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Abstract- We propose a technique of selecting seeds for the 
LFSR-based test pattern generators that are used in VLSI 
BISTs. By setting the computed seed as an initial value, target 
fault coverage, for example 100%, can be accomplished with 
minimum test length. We can also maximize fault coverage for a 
given test length. Our method can be used for both 
test-per-clock and test-per-scan BISTs. The procedure is based 
on vector representations over )2( mGF , where m  is the 
number of LFSR stages. The results indicate that test lengths 
derived through selected seeds are about sixty percent shorter 
than those derived by conventionally selected seeds for a given 
fault coverage. We also show that seeds obtained through this 
technique accomplish higher fault coverage than the 
conventional selection procedure. In terms of the c7552 
benchmark, taking a test-per-scan architecture with a 20-bit 
LFSR as an example, the number of undetected faults can be 
decreased from 304 to 227 for 10,000 LFSR patterns using our 
proposed technique. 

1. INTRODUCTION 
The cost of testing VLSIs has been increasing with the 

rapid advances in semiconductor technology [1]. With 
increasing VLSI clock frequencies and scales, we must use 
more expensive testers over longer periods of time. Designs 
that provide testability such as scan design and built-in 
self-tests (BISTs), have been studied to reduce the amount of 
time we have to use these expensive testers. In terms of 
BISTs, a device under test integrates both a test pattern 
generator (TPG) and a test response compactor (TRC) [2]. As 
a result, we may be able to reduce the cost of including a 
tester [3-5]. 

A linear feedback shift register (LFSR) is generally used 
for a TPG, and a multiple input signature register (MISR) is 
used for a TRC. A pseudo random pattern generator (PRPG) 
using an LFSR internally inputs test vectors to the circuit 
under test (CUT). However, to achieve high single stuck-at 
fault coverage, such as 95%, requires a long time for testing. 
Many studies have been done and these have reported on 
ways to overcome this difficulty. 

Weighted pseudo random testing puts test vectors into the 
CUT, where each bit of the vectors has weighted probabilities 
of “0” or “1”, so that it can detect more faults than the 
original pattern [6-7]. Another technique to improve 
testability and observability is to insert control and 
observation points [8-9]. Inserting test points however, 
changes the CUT structure resulting in signal delay in the test. 
Dostie et al. also proposed a scan BIST structure to enhance 
CUT testability [10]. 

Although these techniques are useful, it is quite difficult 
for us to accomplish high fault coverage with limited test 
length. Consequently, mixed mode BISTs have been 
proposed, combining pseudo-random tests along with 

testcube information [3, 11, 12]. Reseeding of LFSRs has 
also been proposed. This can utilize encoded testcubes 
because the number of specified bits in a testcube is generally 
smaller than the length of the scan chain. Using this method, 
we require an LFSR with (s + 20) bits to encode a testcube 
for s specified bits with a probability of 1 - 10-6. The 
MP-LFSR decodes testcubes using multiple polynomials [13]. 
This method requires us to use an (s + 4)-bit MP-LFSR to 
encode a testcube with s specified bits. Bit flipping BISTs 
[14] and bit-fix BISTs [15] find a test pattern from the LFSR 
that is similar to the testcubes. Then, the test vector from the 
LFSR is flipped or has some bits fixed to it to match the 
testcube. These techniques require additional circuits. For 
reseeding BISTs, bit-flipping BISTs and bit-fix BISTs, many 
faults can easily be detected using pseudo-random tests with, 
for example, 10,000 LFSR patterns. Then, 
random-pattern-resistant faults are detected by the reseeded, 
bit-flipped or bit-fixed vectors. Additional seeds can be added 
by an external tester or an internal read only memory (ROM) 
and additional flipping or fixing functions can be 
implemented in an internal programmable logic array. 
Consequently, test costs increase when many 
random-pattern-resistant faults remain, because we require a 
longer test application time or a large number of additional 
circuits. It is quite important to reduce the number of 
undetected faults, after pseudo-random testing. One possible 
way to do this is to select the “seed” very carefully. Several 
procedures to select seeds have already been studied [16-21]. 
Bayraktaroglu et al. examined the PRPG structure and 
selection approaches [16]. Lempel et al. proposed an LFSR 
seed-selecting algorithm that used the theory of discrete 
logarithms [17]. The technique Fagot et al. used [18] 
estimates test quality by using the Hamming distance 
between the testcube and the test pattern that is output from 
the LFSR for a bit-flipping BIST. In Fagot et al.’s later study 
[19], fault simulation computes an efficient LFSR seed which 
outputs the test sequence including a testcube. To reduce test 
application time, Stroele et al. used a reseeding method and 
reverse order simulation [20]. Basturkmen et al. proposed a 
BIST based on the Markov source [21] and it can achieve 
high fault coverage. 

In this work, we propose a procedure that selects the LFSR 
seed to improve random-pattern-test quality. The technique is 
based on vector representation over )2( mGF . We also 
propose a technique of selecting a seed that can achieve 
target fault coverage with minimum test length for a given 
polynomial. We propose an additional technique of seed 
selection that can achieve maximum fault coverage for a 
given test length and for a given polynomial. In other words, 
the number of undetected faults is reduced to a minimum. 
Although the above techniques require prior off-line 
calculation, they considerably improve pseudo-random 



 

 

testing without the need to change circuits in the CUT. When 
these techniques are applied to a mixed-mode BIST such as 
reseeding, bit-flipping or bit-fixing, the amount of additional 
circuits is reduced. The proposed seed-selection techniques 
are able to be applied not only to typical LFSRs but also to 
other types of PRPGs such as CA based PRNGs [22], 
GLFSRs [23] and PRPGs with phase shifters [24]. 

2. DEFINITIONS 
A PRPG based on an LFSR generates a test pattern 

sequence after setting a seed. We first applied the method to 
the test-per-clock BIST structure in Fig. 1, where the CUT is 
a combinational circuit. In a later section, we will consider 
test-per-scan BISTs. Once an LFSR seed is established, then 
the succeeding output test sequence is uniquely determined. 
In this manuscript, we consider single stuck-at faults. 

The LFSR in Fig. 1 is based on an m -bit primitive 
polynomial and it outputs ( 12 −m ) different patterns to the 
CUT. A binary vector from the m -stage LFSR is regarded as 
an element iα ( 220 −≤≤ mi ) from )2( mGF , where α  is 
a primitive element from )2( mGF  and the i  denotes an 
index. 

If the LFSR outputs 0α  as the first test vector, then it 
outputs 1α , 2α , 3α , to 22 −mα . For seed 1α , the LFSR first 
outputs 1α , then outputs 2α , 3α , to 22 −mα , 0α . For seed 

iα , the j -th test pattern is denoted by 1−+ jiα . 
Let F  denote a set of stuck-at faults in the CUT. Let ⋅  

represent the number of elements in a set. Then a fault 
coverage of %C  by a test pattern sequence means that 

100/CF ×  faults are detected by this sequence. Moreover, 
let αF  denote the set of faults that are detected by test 
pattern α . 

Function ),( fix
i nL α  returns the test length whereby fixn  

faults are detected for seed iα , where fixn  denotes the target 
number of detected faults. The test pattern sequence can then 
be represented by ( ) 1,21 ,,,, −+++ fix

i nLiiii ααααα L . Although 
Fn fix =  is desirable, it is often realistic to set a slightly 

smaller value than F  for fixn . 
When a sequence of test patterns is represented by 

L,,, 21 −− iii ααα  for seed iα , we call it a reverse order 
pattern. Function ),( fix

li
R nL +α  returns the test length where 

fixn  faults are detected for the reverse order patterns from 
seed li+α . Thus, the sequence can be represented by 

( ) 1,21 ,,,, +−−− fix
i

R nLiiii ααααα L . 
Functions ),( fix

i nL α  and ),( fix
li

R nL +α  can be computed 
by fault simulations. For a given CUT, fixn , and LFSR, there 
is at least one seed that detects fixn  faults with a minimum 
test length. We call this the minimum test length seed *iα , 
and its index is termed *i , that is,  

)},({minarg*
fix

i

i
nLi α= . (1) 

3. LFSR SEED AND OUTPUT TEST PATTERN SEQUENCE 
In this section, we assume that the test-per-clock BIST has 

been used in the s386 circuit, which is one of the ISCAS’89 
benchmark circuits. This circuit has 13 inputs. Figure 2 
shows test lengths where 100% fault coverage is achieved as 
a function of each seed index. The number of detectable 
faults for the s386 is 384. For example, )384,( 0αL = 1783. 
The relationship between seeds and test lengths when using 
LFSR test-per-clock testing is in Fig. 2. That is to say, when 
an index i  is increased to ( )1+i , the test length 

),( 1
fix

i nL +α  becomes 

(a) 1),(),( 1 −=+
fix

i
fix

i nLnL αα , or 

(b) ),(),( 1
fix

i
fix

i nLnL αα ≥+ . 

Figure 3 is a simplified example of Fig. 2. For simplicity, 
let the number of detectable faults be 100 for Fig. 3. The test 
length for seed 0α  is 8 as Fig. 3 shows, that is, 

8)100,( 0 =αL . 
Suppose that the set of faults detected by 7 patterns from 

1α  to 7α  include all the faults detected by 0α , that is 

FFFFF =∪∪∪⊆ 7210 αααα L , (2) 

then 7)100,( 1 =αL . Similarly, the set of faults detected by 
6 patterns from 2α  to 7α  includes all the faults detected 
by 1α , that is 

FFFFF =∪∪∪⊆ 7321 αααα L , (3) 

then, 6)100,( 2 =αL . 
Suppose the set of faults detected by 4 patterns from 4α  

to 7α  does not include all the faults detected by 3α , that is, 

7543 αααα FFFF ∪∪∪⊄ L , (4) 

then the test length for seed 4α , )100,( 4αL , gets longer. In 
the example in Fig. 3, the test length for 4α  is 10. 

When ),(),( 1
fix

i
fix

i nLnL +< αα  holds, we call 
),( fix

i nL α  the minimal test length minl and call miniα  the 
minimal test-length seed. 

The minimum test length *l  is the minimum value of all 
the minimal test lengths. In Fig. 3, seed 3α  is the minimal 
test-length seed and the corresponding minimal test length is 
5. 

In Fig. 2, there are 13 minimal test lengths, where the 
minimal test lengths from the left are 1648, 2104, 1298, 1466, 
2505, 2211, 2823, 2283, 2497, 1866, 1615, 2000, and 1867. 
Thus, the minimum test length *l  is 1298. 

 

m-stage LFSR

CUT

MISR

PRPG

 
Fig. 1  Test-per-clock BIST architecture using LFSR. 
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Fig. 2  Example of test lengths for s386 benchmark using 
test-per-clock LFSR (polynomial: 20033) 
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Fig. 3  Illustration of relationship between seeds and test lengths. 

4. SEED-SELECTION ALGORITHM FOR TEST-PER-CLOCK BIST 
We will describe the algorithm used to select the minimum 

test-length seed by using an example. The algorithm consists 
of two steps. “Step A” was used to find the minimal test 
length and “Step B” was used to find if there was a shorter 
minimal test length. 

4.1. Step A 
For current index i , we need to find the “next” index of 

minimal test length seed mini  that is greater than i . First, 
calculate test length l  for seed iα  using ),( fix

i nL α . Next, 
apply the reverse order pattern [20] and calculate 

),( 1
fix

li
R nL −+α . The value obtained is the minimal test length 

minl , because the following equations hold:  

1111 −++−+−+−++ ∪∪∪=∪∪∪ liminlliminlliliii aaaaaa FFFFFF LL  (5) 

and 

121 −++−++−+−+ ∪∪∪⊄ liminlliminlliminlli aaaa
FFFF L . (6) 

The index mini  that attains the minimal test length minl  is  

minmin llii −+= . (7) 

Figure 4 shows an example for Step A. First, we calculate 
the test length for seed 0α , that is, ),( 0

fixnL α  in Step-A-1. 
In this example, ),( 0

fixnL α  = 8. Next, we calculate 
),( 7

fixR nL α  and the value of 5 we obtain is the minimal test 
length in Step-A-2. In this example, the index mini  is 
calculated as 3580 =−+=mini  in Step-A-3. In short, seed 

3α  achieves the target fault coverage with a minimal test 
length of 5. 

 
Fig. 4  Example of Step A for proposed algorithm, where minimal test 
length found. 

4.2. Step-B 
In Step-B, we try to find a minimal test length shorter than 

that found through the seed detected by Step-A. 
The test length for the seed of index 1+mini  is longer than 

minl . First, we set the current index 1+= minii , and calculate 

the test length l  for index i  using ),( fix
i nL α  in Step-B-1. 

Next, we calculate the index whereby it is possible to achieve 
target fault coverage using the shorter test length in Step-B-2. 
In Step-B-2, we use the properties of (a), and (b) in the 
previous section. 

This is because the following expressions hold:  

,),(,),,(),,( 11 min

minfix
lli

fix
i

fix
i lnLnLnL >−−++ ααα L  (8) 

and 

.),( min

minfix
lli lnL ≥−+α  (9) 

This equation indicates that the seeds for the index between 
i  and minlli −+  are not candidates for minimal test lengths 
that are shorter than the minl  calculated in the previous 
Step-A. Thus, the current index i  is updated as 

1+−+← minllii . (10) 

Then, calculate the test length l  for the new seed iα  
using ),( fix

i nL α  in Step-B-3. 
If the test length l  is shorter than minl , then the minimal 

test length can be calculated using Step-A. Otherwise, try to 
find the next possible index that has a shorter test length by 
repeatedly applying Step-B-2. 

The above calculation is continued while index i  is 
shorter than 12 −m . 

Figures 5 and 6 have examples of Step-B. In both figures, 
seed 3α  is a minimal test length seed, that is mini = 3, and its 
test length minl = 5. 

In Fig. 5, the test length for seed 4α  is calculated using 
),( 4

fixnL α  at step-B-1. In this figure, ),( 4
fixnL α = 10. As 

the figure shows, when the minimal test length is 5, 

5),(),( 94 ≥>> fixfix nLnL αα L . (11) 

Therefore seeds from 4α to 9α  are definitely not 
candidates for minimum test length. Seeds that may 
accomplish shorter test lengths than 5 are calculated at 
step-B-2. Here, the seed is 10α . The test length l  for seed 

10α  is calculated by ),( 10
fixnL α . In the figure, the test 

length l  is 4. If we use a seed whose index is more than 10, 
there is a possibility that the test length will be shorter than 4. 
In this case, Step-A is applied. 

In Fig. 6, Step-B-1 and Step-B-2 work the same as in Fig. 
5. That is, ),( 4

fixnL α = 10. Then, the candidate seed is 10α . 
The test length for seed 10α  is calculated using ),( 10

fixnL α . 
In Fig. 6, ),( 10

fixnL α = 7. In this case, Step-B-2 is repeated 
until the next possible seed that can attain a shorter test length 
is calculated. 

Since the number of inputs for the s386 benchmark is 13, 
an exhaustive search for the minimum test length is possible 
to compute for a given LFSR. Using this approach, the 
process time required was about 40 minutes on an 
AT-compatible PC (Pentium 3, 1 GHz clock with 256-MB 
memory). In contrast, the calculation time for the proposed 
method is about 4 seconds. 

Table 1 shows test lengths for several possible seeds. The 
test length of a minimum test length seed is 1293. The test 
length for seed 0100 ⋅⋅⋅  is 1783. When the bits of seed are 
all 1, the test length is 2230. It is evident that our proposed 
method is effective in greatly reducing test length. 
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Fig. 5  Example of Step B, where new seed using Step-B-2, 10α , is 
better than current seed, 4α . 
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Fig. 6  Example of Step B, where new seed using Step-B-2, 10α , is 
worse than current seed, 4α . 
 
TABLE 1  TEST LENGTH FOR SEVERAL POSSIBLE SEEDS. 

Type of seed Test length 
Proposed method 1293 

0100L  1783 
All 1 2230 

L0101  1971 
L1010  2949 

 

5. SEED-SELECTION ALGORITHMN FOR TEST-PER-SCAN BISTS 
The test-per-scan BIST in Fig. 7 is said to be more 

practical. The test pattern from the PRPG changes depending 
on the seeds, similar to the test-per-clock architecture in Fig. 
1. 

Consider an m -bit LFSR and one k -bit scan chain. The 
PRPG outputs k  bit test patterns 2210 ,,, −mppp L . 

Let jβ  denote the seed that generates test pattern jp . 
Seed jβ  is expressed as follows: 

)12mod()( −×=
mkj

j αβ . (12) 

To put it differently, the seeds are expressed as 0
0 αβ = , 

kαβ =1 , L,2
2

kαβ = . 
It is desirable for ( 12 −m ) and k  to be prime. Otherwise, 

we need to add dummy flip-flops to the scan chain to satisfy 
this condition. There is an example in Fig 8, where five seeds 
from 0β  to 4β  output a test pattern sequence whose test 
length is 10. The seed 0β  corresponds to output test 
pattern 0p , and then, test patterns 921 ,,, ppp L  are generated. 
The seed 1β  corresponds to output test pattern 1p , and so on. 
We can obtain a seed selection procedure that yields 
minimum test length for test-per-scan testing by using the 
same technique as that used for test-per-clock testing. 
However, it is difficult for test-per-scan testing to accomplish 

high target fault coverage such as 99.99%. The scan BIST 
structure makes it much more practical to select a seed that 
can detect as many faults as possible for fixed test length, 

fixl . 
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Fig. 7  Test-per-scan BIST architecture using LFSR 
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Fig. 8  Example of test patterns in test-per-scan BISTs. 

 
Let us introduce function ),( fixj lN β , which derives the 

number of detected faults for seed jβ  and fixed test length 
fixl . Thus, the best seed for test-per-scan testing, *jβ  is 

expressed as: 

( ){ }fixjj lN
j

,maxarg* ββ
β

= . (13) 

In the following, we term j  as the seed number for jβ . 
Therefore, *jβ  is the optimum seed number whose 
corresponding seed *jβ  is the maximum number of detected 
faults with fixed test length. Function ),( fixj lN β  can be 
computed by fault simulation the same as ),( fix

i nL α  and 
),( fix

li
R nL +α . 
By slightly modifying the algorithm described in the 

previous section, the seed can be selected for test-per-scan 
BISTs. To put it another way, in this section the target number 
of detected faults is dynamically updated for the given fixed 
test length fixl . This technique selects a seed that maximizes 
the number of detected faults with a limited length of test 
patterns. 

The algorithm consists of Step-A*, which calculates the 
tentative target number of detected faults with test length fixl , 
and Step-B*, which examines whether there is a seed that can 
detect more faults. 

In Step-A*, the number of faults detected with seed jβ  is 
first calculated for test length fixl  by means of function 

( )fixj lN ,β . We consider the number obtained, tn , as the 
tentative target number of detected faults for the following 
steps. Next, the minimal test length minl  for tn  is calculated 
using ),( 1 tljR nL

fix −+β . The seed number minj  corresponding 
to the minimal test length is minllj fix −+ . Step-A* is 
repeated, until the test length l  of seed 1min +jβ  is longer than 

fixl . 
When the test length l  of seed 1min +jβ  is longer than fixl , 

we go to Step-B*. In Step-B*-1, the current seed number j  
is updated by 1+j , and we calculate test length 

),( tj nLl β= . In Step-B*-2 we update the current seed 
number j  using 1+−+ fixllj . In Step-B*-3, we calculate 



 

 

test length ),( tj nLl β= . When the test length l  is longer 
than 1−fixl , we return to Step-B*-2. If test length l  is 
( 1−fixl ), we go to Step-A* and the tentative target number of 
detected faults is re-calculated. 
For an m -bit LFSR, these steps are repeated until the seed 
number j  reaches ( 22 −m ). At the end of the algorithm, 

tn  is *,n  the maximum number of faults detected with 
fixed test length fixl . The corresponding seed number j  is 

*j . 
Figure 9 has an algorithm to select seeds that can detect the 

maximum number of faults through a PASCAL-like 
description. 

 
procedure SEARCH_JSTAR 
begin 

j  := 0; 
repeat 
repeat 

tn  := ),( fixj lN β ; 

minl  := ),( 1 tLiR nL
fix −+β ; 

j  := minfix llj −+ ; 

minj  := j ; 
j  := 1+j ; 
l  := ),( tj nL β  

until( fixll <  and j < 12 −n  ); 
repeat 

j  := 1+−+ fixllj ; 
l  := ),( tj nL β  

until( 1−> fixll  and j < 12 −n ) 
until( j < 12 −n  ); 

tnn =:* ; 

minjj =:*  
end.  

Fig. 9  Algorithm for selecting seeds to detect maximum number of 
faults using fixed test length. 

6. EXPERIMENTAL RESULTS 
The procedure in the previous section applied to 

benchmark circuits. The computer we used in this section is 
an IBM e-server pSeries 690 with single processor class 
nodes. We considered the BIST structure in Fig. 7, that is, a 
test-per-scan BIST using an LFSR and one scan chain. We 
used one hundred 16-bit and twenty 20-bit LFSRs because of 
computational requirements. These LFSRs were applied to 
the ISCAS’85 circuits and the combinational circuits of the 
ISCAS’89 benchmark. We used the 16-bit seed 
“0000000000000001” and the 20-bit seed “00000000000000000001” 
and these seeds were expressed as 0β . 

6.1. Minimum Test Length for 100%  fault coverage 
First, we selected a seed that could achieve the minimum 

length to cover 100% of faults using a test-per-scan BIST 
with a 16-bit LFSR. Table 2 lists the results for some of the 
ISCAS’85 and ISCAS’89 circuits. We selected seeds using 
100 primitive polynomials for each circuit. The first column 
has the circuit name, the next, “ phN ”, is the number of 
polynomials out of 100 which could achieve 100% fault 
coverage. The third and fourth columns show the average and 
minimum test lengths using seed 0β  for phN  polynomials. 
The fifth and sixth columns have the average and minimum 
test lengths using our proposed method for phN  polynomials. 
The CPU time is in the seventh column. 

For example, for the c432 benchmark, 100% fault 

coverage was achieved for all 100 polynomials. If we select 
0β  as the seed, the average test length is 1,056, and the 

minimum test length is 338. Using the technique we propose, 
the average test length is 260, and the minimum test length is 
193. The CPU time for one polynomial was 31 seconds. 

Similarly, for the c880 benchmark, 100% fault coverage 
can be achieved for 94 polynomials. If we select 0β  as the 
seed, the average test length is 9,992, and the minimum test 
length is 508 for these 94 polynomials. Using the method we 
propose, the average test length is 3,841, and the minimum 
test length is 301. The CPU time for one polynomial is 51 
seconds. There was no polynomial that attained 100 % fault 
coverage for the c2670 and c7552 benchmarks. 

We could reduce the test lengths to 60% compared with 
those using seed 0β  by applying our procedure, except for 
the c2670 and c7552 benchmarks. 
 
TABLE 2  AVERAGE AND MINIMUM TEST LENGTHS FOR ISCAS’85 / ’89 (100 
16-BIT PRIMITIVE POLYNOMIALS) 

avrg. min. avrg. min.
c432 100 1056 338 260 193 31
c499 100 1041 508 400 301 38
c880 94 9992 3388 3841 2041 51
c1355 100 2612 1485 1157 901 47
c1908 97 10350 4332 4336 2892 50
c2670 0 - - - - -
c3540 85 26437 11143 9734 4316 67
c5315 94 3442 1576 1316 983 196
c6288 100 129 55 45 39 272
c7552 0 - - - - -
s444 100 536 136 141 94 25
s526 91 15863 4707 6427 3082 23
s820 92 20779 10386 11641 6960 27
s832 92 20594 10386 11250 6960 28
s953 68 34314 12261 19267 9076 62

CPU time/
polynomial

Seed β0
N ph

proposed method

 
 

6.2. Maximum Number of Faults Detected by the 
Selected Seeds 

One hundred percent fault coverage cannot be achieved 
with a hundred 16-bit primitive polynomials for the c2670 
and c7552 benchmarks. Consequently, we tried to detect as 
many faults as possible by selecting the seeds for c7552. In 
other words, we selected seeds and polynomials so that the 
number of undetected faults was minimized, where 

faultsdetectedfaultsdetectablefaultsundetected −= . (14) 

Table 3 lists the results for the c7552 benchmark with a 
hundred 16-bit primitive polynomials. The first column is the 
fixed test length fixl . The second and third columns show the 
average and the minimum number of undetected faults using 
seed 0β . The fourth and fifth columns have the average and 
minimum number of undetected faults using the proposed 
method. The sixth column shows the CPU time for one 
polynomial. 

For fixl = 1,000 and seed 0β  the average number of 
undetected faults is 461, and the minimum is 404. In contrast, 
the average and minimum number of undetected faults using 
the proposed technique are 388 and 345, respectively. As 
shown in Table 3, the number of undetected faults is reduced 
for fixl = 1,000. The average CPU time for one polynomial is 
472 seconds. 

For seed 0β  with 10,000 patterns, the minimum number 



 

 

of undetected faults is 238 for a hundred 16-bit primitive 
polynomials. Using our seed technique, the minimum is 234. 
In this case, we could hardly find any improvement, because 
the fixed test length was too long for the length of the LFSR 
sequence. 

We selected seeds for the c7552 benchmark with twenty 
20-bit primitive polynomials. The results are in Table 4. For 
seed 0β  with 10,000 patterns, the minimum number of 
undetected faults is 270. Compared with 16-bit polynomials, 
the minimum number of undetected faults has increased. In 
this case, trying many polynomials such as 100 for seed 0β  
is more effective than increasing the number of polynomial 
bits. Using our seed technique, the average is 243, and the 
minimum is 227 obtained through only 20 polynomials. 
 
TABLE 3  AVERAGE AND MINIMUM NUMBER OF UNDETECTED FAULTS FOR 
C7552 BENCHMARCK WITH 100 16-BIT PRIMITIVE POLYNOMIALS. 

avrg. min.
1000 461 404 388 345
5000 352 297 300 261

10000 310 238 268 234

avrg. min.
test length

about 700
(sec)

number of undetected faults process time/
polynomialsSeed β0 proposed method

 
 

TABLE 4  AVERAGE AND MINIMUM NUMBER OF UNDETECTED FAULTS FOR 
C7552 BENCHMARCK WITH TWENTY 20-BIT PRIMITIVE POLYNOMIALS. 

avrg. min.
1000 464 418 369 359
5000 351 319 277 259

10000 304 270 243 227
about 4300

(sec)

number of undetected faults process time/
polynomialsSeed β0 proposed method

avrg. min.
test length

 
7. CONCLUSION 

In this paper, we proposed a technique for selecting the 
LFSR seeds used in VLSI BISTs, for a given primitive 
polynomial, to improve test quality, such as, decreasing test 
length and increasing the number of detected faults. First, we 
presented an algorithm for a test-per-clock BIST from which 
a seed was derived that has a minimum test length to cover 
the target fault. Next, we presented an algorithm for a 
test-per-scan BIST from which a seed was derived that 
detected the maximum number of faults with a fixed test 
length. 

We applied the techniques to the ISCAS’85 benchmark 
circuits and combinational parts of the ISCAS’89 benchmark 
circuits. The experimental results, using the first algorithm 
obtained a test length that provided 100% fault coverage. 
This reduced test lengths down to 60% for seed 

0β = 0100 ⋅⋅⋅ .  
We applied the second algorithm to the c7552 benchmark 

circuit using a 20-bit LFSR. For a test length of 10,000 LFSR 
patterns, the minimum number of undetected faults was 227, 
while that for seed 0β  was 270. This means that 43 more 
faults could be detected by only changing the seed. 

Although this method requires off-line calculation, the 
test-application time can be reduced for a given fault 
coverage, or the number of undetected faults can be reduced 
without the need for additional hardware. The fewer 
undetected faults remaining, the fewer additional circuits 
required. Thus, the proposed seed selection algorithms can be 
applied not only to conventional BISTs but also mixed-mode 
BISTs such as those with reseeding, bit-flipping, and 
bit-fixing. 
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