
Abstract — Custom VLSI design at the switch level is com-
monly applied when a chip is required to meet stringent oper-
ating requirements in terms of speed, power, or area. ATPG
requires gate level models, which are verified for correctness
against switch level models. Typically, test models are created
manually from the switch level models—a tedious, error-prone
process requiring experienced DFT engineers. This paper pres-
ents an automated flow for creating gate level test models from
circuits at the switch level. The proposed flow utilizes Mo-
torola’s Switch Level Verification (SLV) tool, which employs
detailed switch level analysis to model the behavior of MOS
transistors and represent them at a higher level of abstraction.
We present experimental results, which demonstrate that the
automated flow is capable of producing gate models that meet
the ATPG requirements and are comparable to manually cre-
ated ones.

I. Introduction
Contemporary chip design depends critically on the availability

of appropriate methodologies and tools in order to keep up with the
ever-increasing chip complexity. Typically, logic designers de-
scribe a circuit at the Register-Transfer Level (RTL), and synthesis
tools are run to compile RTL designs into a technology-specific cell
library. When a chip has to meet stringent operating requirements,
e.g. speed, power and, less often, area, certain parts of the chip may
be manually implemented with custom circuits carefully tuned at
the switch level. This practice, commonly referred to as custom de-
sign, is especially popular in the design of high performance proc-
essors. The manual efforts by the designers made at the switch level
make it challenging to test custom designs.

To establish a DFT methodology for custom designs or designs
in general, we need to establish a set of criteria to measure the mer-
its of generated gate models. This includes the level of automation
and the associated turn-around time, the size of the resulting test
models, the number and test coverage of test patterns, and the abil-
ity to support diagnosis.

One way of generating test models is to obtain them from RTL
models directly without optimization. This is used for testability
analysis early on during the design flow. However, RTL models do
not contain the implementation details of the circuits, which makes
diagnosis of silicon failure hard using this approach.

Another way of generating gate level models is to manually in-
spect switch level circuits and reason about their functionality. This
process requires not only expertise, but also time to optimize the
size of test models, test coverage, test vector length, correspon-
dence between the fault locations in the test models and the defect
locations in the switch level circuits. Manual test view generation

for custom blocks is a very ad-hoc, tedious and error-prone activity.
Therefore, it would be very beneficial to automate the test model
creation process by capturing the test specific knowledge in a tool.

An internal Motorola transistor level analysis and extraction
tool, SLV (Switch Level Verification) has been developed to handle
the generation of gate level test models for custom designs. The
highly automated test model generation flow, called the
SLV/ATPG flow, utilizes SLV in conjunction with the Vgate syn-
thesis tool to produce a gate level model. Unlike commercial syn-
thesis tools, Vgate performs simple-minded synthesis that preserves
the original structure of the RTL model without modification.

The SLV tool has been used in equivalence checking flows for
designs at the switch level [8]. This paper describes the SLV/ATPG
flow for automating the generation of test models from switch level
custom circuits. Section II discusses relevant research and tools per-
forming switch level modeling and abstraction. SLV/ATPG is dis-
cussed in Section III, which provides insight into the traditional
flow employed by designers, key algorithms affecting the suitabil-
ity of the flow, and a user’s perspective of the suitability and us-
ability of the flow. Section IV presents experimental results of the
SLV/ATPG flow in use at the Somerset Design Center of Motorola,
and compares it to the manual flow previously employed. A sum-
mary is provided in Section V.

II. Previous Work
In the domain of test model generation, there have been mainly

two approaches. One approach, exemplified by Grog [1] and
MatchMaker [2], is to perform extraction of an RTL/gate level rep-
resentation via structural pattern matching using some sort of li-
brary of structural models or pattern-matching rules. Structural
pattern matching abstracts away elements of the switch level circuit
that match a certain structure and replaces it by an equivalent gate
level representation. The operation and the correctness of such tools
very much depends on the library used.

The main issue with the pattern-matching approach is the level
of automation that can be reasonably achieved. Also, the extracted
gate level representation may not accurately capture behavior
caused by subtle switch level phenomena, such as charge sharing
and sneak paths. For example, the behavior of a pass-transistor cir-
cuit may depend on its operating conditions and may be correct
only for a subset of all possible input signals. Structural pattern
matching tools are not capable of such detailed level of analysis.

An alternative approach is to employ symbolic switch level
analysis based on a switch level model of MOS transistor behavior
[3]. This involves performing appropriate symbolic computations to
extract a functional representation that faithfully captures the switch
level circuit behavior. The switch level models used are an abstrac-

An Automated Method for Test Model Generation from Switch Level Circuits

Tim McDougall Juhong Zhu, Jing Zeng,
Atanas Parashkevov Simon Jolly Carol Pyron, Magdy Abadir

Motorola Inc. Foursticks Pty. Ltd. Motorola Inc.
2 Second Avenue, Mawson Lakes, 2/259 Glen Osmond Rd, 7700 W. Parmer Lane

South Australia, 5095. Frewville, South Australia, 5063 Austin, TX 78729, USA
Phone: +61 8 8168-3500 Phone: +61 8 8338-5500 Phone: +1 512 996-4906

tmcdouga,aparashk@asc.corp.mot.com sjolly@foursticks.com juhong,zeng,cpyron,abadir@ibmoto.com

tion of the actual circuit behavior and capture a number of attrib-
utes, such as transistor strengths and charge node size. The whole
circuit is usually partitioned into a set of channel-connected com-
ponents (CCCs), which may be analyzed independently.

There is a growing number of switch level analysis tools that are
available. Anamos [3] and Tranalyze [4] create a gate level model
that contains unit delay gates and has an extra simulation clock in-
put, which makes them not applicable to testing custom circuits.
LayBool [5] (now called LynxLB) is able to produce an RTL de-
scription of a switch level circuit. However, in our experience, it
has trouble handling some common circuit structures, e.g. latches
with asynchronous inputs and domino logic. OLCC [6] is an ex-
perimental tool that only handles combinational logic. GateMaker
[7] is an IBM internal tool that produces gate level views for switch
level models and is used at IBM for ATPG purposes. Therefore,
GateMaker appears well tuned for the needs of testing custom
blocks. However, this tool still requires a reasonable amount of
manual effort, e.g. in annotating the input design whenever combi-
national or sequential structural loops are present.

The work presented in this paper utilizes a tool platform called
SLV (Switch Level Verification) developed at Motorola Inc. Given
a switch level circuit, SLV produces a functionally equivalent RTL
model that preserves the hierarchy and overall structure of the input
design. SLV builds on the state-of-the-art switch level analysis
techniques discussed above and brings about novel algorithms for
analyzing pre-charged and sequential logic, gated clocks, structural
loops, and hierarchical designs [8]. These techniques significantly
reduce the manual intervention required to translate a switch level
design into an RTL model. In most cases, the user has to specify
only top-level input (environment) constraints and clock signals.

III. The Automated Test Model Generation Flow
The need for automation and tool support for test view genera-

tion for custom blocks is addressed in the flow illustrated in Figure
1. A two step process is used to obtain a gate level test model from
a switch level design. The first step applies the SLV tool to create
an RTL model from the switch level input design. The RTL model
has to be not only functionally equivalent but also closely resemble
the structure and hierarchy of the original circuit to facilitate fault
diagnosis. The second step utilizes Vgate to perform synthesis and
obtain a gate level model that maintains the RTL model structure.
This gate level model is suitable as input to an ATPG tool for test
pattern generation. The breakdown of the process into two steps
helps to compartmentalize the function of each tool and allows the
flexibility of handling other applications. Also, the technical chal-
lenges that SLV and Vgate solve in the flow are distinctly different.

The SLV tool employs state-of-the-art algorithms that cover the
wide range of custom MOS logic design styles and structures in use
at Motorola. SLV has the ability to detect, resolve and generate an
equivalent RTL model for combinational structural loops, sequen-
tial elements such as latches and flip-flops, and pre-charged logic
such as pre-charge gates and domino logic pipelines. These algo-
rithms, while important as they determine the range of circuits
which our automated test model generation can handle, are beyond
the scope of this paper. In the rest of this section, we discuss the
main SLV-related aspects that affect the suitability of the test model
produced by the automated flow.

Hierarchical Analysis. The SLV tool employs hierarchical
switch level analysis, which reduces memory consumption and
processing time by analyzing each logic block in the circuit once
only, and in relative isolation to the rest of the circuit. As a result,
the model generated has a high degree of structural similarity to the
input design, which is useful for diagnosis purpose.

Fig. 1. The SLV/ATPG Automated Test Model Generation Flow.

The hierarchical analysis employed by SLV involves three steps:
1. Pre-processing of the design hierarchy and selective flatten-

ing of parts of the design hierarchy to ensure the correctness
of the switch level analysis;

2. Evaluation of the design with each non-flattened hierarchical
block being analyzed only once;

3. Creation of a hierarchical RTL model with instances of non-
flattened blocks in the design hierarchy.

With this approach, SLV rarely requires any flattening to be per-
formed during the pre-processing of the design when the input cir-
cuit is partitioned in a logical manner with accurate port directions
declared in the input model.

Structure Based Output Generation. The generation of an
RTL description for nets based on their Boolean functions provides
functionally correct output. However, often this is not the preferred
way of modeling the functionality or does not reflect the structure
of the circuit being analyzed, which is required for an optimal test
model. This is illustrated in the simple NAND gate example shown
in Fig. 2.

The pull-up and pull-down functions of the net ‘out’ are given
by:

out.pull-up = ~a | ~b
out.pull-down = a & b

As the functions of the net ‘out’ are Boolean, an example RTL
description for net ‘out’ in the Verilog HDL would be:

assign out = ~a | ~b ;
The Verilog above is functionally correct but does not structur-

ally model a NAND gate. A preferred, equivalent structural repre-
sentation for net ‘out’ would be:

assign out = ~(a & b) ;
The ability to produce a gate level test model structurally similar

to the initial switch level design is the single most important factor
that influences the suitability of the resulting test model. To address
this, the SLV tool employs a technique that, in addition to using the
resulting net functions, examines the structural relationships within
CCCs in the circuit and creates a model closely modeling these.

The structural based output technique is employed on a net by
net basis, and performs a depth first path traversal through the gates

and transistors of the CCC containing the net. During the traversal
the algorithm examines the functions of nets and the connected cir-
cuitry, and attempts to match some basic circuit design styles with
the structure of the CCC being explored. If a match is found, then
the RTL output is created based on the known structure, hence
maintaining structural similarity. Otherwise, SLV reverts to BDD
based output techniques.

Fig. 2. A Simple Nand Gate.

The structural output technique will, in general, produce a single
RTL statement for each path explored from the net where the tra-
versal commenced, which is desirable for components such as mul-
tiplexers. The technique is quite effective at producing structurally
similar output for the majority of designs, particularly for small
leaf-cells.

Modeling of Weaker Strength Circuitry. The explicit path
enumeration technique employed by SLV is complicated by the in-
troduction of resistive transistor devices and different strength lev-
els for nets in the analysis. SLV is capable of modeling resistive
transistor devices and weak driving strength logic gates by intro-
ducing the discrete strength levels defined in Verilog.

The incorporation of these rules into the explicit path enumera-
tion is a two step process involving:

1. The calculation of a driving strength for each conducting
path, with separate pull-up and pull-down functions main-
tained for each driving strength;

2. The combination of all pull-up functions and all pull-down
functions into a single pull-up and pull-down function in a
way that captures the notion that a stronger driving strength
dominates the effects of a weaker one.

As an example, consider the multiplexer design shown in Fig. 3.
The pull-down weak transistor only affects the output if all the se-
lect signals are turned off.

SLV produces the following structural based Verilog RTL de-
scription:

assign out = sel1 ? ~data1 : 1’bz ;
assign out = sel2 ? ~data2 : 1’bz ;
assign out = sel3 ? ~data3 : 1’bz ;
assign (pull0 , pull1) out = pulld ? 1’b1 : 1’bz ;

Input (Environmental) Constraints. In some designs there are
implicit relationships between the behaviors of certain input sig-
nals, usually due to the manner in which the design is to be used.
The SLV tool does not make any assumptions regarding these rela-
tionships without them being explicitly stated by the user – other-
wise, the accuracy of generated models would be compromised
without the user’s awareness.

The example multiplexer in Fig. 3 is presented with no knowl-
edge of its intended environment, and as such the Verilog RTL de-
scription produced contains a set of potentially clashing tri-state
buffers. The user can provide information about the intended envi-
ronment by using a constraint, e.g. a ‘one-hot’ constraint which im-
plies that exactly one specified signal is high and all others are low

at any given time. In a defect-free design the input ‘pulld’ only af-
fects ‘out’ in a defective circuit when all selects are off. A ‘one-
hot’ constraint could be used to inform SLV about the intended re-
lationship between inputs ‘sel1’, ‘sel2’, ‘sel3’, and ‘pulld’. When
such a constraint is supplied, SLV produces the following Verilog
RTL description:

assign out = sel3 & ~data3 | sel2 & ~data2 |
sel1 & ~data1 | ~sel1 & ~sel2 & ~sel3 & pulld ;

Fig. 3. An example multiplexer.

The above output has changed to a single combinational as-
signment to net ‘out’, and structurally represents a multiplexer
without unnecessary reconvergent fanout structures. Input con-
straints provide a level of control regarding the structure of the RTL
model produced. This clearly has positive implications for the suit-
ability of the created test model. In addition, the performance and
capacity of the SLV tool may also improve as a result of paths that
do not conduct under the constraint conditions being eliminated.

Leaf Level Constraints. The main user provided guidance re-
quired by SLV is the identification of certain constraints of leaf
cells. Since SLV cannot identify leaf level constraints systemati-
cally, the resulting model can be larger than necessary with poor
test coverage. An example of such a leaf-cell implemented using
pre-charge logic is shown in Fig. 4.

The nmos device with ‘a2’ as a gate signal is shared in forming
the logic for the three output signals ‘out1’,‘out2’ and ‘out3’. With-
out recognizing the intended constraints between inputs ‘a2’, ‘a1’
and ‘a3’, and similarly between inputs ‘b2’, ‘b1’, and ‘b3’, a com-
plete CCC analysis renders the logic functions as:

out1 = clk & (a1 | b1 & (a3 & b3 | a2))
out2 = b2 & clk & (a1 & b1 | a3 & b3 | a2)
out3 = clk & (a1 & b3 & b1 | a3 | b3 & a2)

The term ‘b2 & clk & a1 & b1’ that the SLV tool determines for
output ‘out2’ comes from the path ‘p’, indicated using a thicker
solid line in Fig. 4. This path does not contribute to the output
‘out2’ if the ‘b1’ and ‘b2’ inputs are never high at the same time.

A ‘one-hot’ constraint specified between inputs ‘a2’, ‘a1’ and
‘a3’, and similarly between inputs ‘b2’, ‘b1’, and ‘b3’, results in the
following logic functions capturing the original intent of the de-
signer:

out1 = clk & (a1 | a2 & b1)
out2 = clk & b2 & a2
out3 = clk & (b3 & a2 | a3)

To assist in the identification of constraints, heuristics are em-
ployed to search for multi-sharing structures in leaf cells, which re-
duce the number of leaf cells that need to be inspected and poten-

tially to be provided with constraints for test model creation. For
example, only multi-output cells are examined. The SLV tool can
also be used to assist in the detection of multi-sharing structures by
detecting and reporting conducting paths that pass through two or
more pre-charged nets in a single CCC. To prevent users from
specifying constraints for cells that are not guaranteed by the in-
stantiating environment, all leaf level constraints supplied to SLV
for test model generations are first proved correct using a separate
formal verification flow.

Fig. 4. Leaf Level Constraint Example.

Component Absorption. The SLV tool utilizes a user select-
able technique called component absorption. The aim of component
absorption is to reduce the number of statements in the RTL de-
scription without negatively impacting the structural similarities to
the input design for an optimal test model. The component absorp-
tion technique allows the user to simplify the resulting RTL model
produced by SLV.

Component absorption is applied on a net by net basis after the
net functions have been determined using explicit path enumeration
and prior to output generation. The local pull-up and pull-down
functions of each output net of the circuit are examined to deter-
mine if they meet the selected compaction requirements, which can
be:

• The functions implement a buffer or inverter; or
• The functions implement an arbitrary simple component and

are smaller in size than a user definable threshold.
If the local functions of the net meet either of the requirements

selected by the user, then the local functions of each input to the
CCC containing the output net are absorbed into the output nets
functions. This process is repeated until the local functions of the
net do not meet either of the compaction requirements. The com-
paction algorithm traverses by examining the local functions of
each net on which the functions of the output net depend, and so on
until the input nets of the design are encountered.

While a more compact test model is generally created when the
SLV component absorption feature is enabled, it is not always the
case. This can be an issue for test model generation. Fig. 5 illus-
trates an example employing inverters. For the design the logic
functions are determined by SLV to be:

net1 = F1(a,b) net2 = F2(c,d)
x = ~net1 z = ~net2
y = net1 & net2

where Fn(s,t) implies that the logic functions are the relevant
function Fn of inputs ‘s’ and ‘t’.

When compaction of buffers and inverters is enabled, the inter-
nal nets ‘net1’ and ‘net2’ are no longer in the RTL description and
the logic expressions for ‘x’, ‘y’ and ‘z’ become:

x = ~F1(a,b)
y = F1(a,b) & F2(c,d)

z = ~F2(c,d)
This introduces unused gates into the test model when ‘x’ and

‘z’ may not be used when the circuit is instantiated. However, when
the compaction of buffers and inverters is disabled, SLV preserves
the original design intent. Since diagnostic analysis traces the back
cone logic of fails, multiple instantiation of F1 will hinder the
analysis.

Fig. 5. The Effect of the Absorption Option of SLV.

A. The Application of the Vgate Tool to Automate the
Generation of a Gate Level Model
The Vgate tool was developed at Motorola Inc, Austin, for the

purpose of creating a gate level model from an RTL description. It
employs simple synthesis to create the gate level model, the pri-
mary aim of which is to preserve the structure of the input RTL de-
scription. Vgate is utilized in the automated test model generation
flow to produce the gate level test model from the RTL Verilog
model obtained by SLV. The following sections present the main
considerations of the Vgate tool with respect to producing an opti-
mal test model.

Multiple Input Gates vs. Cascading Gates. A factor that can
significantly increase the size of the gate level test model is the de-
composition of devices with multiple inputs into groups of devices
with fewer inputs. This results in a test model with cascading gates
with few inputs each, thus introducing priorities on the input sig-
nals. Multiple input devices should be used in preference, thus sim-
plifying the test model and representing the functionality without
priorities.

The Vgate tool provides the ability to switch between these two
output styles and the multiple input gates option is selected for the
automated test model generation flow.

Modeling of Scan Latches. The issue of scan latch modeling
for the test view requires a project specific decision. Vgate provides
support for this by identifying and compiling specific latches in the
RTL design as scan latches in the test model, e.g. a 2 port LSSD.
To enable this, users of the SLV/ATPG flow need to manually
identify which top-level input signals are to be regarded as scan
clocks.

B. User Flow for ATPG Gate Level model creation
To handle test model creation for complex custom blocks, the

automated flow was established using the SLV/ATPG technology.
The detailed flow of the application of the SLV/ATPG automated
test model generation process is shown in Fig. 6. There can be
many leaf-cells in a custom circuit, and each can be contained at the
top-level of the hierarchy or at some intermediate level.

SLV/ATPG is executed twice in the applied semi-automated
flow. In the first pass, SLV/ATPG is executed on the top-level
custom circuit with the top-level constraints specified for the de-
sign. If leaf-cell constraints have been identified and verified,
SLV/ATPG may have to be run a second time on these leaf cells
with the identified constraints, with the goal of obtaining a more

compact test model for these leaf-cells. The more compact test
models for the leaf-cells are used to replace the corresponding ones
from the first run (illustrated using dashed lines). The second pass
of the SLV/ATPG flow is performed with several combinations of
settings of SLV/ATPG switches that affect the generation of test
models. This allows the gate level test model to be finely tuned.

IV. Experiments and Results
Automatic Test Model Generation. The SLV/ATPG auto-

mated test model generation flow has been evaluated extensively at
the Somerset Design Center of Motorola. It is considered a proven
technology and is being used and improved for on-going projects.
In Table 1, we compare SLV/ATPG generated test models with the
corresponding test models created manually by test engineers as in-
dicated by the subscripts ‘t’ and ‘m’ in the table. The designs cre-
ated using the SLV/ATPG flow were generated directly by execut-
ing SLV at the top-level in the design hierarchy with constraints in
the single pass I. We use a commercial ATPG tool to measure test
quality of all test models.

The design name abbreviations in Table 1 follow these conven-
tions: dm: dynamic multiplexer; dmn: dynamic multiplexer with n
select signals; dc: dynamic comparator; dmxy: dynamic x:y multi-
plexer; dr: dynamic rotator; drn: n-bit dynamic rotator; sh: shifter;
a: adder; an: n-bit adder.

The categories in the first row of the table are defined as fol-
lows:

TCov: test coverage: percentage of the detected faults
over the testable faults.

FCov: fault coverage: percentage of the detected faults
in relation to the total faults.

Patt: the number of test patterns.
Gates: total number of gates in the test model.
RE: the number of redundant faults.
CFU: collapsed fault list (see FU below).
FU: ‘full’ or complete faults

As shown in Table 1, for the comparison categories listed above,
the data from the manual and automatic flows are comparable with
the following observations:

• Gate size: the SLV/ATPG generated test models are consis-
tently slightly larger than the manually created test models,
with the difference being the largest for the 50-bit adder design
‘a50’, and no difference for the shifter design ‘sh’ which is the
second largest design of all;

• Test coverage: the manual and automated flows give the same
results for the majority of the designs. The exceptions are the
dynamic comparator design ‘dc’, for which the manually cre-
ated test model produces a slightly better result, and the 50-bit
adder design ‘a50’, for which the automatically created test
model gives a slightly better coverage. To achieve a given test
coverage target, the two flows require approximately the same
number of test patterns;

• Fault coverage: depending on whether redundancies exist in the
resulting models, the fault coverages between the test models
vary. The manually created models for the 8/16-bit dynamic
rotators contain more redundancies than those created auto-
matically, hence their fault coverages are lower than those of
the automatically created models. On the other hand, the
automatically created model for the dynamic multiplexer de-
sign has a higher redundancy count with a corresponding
lower fault coverage compared to the manually created model.

Semi-Automatic Test Model Generation. The semi-automated
test generation flow (using both pass I and pass II) was performed
on the remaining designs, with constraints for leaf-cells identified
and SLV/ATPG being executed with different combinations of

switch settings in pass II. The combinations of switch settings
identified as affecting the automated test models (named as ‘t1’,
‘t2’, ‘t3’, and ’t4’) are shown in Table 2.

Fig. 6. Semi-Automated Test Model Generation.

The comparison of the semi-automated generated test models
and the manually created test models again indicated by the sub-
script ‘t’ and ‘m’ after the design name is presented in Table 3.

Name TCov Fcov Patt Gates RE CFU FU
dm2m 100 100 9 15 0 26 62
dm2t 100 100 6 17 0 26 66
dm4m 100 100 18 25 0 46 114
dm4t 100 100 10 27 0 42 110
dcm 96.58 96.58 26 51 0 88 234
dct 95.29 95.29 26 59 0 103 276
dm41m 100 100 20 69 0 150 338
dm41t 100 96.17 22 81 16 178 418
dr16m 100 92.83 43 304 118 784 1814
dr16t 100 96.19 37 325 63 768 1864
dr32m 100 97.72 79 820 99 1860 4684
dr32t 100 97.22 83 854 131 1956 5004
dr8m 100 85.06 41 176 116 482 1098
dr8t 100 92.46 37 196 52 450 1114
shm 100 100 222 1699 0 3438 9706
sht 100 100 222 1699 0 3438 9706
a50m 99.88 96.35 257 1720 323 3450 9146
a50t 99.90 96.96 270 2180 323 3613 10986

Table 1. Automatic Test Model Generation.

The design names were abbreviated in Table 3 and follow the
same convention as in Table I while “lza” is a 50-bit lza adder.
Table 3 shows that all designs have at least one combination of
SLV switch settings that result in the SLV/ATPG generated test
models possessing improved test and fault coverages than those
corresponding to the manually created models. The sole exception
is the 36-bit adder design ‘a36’ for which the manually created test
model has test and fault coverages marginally better than those of
the SLV/ATPG created test model. The sizes of the test models (in
terms of the number of gates) are comparable between the manually
flow and the SLV/ATPG flow, and are considered acceptable by
test engineers. The selection of exactly which test models created
by SLV/ATPG are used is left to the test engineers.

Name -absorb_buf_inv -absorb_components -optimize_output
t1 on on on
t2 off on on
t3 on off on
t4 off off on

Table 2. SLV Command-line Switch Settings.

Name TCov Fcov Patt Gates RE CFU FU
a52m 89.96 83.16 168 2431 708 6176 14212
a52t1 98.66 91.42 194 3319 664 6280 17462
a52t2 99.07 91.54 169 3555 815 6203 18260
a52t3 98.66 91.42 194 3319 664 6280 17462
a52t4 99.05 91.66 171 3746 815 6203 19024
a32m 88.40 80.42 160 2045 630 4606 11606
a32t1 98.05 90.99 175 2190 446 4261 11614
a32t2 98.77 91.47 162 2333 449 4269 12150
a32t3 94.38 80.27 196 2670 1541 5461 14782
a32t4 94.31 80.22 198 2670 1539 5461 14782
a36m 98.16 94.31 136 3010 555 6650 16606
a36t1 97.56 93.41 155 3323 628 7082 17886
a36t2 92.25 87.09 145 4156 1042 8607 23248
a36t3 97.52 93.36 171 3323 629 7074 17870
a36t4 93.06 87.98 145 4617 1134 8319 25016
lzam 84.63 80.90 117 2770 584 6112 15014
lzat1 97.95 93.39 146 2661 502 5510 13762
lzat2 97.75 93.95 138 2826 480 5526 14338
lzat3 97.95 93.39 146 2661 502 5510 13762
lzat4 97.96 94.50 136 3185 480 5526 15774
a10m 83.85 71.67 52 440 440 1017 2506
a10t1 90.79 75.32 51 369 369 915 2160
a10t2 93.31 80.68 65 403 403 917 2298
a10t3 90.79 75.32 51 369 369 915 2160
a10t4 93.49 81.14 59 417 417 917 2354

Table 3. Semi-Automated Test Model Generation.

The effort spent on identifying leaf cell constraints is very rea-
sonable. The heuristics were automated to search for leaf cells that
may require constraints, and they resulted in three to four leaf cells
requiring manual intervention for most designs, except seven cells
required intervention for the 36-bit adder.

It was noticed that the original switch level circuits for the 8-bit
and 16-bit dynamic rotators have the dynamic clock signal con-
nected to the final transistor in the footing of the pre-charge gate.
The test models created manually for these cells contain the dy-
namic clock signal being conjuncted with many intermediate logic
signals, while the model created by the SLV/ATPG flow correctly
reflects the switch level design by containing the dynamic clock
signal conjuncted with the entire resulting logic functions. Al-
though there was no functional difference, the manually created test
models in these cases lacked consistency with the original switch
level model, compared to the SLV/ATPG created test models.

Chip Level Test model generation comparison. The
SLV/ATPG flow is used to automate test generation for custom cir-
cuits in a chip. To compare the quality of test model generated by
manual efforts and the SLV/ATPG flow at the chip level, the fol-
lowing experiment is conducted. Two chip test models are com-
piled: one using SLV/ATPG generated test models for all the cus-
tom circuits; the other using manually created gate models. The
ATPG data is shown in Table 4.

Method TCov Fcov Patt Gates RE CFU FU
MAN 93.00 84.45 2229 1630458 117932 2674300 6525582
SLV 93.19 84.61 1971 1640403 118472 2683230 6568870

Table 4. Chip Level Test Model.

In general, it takes many weeks to generate manual test models.
The SLV/ATPG flow requires a couple of hours to identify the con-
straints for leaf-cells. The remainder of the flow is automatic in-
cluding the verification efforts, and can be finished within a day. A
good example is the 50-bit adder ‘a50’ that is a very complex de-
sign for which the test model can now be created automatically.

V. Conclusions
In this paper, we presented a highly automated flow generating

test models for custom designs from switch level circuits. The
main algorithmic challenges that impact the suitability of created
test models have been discussed. We demonstrated experimental
data to compare directly a set of test criteria between the manually
created models and those generated using SLV/ATPG flow. The
evaluation shows that SLV/ATPG flow is capable of producing
gate level test models with good structural similarity and compara-
ble test coverage and model sizes to those of the manually created
ones. The SLV/ATPG flow has been widely used and adapted at
the Somerset Design Center of Motorola.

VI. Acknowledgments
The authors would like to thank Bruce Jilek and George Joos

from the Somerset Design Center for their contributions to the de-
velopment and beta testing of the SLV/ATPG flow in a real design
environment. Thanks also to Carl Pixley, Michael Burns, and Kurt
Shultz from the Design Verification Group of Motorola in Austin,
for their cooperation and support, and the development of the Vgate
tool. The authors would like to thank Neil Boroky, and Craig Biggs
from Motorola in Australia for their notable contributions at various
stages in the development of the SLV tool.

VII. References
[1] Groupe Bull, “Generalized Recognition of Gates: User's Guide”,

Version 06, April 4 1996.

[2] Motorola Semiconductor Israel Limited, “The MatchMaker Tool User
Guide”, Motorola Internal Document, June 1997.

[3] R.E. Bryant, “Boolean Analysis of MOS Circuits”, IEEE Transactions
on CAD, vol. 6, no. 4, pp. 634-649, July 1987.

[4] R.E. Bryant, “Extraction of Gate-Level Models from Transistor Circuits
by Four-Valued Symbolic Analysis”, IEEE ICCAD’91.

[5] COMPASS Design Automation, “Laybool User Guide”, Beta Test
Edition, April 1997.

[6] A. Gavrilov, S. Gavrilov, D. Blaauw, G. Vijayan, S. Pullela, and S.
Moore, “Resynthesis of Static CMOS Circuits for Low Power”,
Motorola Internal Document, 1997.

[7] S. Kundu, “GateMaker: A Transistor to Gate Level Model Extractor for
Simulation, Automatic Test Pattern Generation and Verification”,
IEEE International Test Conference, pp. 372-381, 1998.

[8] S. Jolly, A. Parashkevov, T. McDougall, “SLV: A Tool for Equivalence
Checking of Custom Circuits at the Switch Level”, IEEE Design
Automation Conference, pp. 299-304, June 2002

	Main
	ASP-DAC03
	Front Matter
	Table of Contents
	Author Index

