

A Seed Selection Procedure for LFSR-Based Random Pattern Generators

Kenichi ICHINO, Ko-ichi WATANABE, Masayuki ARAI,
Satoshi FUKUMOTO and Kazuhiko IWASAKI

Graduate School of Engineering, Tokyo Metropolitan University, Hachioji, Tokyo 192-0397, Japan
e-mail: ichino@info.eei.metro-u.ac.jp

Abstract- We propose a technique of selecting seeds for the
LFSR-based test pattern generators that are used in VLSI
BISTs. By setting the computed seed as an initial value, target
fault coverage, for example 100%, can be accomplished with
minimum test length. We can also maximize fault coverage for a
given test length. Our method can be used for both
test-per-clock and test-per-scan BISTs. The procedure is based
on vector representations over)2(mGF , where m is the
number of LFSR stages. The results indicate that test lengths
derived through selected seeds are about sixty percent shorter
than those derived by conventionally selected seeds for a given
fault coverage. We also show that seeds obtained through this
technique accomplish higher fault coverage than the
conventional selection procedure. In terms of the c7552
benchmark, taking a test-per-scan architecture with a 20-bit
LFSR as an example, the number of undetected faults can be
decreased from 304 to 227 for 10,000 LFSR patterns using our
proposed technique.

1. INTRODUCTION
The cost of testing VLSIs has been increasing with the

rapid advances in semiconductor technology [1]. With
increasing VLSI clock frequencies and scales, we must use
more expensive testers over longer periods of time. Designs
that provide testability such as scan design and built-in
self-tests (BISTs), have been studied to reduce the amount of
time we have to use these expensive testers. In terms of
BISTs, a device under test integrates both a test pattern
generator (TPG) and a test response compactor (TRC) [2]. As
a result, we may be able to reduce the cost of including a
tester [3-5].

A linear feedback shift register (LFSR) is generally used
for a TPG, and a multiple input signature register (MISR) is
used for a TRC. A pseudo random pattern generator (PRPG)
using an LFSR internally inputs test vectors to the circuit
under test (CUT). However, to achieve high single stuck-at
fault coverage, such as 95%, requires a long time for testing.
Many studies have been done and these have reported on
ways to overcome this difficulty.

Weighted pseudo random testing puts test vectors into the
CUT, where each bit of the vectors has weighted probabilities
of “0” or “1”, so that it can detect more faults than the
original pattern [6-7]. Another technique to improve
testability and observability is to insert control and
observation points [8-9]. Inserting test points however,
changes the CUT structure resulting in signal delay in the test.
Dostie et al. also proposed a scan BIST structure to enhance
CUT testability [10].

Although these techniques are useful, it is quite difficult
for us to accomplish high fault coverage with limited test
length. Consequently, mixed mode BISTs have been
proposed, combining pseudo-random tests along with

testcube information [3, 11, 12]. Reseeding of LFSRs has
also been proposed. This can utilize encoded testcubes
because the number of specified bits in a testcube is generally
smaller than the length of the scan chain. Using this method,
we require an LFSR with (s + 20) bits to encode a testcube
for s specified bits with a probability of 1 - 10-6. The
MP-LFSR decodes testcubes using multiple polynomials [13].
This method requires us to use an (s + 4)-bit MP-LFSR to
encode a testcube with s specified bits. Bit flipping BISTs
[14] and bit-fix BISTs [15] find a test pattern from the LFSR
that is similar to the testcubes. Then, the test vector from the
LFSR is flipped or has some bits fixed to it to match the
testcube. These techniques require additional circuits. For
reseeding BISTs, bit-flipping BISTs and bit-fix BISTs, many
faults can easily be detected using pseudo-random tests with,
for example, 10,000 LFSR patterns. Then,
random-pattern-resistant faults are detected by the reseeded,
bit-flipped or bit-fixed vectors. Additional seeds can be added
by an external tester or an internal read only memory (ROM)
and additional flipping or fixing functions can be
implemented in an internal programmable logic array.
Consequently, test costs increase when many
random-pattern-resistant faults remain, because we require a
longer test application time or a large number of additional
circuits. It is quite important to reduce the number of
undetected faults, after pseudo-random testing. One possible
way to do this is to select the “seed” very carefully. Several
procedures to select seeds have already been studied [16-21].
Bayraktaroglu et al. examined the PRPG structure and
selection approaches [16]. Lempel et al. proposed an LFSR
seed-selecting algorithm that used the theory of discrete
logarithms [17]. The technique Fagot et al. used [18]
estimates test quality by using the Hamming distance
between the testcube and the test pattern that is output from
the LFSR for a bit-flipping BIST. In Fagot et al.’s later study
[19], fault simulation computes an efficient LFSR seed which
outputs the test sequence including a testcube. To reduce test
application time, Stroele et al. used a reseeding method and
reverse order simulation [20]. Basturkmen et al. proposed a
BIST based on the Markov source [21] and it can achieve
high fault coverage.

In this work, we propose a procedure that selects the LFSR
seed to improve random-pattern-test quality. The technique is
based on vector representation over)2(mGF . We also
propose a technique of selecting a seed that can achieve
target fault coverage with minimum test length for a given
polynomial. We propose an additional technique of seed
selection that can achieve maximum fault coverage for a
given test length and for a given polynomial. In other words,
the number of undetected faults is reduced to a minimum.
Although the above techniques require prior off-line
calculation, they considerably improve pseudo-random

testing without the need to change circuits in the CUT. When
these techniques are applied to a mixed-mode BIST such as
reseeding, bit-flipping or bit-fixing, the amount of additional
circuits is reduced. The proposed seed-selection techniques
are able to be applied not only to typical LFSRs but also to
other types of PRPGs such as CA based PRNGs [22],
GLFSRs [23] and PRPGs with phase shifters [24].

2. DEFINITIONS
A PRPG based on an LFSR generates a test pattern

sequence after setting a seed. We first applied the method to
the test-per-clock BIST structure in Fig. 1, where the CUT is
a combinational circuit. In a later section, we will consider
test-per-scan BISTs. Once an LFSR seed is established, then
the succeeding output test sequence is uniquely determined.
In this manuscript, we consider single stuck-at faults.

The LFSR in Fig. 1 is based on an m -bit primitive
polynomial and it outputs (12 −m) different patterns to the
CUT. A binary vector from the m -stage LFSR is regarded as
an element iα (220 −≤≤ mi) from)2(mGF , where α is
a primitive element from)2(mGF and the i denotes an
index.

If the LFSR outputs 0α as the first test vector, then it
outputs 1α , 2α , 3α , to 22 −mα . For seed 1α , the LFSR first
outputs 1α , then outputs 2α , 3α , to 22 −mα , 0α . For seed

iα , the j -th test pattern is denoted by 1−+ jiα .
Let F denote a set of stuck-at faults in the CUT. Let ⋅

represent the number of elements in a set. Then a fault
coverage of %C by a test pattern sequence means that

100/CF × faults are detected by this sequence. Moreover,
let αF denote the set of faults that are detected by test
pattern α .

Function),(fix
i nL α returns the test length whereby fixn

faults are detected for seed iα , where fixn denotes the target
number of detected faults. The test pattern sequence can then
be represented by () 1,21 ,,,, −+++ fix

i nLiiii ααααα L . Although
Fn fix = is desirable, it is often realistic to set a slightly

smaller value than F for fixn .
When a sequence of test patterns is represented by

L,,, 21 −− iii ααα for seed iα , we call it a reverse order
pattern. Function),(fix

li
R nL +α returns the test length where

fixn faults are detected for the reverse order patterns from
seed li+α . Thus, the sequence can be represented by

() 1,21 ,,,, +−−− fix
i

R nLiiii ααααα L .
Functions),(fix

i nL α and),(fix
li

R nL +α can be computed
by fault simulations. For a given CUT, fixn , and LFSR, there
is at least one seed that detects fixn faults with a minimum
test length. We call this the minimum test length seed *iα ,
and its index is termed *i , that is,

)},({minarg*
fix

i

i
nLi α= . (1)

3. LFSR SEED AND OUTPUT TEST PATTERN SEQUENCE
In this section, we assume that the test-per-clock BIST has

been used in the s386 circuit, which is one of the ISCAS’89
benchmark circuits. This circuit has 13 inputs. Figure 2
shows test lengths where 100% fault coverage is achieved as
a function of each seed index. The number of detectable
faults for the s386 is 384. For example,)384,(0αL = 1783.
The relationship between seeds and test lengths when using
LFSR test-per-clock testing is in Fig. 2. That is to say, when
an index i is increased to ()1+i , the test length

),(1
fix

i nL +α becomes

(a) 1),(),(1 −=+
fix

i
fix

i nLnL αα , or

(b)),(),(1
fix

i
fix

i nLnL αα ≥+ .

Figure 3 is a simplified example of Fig. 2. For simplicity,
let the number of detectable faults be 100 for Fig. 3. The test
length for seed 0α is 8 as Fig. 3 shows, that is,

8)100,(0 =αL .
Suppose that the set of faults detected by 7 patterns from

1α to 7α include all the faults detected by 0α , that is

FFFFF =∪∪∪⊆ 7210 αααα L , (2)

then 7)100,(1 =αL . Similarly, the set of faults detected by
6 patterns from 2α to 7α includes all the faults detected
by 1α , that is

FFFFF =∪∪∪⊆ 7321 αααα L , (3)

then, 6)100,(2 =αL .
Suppose the set of faults detected by 4 patterns from 4α

to 7α does not include all the faults detected by 3α , that is,

7543 αααα FFFF ∪∪∪⊄ L , (4)

then the test length for seed 4α ,)100,(4αL , gets longer. In
the example in Fig. 3, the test length for 4α is 10.

When),(),(1
fix

i
fix

i nLnL +< αα holds, we call
),(fix

i nL α the minimal test length minl and call miniα the
minimal test-length seed.

The minimum test length *l is the minimum value of all
the minimal test lengths. In Fig. 3, seed 3α is the minimal
test-length seed and the corresponding minimal test length is
5.

In Fig. 2, there are 13 minimal test lengths, where the
minimal test lengths from the left are 1648, 2104, 1298, 1466,
2505, 2211, 2823, 2283, 2497, 1866, 1615, 2000, and 1867.
Thus, the minimum test length *l is 1298.

m-stage LFSR

CUT

MISR

PRPG

Fig. 1 Test-per-clock BIST architecture using LFSR.

0

500

1000

1500

2000

2500

3000

3500

0 2000 4000 6000 8000

Seed

Te
st

le
ng

th

α α α α α

Fig. 2 Example of test lengths for s386 benchmark using
test-per-clock LFSR (polynomial: 20033)

Seed

5

α3 α4 α5 α6 α7

α0 α1 α2 α3 α4 α5
α1 α2 α3 α4 α5 α6
α2 α3 α4 α5 α6 α7

α8
α4 α5 α6 α7 α8 α9
α5 α6 α7 α9 α10
α6 α7 α10 α11
α7 α11 α12

α12 α13
α13

α0 α1 α2 α3 α4 α5
Fig. 3 Illustration of relationship between seeds and test lengths.

4. SEED-SELECTION ALGORITHM FOR TEST-PER-CLOCK BIST
We will describe the algorithm used to select the minimum

test-length seed by using an example. The algorithm consists
of two steps. “Step A” was used to find the minimal test
length and “Step B” was used to find if there was a shorter
minimal test length.

4.1. Step A
For current index i , we need to find the “next” index of

minimal test length seed mini that is greater than i . First,
calculate test length l for seed iα using),(fix

i nL α . Next,
apply the reverse order pattern [20] and calculate

),(1
fix

li
R nL −+α . The value obtained is the minimal test length

minl , because the following equations hold:

1111 −++−+−+−++ ∪∪∪=∪∪∪ liminlliminlliliii aaaaaa FFFFFF LL (5)

and

121 −++−++−+−+ ∪∪∪⊄ liminlliminlliminlli aaaa
FFFF L . (6)

The index mini that attains the minimal test length minl is

minmin llii −+= . (7)

Figure 4 shows an example for Step A. First, we calculate
the test length for seed 0α , that is,),(0

fixnL α in Step-A-1.
In this example,),(0

fixnL α = 8. Next, we calculate
),(7

fixR nL α and the value of 5 we obtain is the minimal test
length in Step-A-2. In this example, the index mini is
calculated as 3580 =−+=mini in Step-A-3. In short, seed

3α achieves the target fault coverage with a minimal test
length of 5.

Fig. 4 Example of Step A for proposed algorithm, where minimal test
length found.

4.2. Step-B
In Step-B, we try to find a minimal test length shorter than

that found through the seed detected by Step-A.
The test length for the seed of index 1+mini is longer than

minl . First, we set the current index 1+= minii , and calculate

the test length l for index i using),(fix
i nL α in Step-B-1.

Next, we calculate the index whereby it is possible to achieve
target fault coverage using the shorter test length in Step-B-2.
In Step-B-2, we use the properties of (a), and (b) in the
previous section.

This is because the following expressions hold:

,),(,),,(),,(11 min

minfix
lli

fix
i

fix
i lnLnLnL >−−++ ααα L (8)

and

.),(min

minfix
lli lnL ≥−+α (9)

This equation indicates that the seeds for the index between
i and minlli −+ are not candidates for minimal test lengths
that are shorter than the minl calculated in the previous
Step-A. Thus, the current index i is updated as

1+−+← minllii . (10)

Then, calculate the test length l for the new seed iα
using),(fix

i nL α in Step-B-3.
If the test length l is shorter than minl , then the minimal

test length can be calculated using Step-A. Otherwise, try to
find the next possible index that has a shorter test length by
repeatedly applying Step-B-2.

The above calculation is continued while index i is
shorter than 12 −m .

Figures 5 and 6 have examples of Step-B. In both figures,
seed 3α is a minimal test length seed, that is mini = 3, and its
test length minl = 5.

In Fig. 5, the test length for seed 4α is calculated using
),(4

fixnL α at step-B-1. In this figure,),(4
fixnL α = 10. As

the figure shows, when the minimal test length is 5,

5),(),(94 ≥>> fixfix nLnL αα L . (11)

Therefore seeds from 4α to 9α are definitely not
candidates for minimum test length. Seeds that may
accomplish shorter test lengths than 5 are calculated at
step-B-2. Here, the seed is 10α . The test length l for seed

10α is calculated by),(10
fixnL α . In the figure, the test

length l is 4. If we use a seed whose index is more than 10,
there is a possibility that the test length will be shorter than 4.
In this case, Step-A is applied.

In Fig. 6, Step-B-1 and Step-B-2 work the same as in Fig.
5. That is,),(4

fixnL α = 10. Then, the candidate seed is 10α .
The test length for seed 10α is calculated using),(10

fixnL α .
In Fig. 6,),(10

fixnL α = 7. In this case, Step-B-2 is repeated
until the next possible seed that can attain a shorter test length
is calculated.

Since the number of inputs for the s386 benchmark is 13,
an exhaustive search for the minimum test length is possible
to compute for a given LFSR. Using this approach, the
process time required was about 40 minutes on an
AT-compatible PC (Pentium 3, 1 GHz clock with 256-MB
memory). In contrast, the calculation time for the proposed
method is about 4 seconds.

Table 1 shows test lengths for several possible seeds. The
test length of a minimum test length seed is 1293. The test
length for seed 0100 ⋅⋅⋅ is 1783. When the bits of seed are
all 1, the test length is 2230. It is evident that our proposed
method is effective in greatly reducing test length.

Seed

5

α6

α3
α4
α5

α7

α3

α7

α4
α5
α6

α8
α9
α10
α11
α12
α13

α4
α5
α6
α7
α8
α9
α10
α11
α12
α13

α5

α7

α6

α8
α9
α10
α11
α12
α13

α6

α7
α8
α9
α10
α11
α12
α13

α7

α8
α9
α10
α11
α12
α13

α8

α9
α10
α11
α12
α13

α9

α10
α11
α12
α13

α10

Step-B-1

Step-B-2

Step-B-3

Fig. 5 Example of Step B, where new seed using Step-B-2, 10α , is
better than current seed, 4α .

Seed

5

α6

α3
α4
α5

α7

α3

α7

α4
α5
α6

α8
α9
α10
α11
α12
α13

α4
α5
α6
α7
α8
α9
α10
α11
α12
α13

α5

α7

α6

α8
α9
α10
α11
α12
α13

α6
α7
α8
α9
α10
α11
α12
α13

α7
α8
α9
α10
α11
α12
α13

α8
α9
α10
α11
α12
α13

α9
α10
α11
α12
α13

α10

α14
α15
α16

α14
α15
α16

α14
α15
α16

Step-B-1

Step-B-2

Step-B-3

Fig. 6 Example of Step B, where new seed using Step-B-2, 10α , is
worse than current seed, 4α .

TABLE 1 TEST LENGTH FOR SEVERAL POSSIBLE SEEDS.

Type of seed Test length
Proposed method 1293

0100L 1783
All 1 2230

L0101 1971
L1010 2949

5. SEED-SELECTION ALGORITHMN FOR TEST-PER-SCAN BISTS
The test-per-scan BIST in Fig. 7 is said to be more

practical. The test pattern from the PRPG changes depending
on the seeds, similar to the test-per-clock architecture in Fig.
1.

Consider an m -bit LFSR and one k -bit scan chain. The
PRPG outputs k bit test patterns 2210 ,,, −mppp L .

Let jβ denote the seed that generates test pattern jp .
Seed jβ is expressed as follows:

)12mod()(−×=
mkj

j αβ . (12)

To put it differently, the seeds are expressed as 0
0 αβ = ,

kαβ =1 , L,2
2

kαβ = .
It is desirable for (12 −m) and k to be prime. Otherwise,

we need to add dummy flip-flops to the scan chain to satisfy
this condition. There is an example in Fig 8, where five seeds
from 0β to 4β output a test pattern sequence whose test
length is 10. The seed 0β corresponds to output test
pattern 0p , and then, test patterns 921 ,,, ppp L are generated.
The seed 1β corresponds to output test pattern 1p , and so on.
We can obtain a seed selection procedure that yields
minimum test length for test-per-scan testing by using the
same technique as that used for test-per-clock testing.
However, it is difficult for test-per-scan testing to accomplish

high target fault coverage such as 99.99%. The scan BIST
structure makes it much more practical to select a seed that
can detect as many faults as possible for fixed test length,

fixl .

m-stage LFSR

CUT

MISR

PRPG

Fig. 7 Test-per-scan BIST architecture using LFSR

Seed

Te
st

 L
en

gt
h

5

β0

p0

p1

p2

p3

p4

p5

p6

p7

p8

p9

β1 β2 β3 β4

p1

p2

p3

p4

p5

p6

p7

p8

p9

p10

p2

p3

p4

p5

p6

p7

p8

p9

p10

p11

p3

p4

p5

p6

p7

p8

p9

p10

p11

p12

p4

p5

p6

p7

p8

p9

p10

p11

p12

p13

Fig. 8 Example of test patterns in test-per-scan BISTs.

Let us introduce function),(fixj lN β , which derives the

number of detected faults for seed jβ and fixed test length
fixl . Thus, the best seed for test-per-scan testing, *jβ is

expressed as:

(){ }fixjj lN
j

,maxarg* ββ
β

= . (13)

In the following, we term j as the seed number for jβ .
Therefore, *jβ is the optimum seed number whose
corresponding seed *jβ is the maximum number of detected
faults with fixed test length. Function),(fixj lN β can be
computed by fault simulation the same as),(fix

i nL α and
),(fix

li
R nL +α .
By slightly modifying the algorithm described in the

previous section, the seed can be selected for test-per-scan
BISTs. To put it another way, in this section the target number
of detected faults is dynamically updated for the given fixed
test length fixl . This technique selects a seed that maximizes
the number of detected faults with a limited length of test
patterns.

The algorithm consists of Step-A*, which calculates the
tentative target number of detected faults with test length fixl ,
and Step-B*, which examines whether there is a seed that can
detect more faults.

In Step-A*, the number of faults detected with seed jβ is
first calculated for test length fixl by means of function

()fixj lN ,β . We consider the number obtained, tn , as the
tentative target number of detected faults for the following
steps. Next, the minimal test length minl for tn is calculated
using),(1 tljR nL

fix −+β . The seed number minj corresponding
to the minimal test length is minllj fix −+ . Step-A* is
repeated, until the test length l of seed 1min +jβ is longer than

fixl .
When the test length l of seed 1min +jβ is longer than fixl ,

we go to Step-B*. In Step-B*-1, the current seed number j
is updated by 1+j , and we calculate test length

),(tj nLl β= . In Step-B*-2 we update the current seed
number j using 1+−+ fixllj . In Step-B*-3, we calculate

test length),(tj nLl β= . When the test length l is longer
than 1−fixl , we return to Step-B*-2. If test length l is
(1−fixl), we go to Step-A* and the tentative target number of
detected faults is re-calculated.
For an m -bit LFSR, these steps are repeated until the seed
number j reaches (22 −m). At the end of the algorithm,

tn is *,n the maximum number of faults detected with
fixed test length fixl . The corresponding seed number j is

*j .
Figure 9 has an algorithm to select seeds that can detect the

maximum number of faults through a PASCAL-like
description.

procedure SEARCH_JSTAR
begin

j := 0;
repeat
repeat

tn :=),(fixj lN β ;

minl :=),(1 tLiR nL
fix −+β ;

j := minfix llj −+ ;

minj := j ;
j := 1+j ;
l :=),(tj nL β

until(fixll < and j < 12 −n);
repeat

j := 1+−+ fixllj ;
l :=),(tj nL β

until(1−> fixll and j < 12 −n)
until(j < 12 −n);

tnn =:* ;

minjj =:*
end.

Fig. 9 Algorithm for selecting seeds to detect maximum number of
faults using fixed test length.

6. EXPERIMENTAL RESULTS
The procedure in the previous section applied to

benchmark circuits. The computer we used in this section is
an IBM e-server pSeries 690 with single processor class
nodes. We considered the BIST structure in Fig. 7, that is, a
test-per-scan BIST using an LFSR and one scan chain. We
used one hundred 16-bit and twenty 20-bit LFSRs because of
computational requirements. These LFSRs were applied to
the ISCAS’85 circuits and the combinational circuits of the
ISCAS’89 benchmark. We used the 16-bit seed
“0000000000000001” and the 20-bit seed “00000000000000000001”
and these seeds were expressed as 0β .

6.1. Minimum Test Length for 100% fault coverage
First, we selected a seed that could achieve the minimum

length to cover 100% of faults using a test-per-scan BIST
with a 16-bit LFSR. Table 2 lists the results for some of the
ISCAS’85 and ISCAS’89 circuits. We selected seeds using
100 primitive polynomials for each circuit. The first column
has the circuit name, the next, “ phN ”, is the number of
polynomials out of 100 which could achieve 100% fault
coverage. The third and fourth columns show the average and
minimum test lengths using seed 0β for phN polynomials.
The fifth and sixth columns have the average and minimum
test lengths using our proposed method for phN polynomials.
The CPU time is in the seventh column.

For example, for the c432 benchmark, 100% fault

coverage was achieved for all 100 polynomials. If we select
0β as the seed, the average test length is 1,056, and the

minimum test length is 338. Using the technique we propose,
the average test length is 260, and the minimum test length is
193. The CPU time for one polynomial was 31 seconds.

Similarly, for the c880 benchmark, 100% fault coverage
can be achieved for 94 polynomials. If we select 0β as the
seed, the average test length is 9,992, and the minimum test
length is 508 for these 94 polynomials. Using the method we
propose, the average test length is 3,841, and the minimum
test length is 301. The CPU time for one polynomial is 51
seconds. There was no polynomial that attained 100 % fault
coverage for the c2670 and c7552 benchmarks.

We could reduce the test lengths to 60% compared with
those using seed 0β by applying our procedure, except for
the c2670 and c7552 benchmarks.

TABLE 2 AVERAGE AND MINIMUM TEST LENGTHS FOR ISCAS’85 / ’89 (100
16-BIT PRIMITIVE POLYNOMIALS)

avrg. min. avrg. min.
c432 100 1056 338 260 193 31
c499 100 1041 508 400 301 38
c880 94 9992 3388 3841 2041 51
c1355 100 2612 1485 1157 901 47
c1908 97 10350 4332 4336 2892 50
c2670 0 - - - - -
c3540 85 26437 11143 9734 4316 67
c5315 94 3442 1576 1316 983 196
c6288 100 129 55 45 39 272
c7552 0 - - - - -
s444 100 536 136 141 94 25
s526 91 15863 4707 6427 3082 23
s820 92 20779 10386 11641 6960 27
s832 92 20594 10386 11250 6960 28
s953 68 34314 12261 19267 9076 62

CPU time/
polynomial

Seed β0
N ph

proposed method

6.2. Maximum Number of Faults Detected by the
Selected Seeds

One hundred percent fault coverage cannot be achieved
with a hundred 16-bit primitive polynomials for the c2670
and c7552 benchmarks. Consequently, we tried to detect as
many faults as possible by selecting the seeds for c7552. In
other words, we selected seeds and polynomials so that the
number of undetected faults was minimized, where

faultsdetectedfaultsdetectablefaultsundetected −= . (14)

Table 3 lists the results for the c7552 benchmark with a
hundred 16-bit primitive polynomials. The first column is the
fixed test length fixl . The second and third columns show the
average and the minimum number of undetected faults using
seed 0β . The fourth and fifth columns have the average and
minimum number of undetected faults using the proposed
method. The sixth column shows the CPU time for one
polynomial.

For fixl = 1,000 and seed 0β the average number of
undetected faults is 461, and the minimum is 404. In contrast,
the average and minimum number of undetected faults using
the proposed technique are 388 and 345, respectively. As
shown in Table 3, the number of undetected faults is reduced
for fixl = 1,000. The average CPU time for one polynomial is
472 seconds.

For seed 0β with 10,000 patterns, the minimum number

of undetected faults is 238 for a hundred 16-bit primitive
polynomials. Using our seed technique, the minimum is 234.
In this case, we could hardly find any improvement, because
the fixed test length was too long for the length of the LFSR
sequence.

We selected seeds for the c7552 benchmark with twenty
20-bit primitive polynomials. The results are in Table 4. For
seed 0β with 10,000 patterns, the minimum number of
undetected faults is 270. Compared with 16-bit polynomials,
the minimum number of undetected faults has increased. In
this case, trying many polynomials such as 100 for seed 0β
is more effective than increasing the number of polynomial
bits. Using our seed technique, the average is 243, and the
minimum is 227 obtained through only 20 polynomials.

TABLE 3 AVERAGE AND MINIMUM NUMBER OF UNDETECTED FAULTS FOR
C7552 BENCHMARCK WITH 100 16-BIT PRIMITIVE POLYNOMIALS.

avrg. min.
1000 461 404 388 345
5000 352 297 300 261

10000 310 238 268 234

avrg. min.
test length

about 700
(sec)

number of undetected faults process time/
polynomialsSeed β0 proposed method

TABLE 4 AVERAGE AND MINIMUM NUMBER OF UNDETECTED FAULTS FOR
C7552 BENCHMARCK WITH TWENTY 20-BIT PRIMITIVE POLYNOMIALS.

avrg. min.
1000 464 418 369 359
5000 351 319 277 259

10000 304 270 243 227
about 4300

(sec)

number of undetected faults process time/
polynomialsSeed β0 proposed method

avrg. min.
test length

7. CONCLUSION

In this paper, we proposed a technique for selecting the
LFSR seeds used in VLSI BISTs, for a given primitive
polynomial, to improve test quality, such as, decreasing test
length and increasing the number of detected faults. First, we
presented an algorithm for a test-per-clock BIST from which
a seed was derived that has a minimum test length to cover
the target fault. Next, we presented an algorithm for a
test-per-scan BIST from which a seed was derived that
detected the maximum number of faults with a fixed test
length.

We applied the techniques to the ISCAS’85 benchmark
circuits and combinational parts of the ISCAS’89 benchmark
circuits. The experimental results, using the first algorithm
obtained a test length that provided 100% fault coverage.
This reduced test lengths down to 60% for seed

0β = 0100 ⋅⋅⋅ .
We applied the second algorithm to the c7552 benchmark

circuit using a 20-bit LFSR. For a test length of 10,000 LFSR
patterns, the minimum number of undetected faults was 227,
while that for seed 0β was 270. This means that 43 more
faults could be detected by only changing the seed.

Although this method requires off-line calculation, the
test-application time can be reduced for a given fault
coverage, or the number of undetected faults can be reduced
without the need for additional hardware. The fewer
undetected faults remaining, the fewer additional circuits
required. Thus, the proposed seed selection algorithms can be
applied not only to conventional BISTs but also mixed-mode
BISTs such as those with reseeding, bit-flipping, and
bit-fixing.

REFERENCES

[1] The Semiconductor Industry Association, International

Technology Roadmap For Semiconductors, 1999 Edition, 1999.
[2] P. Bardel, W. H. McAnney, and J. Savir, Built-in test for VLSI,

John Wiley and Sons, 1987.
[3] G. Kiefer, H. Vranken, E. J. Marinissen, and H-J. Wunderlich,

“Application of Deterministic Logic BIST on Industrial
Circuits,” Proc. Int’l Test Conf., pp. 105-114, 2000.

[4] L. Y. Ungar, and T. Ungar, “Economics of Built-in Self-Test,”
IEEE Design and Test of Computers, Vol. 18, No. 5, pp. 70-79,
2001.

[5] G. Hetherington, T. Fryars, N. Tamarapalli, M. Kassab, A.
Hassan, and J. Rajski, “Logic BIST for Large Industrial
Designs: Real Issues and Case Studies,” Proc. Int'l. Test Conf.,
pp. 283-291, 2000.

[6] J. Savir, “On Chip Weighted Random Patterns,” Proc. Asian Test
Symp., pp. 344-352, Nov. 1997.

[7] R. Kapur, S. Patil, T. J. Snethen, and T. W. Williams, “Design of
an Efficient Weighted Random Pattern Generation System,”
Proc. Int’l. Test Conf., pp. 491-500, 1994.

[8] N. A. Touba, and E. J. McCluskey, “Test Point Insertion Based
on Path Tracing,” Proc. 14th VLSI Test Symp., pp. 2-8, 1996.

[9] M. Nakano, S. Kobayashi, K. Hatayama, K. Iijima, and S.
Terada, “Low-overhead Test Point Insertion for Scan-Based
BIST,” Proc. Int'l Test Conf., pp. 348-357, Sep. 1999.

[10] B. N. Dostie, D. Burek and A. Hassan, “Scan-BIST: A
Multifrequency Scan-Based BIST Method,” IEEE Design &
Test of Computers., Vol. 11, No. 1, pp. 7-17, 1994.

[11] G. Kiefer and H-J. Wunderlich, “Deterministic BIST with Scan
Chains,” Proc. Int’l Test Conf., pp. 1057-1064, 1998.

[12] D. Das and N. A. Touba, “Reducing Test Data Volume Using
External/LBIST Hybrid Test Patterns,” Proc. Int’l Test Conf.,
pp. 115-122, 2000.

[13] S. Hellebrand, S. Tarnick, J. Rajski and B. Courtois,
“Generation of Vector Patterns Through Reseeding of
Multiple-Polynomial Linear Feedback Shift Registers,” Proc.
Int’l. Test Conf., pp. 120-129, 1992.

[14] H. J. Wunderlich, and G. Kiefer, “Bit-Flipping BIST,” Proc.
Int’l Conf. on Comput.-Aided Design, pp. 337-343, 1996.

[15] N. A, Touba, and E. J. McCluskey, “Altering a Pseudo-Random
Bit Sequence for Scan-Based BIST,” Proc. Int’l. Test Conf., pp.
167-175, 1996.

[16] I. Bayraktaroglu, K. Udawatta, and A. Orayloglu, “An
Examination of PRPG Selection Approaches for Large,
Industrial Design,” Proc. Asia Test Symp., pp. 440-444, 1998.

[17] M. Lempel, S. K. Gupta, and M. A. Breuer, “Test Embedding
with Discrete Logarithms,” IEEE Transactions on
Comput.-Aided Design, Vol. 14, No. 5, pp. 554-566, 1995.

[18] C. Fagot, O. Gascuel, P. Girard, and C. Landrault, “A Ring
Architecture Strategy for BIST Test Pattern Generation,” Proc.
Asia Test Symp., pp. 418-423, 1998.

[19] C. Fagot, O. Gascuel, P. Girard and C. Landrault, “On
Caluclating Efficient LFSR Seeds for Built-In Self Test,” Proc.
European Test Conf., pp. 4-14, 1999.

[20] A. P. Stroele, and F. Mayer, “Methods to Reduce Test
Application Time for Accumulator-Based Self-Test,” Proc. 15th
VLSI Test Symp., pp. 48-53, 1997.

[21] N. Z. Basturkmen, S. M. Reddy, and I. Pomeranz, “Pseudo
Random Patterns Using Markov Sources for Scan BIST,” Proc.
Int’l. Test Conf., pp. 1013-1021, 2002.

[22] P. D. Hortensius, R. D. Mcleod, W. Pries, D. M. Miller, and H.
C. Card, “Cellular Automata-Based Pseudorandom Number
Generators for Built-In Self-Test,” IEEE Transactions on
Comput.-Aided Design, Vol. 8, No. 8, pp. 842-859, 1989.

[23] D. K. Pradhan, and M. Chatterjee, “GLFSR – A New Test
Pattern Generator for Built-In-Self-Test,” Proc. Int’l. Test Conf.,
pp. 481-490, 1994.

[24] J. Rajski, N. Tamarapalli, and J. Tyszer, “Automated Synthesis
of Large Phase Shifters for Built-In Self-Test,” Proc. Int’l. Test
Conf., pp. 1047-1056, 1998.

	Main
	ASP-DAC03
	Front Matter
	Table of Contents
	Author Index

