, as demonstrated by our GSM receiver system 
example. Using frequency separation we are able to generate an 
efficient extension of the more conventional macromodels based on 
Volterra kernel calculations. 
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