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Abstract  Congestion minimization is the least understood 
in placement objectives, however, it models routability most 
accurately. In this paper, a new incremental placement 
algorithm C-ECOP for standard cell layout is presented to 
reduce routing congestion. Congestion estimation is based on 
a new routing model and a more accurate cost function. An 
integer linear programming (ILP) problem is formulated to 
determine cell flow direction and avoid the conflictions 
between adjacent congestion areas. Experimental results 
show that the algorithm can considerably reduce routing 
congestion and preserve the performance of the initial 
placement with high speed. 
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1. Introduction 
  

As VLSI technology advances, the system 
complexity continues to increase and physical design is 
getting more and more difficult. With the advent of 
overcell routing, the goal of every place and route 
methodology has been to utilize all available active area to 
prevent spilling of routes into channels. It is the overflow 
of routes that account for an increase in area. Further 
heuristic method should be applied in placement to 
manage local congestion to enhance and improve the latter 
route ability. 

Traditional placement objectives involve reducing 
net-cut costs or minimizing wire length [1-2]. Because of 
its constructive nature, min-cut based strategies minimize 
the number of net crossings but fail to distribute them 
uniformly [3]. For the same reason, traditional placement 
schemes which are based mainly on wirelength 
minimization can not adequately account for congestion. 
Reducing net-cut and minimizing wirelength only help 
reduce the routing demand globally but do not prevent 
causing local routing congestion. How to estimate and 
reduce congestion in placement is not well studied. 
Congestion-driven placement based on multi-partitioning 
was proposed in [4]. It uses the actual congestion cost 
calculated from precomputed Steiner trees to minimize the 
congestion of the chip. However, the number of partitions 
is limited due to the excessive computational load. 

Wang et al. [8-10] proposed a consistent routing 
model defined by demand/supply relationship. 
Experimental results show that the congestion objective is 
very ill behaved. So it adapts a post processing approach  
 

after placement to reduce congestion. But the 
demand/supply congestion model and bounding-box 
routing estimation is too simple and will affect the final 
result. Since congestion and wirelength are globally 
consistent, Jason et al. [11-12] considered improving local 
congestion with incremental placement. However, how to 
minimize the wirelength changes caused by congestion 
reducing and maintain the metrics of the initial placement 
is very difficult. 

In this paper, an incremental placement algorithm 
C-ECOP for improving local congestion is proposed. It 
first estimates the routing congestion through a new route 
model. Then it constructs an integer linear programming 
(ILP) to move cells to reduce congestion. Finally it adjusts 
the positions of cells to resolve overlap. The rest of this 
paper is organized as follows. Section 2 describes the 
routing estimation and congestion measurement used in 
this work. The algorithm C-ECOP is presented in section 3. 
Section 4 gives the experimental results to show the 
effectives of our algorithm. Section 5 is the conclusion. 
  
2. Congestion Estimation in Placement 
  
2.1 Congestion Cost 
  

The congestion cost is defined based on the global 
bin concept. We partition a given chip into several 
rectangular regions, each of which is called a global bin. 
The boundaries of global bins are called global bin edges 
as shown in Fig.1. The congestion is “related” to the 
number of crossings between routed nets and global bin 
edges. 
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Fig.1 Bin Structure 

  
Given a detailed placement, all the cells and pads 

have fixed positions on the chip. We can use a “router” to 
route all the nets. The router can be a very simple global 
router or even a bounding box router. Therefore, for each 
global edge e, the routing demand of e, de, can be defined 
as the number of the nets crossing e. The routing supply of 
e, se, is known easily from the technology parameter. A 
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global edge is congested if and only if routing demand de 
exceeds the routing supply se. The overflow is defined as 
follows: 
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Then estimating the congestion of a global bin can be 
replaced by computing the total overflow of the global 
edges as (2) and cost function is defined as (3). Most of 
the algorithms for reducing congestion [6-10] estimate 
congestion like this. 
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This method to estimate congestion is ill behaved. It 
can only detect the congestion area that is crossed by a 
global edge. Actually, the congestion area can be in any 
place on the chip and it may just locate inside a global bin. 
Table 1 gives the result of the congestion estimation on a 
circuit CNT100 with the method above. The chip is 
partitioned into 4x4, 5x5, 6x6 and 7x7 global bins. It is 
shown that the total number of congest areas (TNC.), the 
total demand (TD.) changed due to different partition. The 
max demand (MD.) even increases when the partition 
amount increases from 4x4 to 5x5. Because the global 
edges become shorter, it seems that the routing demand 
crossing the edge should decrease. 

  
Table 1. Estimation of Congestion on CNT100 

Grids Supply 
(H/V)* 

TNC. 
(H/V) 

TD. 
(H/V) 

MD. 
(H/V) 

MO.** 
(H/V) 

4 x 4 19/12 0/1 261/198 18/13 0/1 
5 x 5 15/10 4/4 269/192 20/14 5/4 
6 x 6 13/8 2/8 322/226 17/11 4/3 
7 x 7 11/7 4/6 391/251 18/8 7/1 
*H: Horizontal V: Vertical **MO.: Max Overflow 
  
 From the table we can see that the total demand 
increases when partition amount increases. It is because 
that the nets inside a larger global bin may become cross a 
global edge when the chip be partitioned with smaller bins. 
So the vertical and horizontal congestion estimation of a 
global bin in our algorithm is defined as follows: 
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where rv and rh are the vertical and horizontal routing 
demand inside bij. It can be obtained by the routing model 
described in 2.2. ω1 and ω2 are the weights.  
  
2.2 Routing Estimation Model 
 

When we are performing congestion reducing, we 
need to estimate congestion of placement incrementally. A 
global router is needed here. Obviously, the more accurate 
is the router, the more accurate is the estimation at the 
placement stage. Routing with a real global router will 
provide an accurate congestion estimation. But it will be 
very time consuming and could not be applied in 
incremental placement algorithm. Routing with a simple 
routing model such as the bounding box model will be 
very fast. But the bounding box model may be far 
different with the characteristics of the detailed router so 
that it causes a bad estimation. Wang et al. verify the 
bounding box model in [8] and prove that it does not 
correlate with the real router and could not be applied. So 
it is critical that the algorithm for this application is 
accurate while maintaining computational efficiency. 

A new star model proposed in [6] is used here. It first 
computes and adjusts the coordinate of the net center. The 
vertical and horizontal possible route paths connecting 
each cell to the center are on the edges of a rectangle 
whose two vertexes locate on the cell and the center. 
Route possibility on each path is 0.5. Then all the route 
possibility on the same path is added up and could not 
exceed 1 as shown in Fig. 2. Experimental results show 
that the new star model is very close to the real routing in 
practice [6]. 
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Fig.2 Routing Estimation with new star model 
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Fig.3 Route Probability 

  
This model has an obvious drawback. The possible 

route path between a cell and the net center does not 
necessarily locate on the rectangle edges. It may cross any 



bin edges inside the rectangle as shown in Fig.3. 
If cell Ck is in bin(i0, j0), the net center is in bin(i1, j1), 

all the possible routes crossing the left edge of bin(ik, jk) 
are those from bin(i0, j0) to bin(ik-1, jk), crossing the edge 
between bin(ik-1, jk) and bin(ik, jk), then from bin(ik, jk) to 
bin(i1, j1). It is in the symmetric form on the right edge of 
bin(ik, jk). So the route possibility crossing the left and 
right edges of bin(ik, jk) could be denoted as: 
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And the possibility of crossing the top and bottom 
edges, which are denoted as pt(k) and pb(k), are computed 
in the symmetric form. The vertical and horizontal routing 
demand inside a global bin can be easily known from this 
approach. The running time of congestion estimation on 
some circuits through this approach is listed in Table 2. It 
is shown that this approach is so fast that it could be used 
in our algorithm. 
  

Table 2. Running Time on Routing Estimation 
Circuits #cells #nets Grids Running time(s) 
Ibm01 12,036 11,507 30 x 30 0.57 
Ibm02 19,062 18,429 40 x 40 1.95 
Ibm03 21,924 21,621 50 x 50 2.05 
Ibm04 26,346 26,163 50 x 50 1.93 
Ibm05 28,146 28,446 60 x 60 4.48 
  
  
3. Congestion Reducing through ILP 
  
3.1 Overview 
  

Generally, minimizing congestion and minimizing 
wirelength conflict each other in local regions. The 
reducing of congestion means to sacrifice the wirelength. 
Incremental placement algorithm should achieve trade-off 
between congestion reducing and preserving the metrics, 
e.g. wirelength, of the initial placement. 

The design flow is shown in Fig.4. The flow 
tendency of each cell is computed based on force driven 
by nets. Then cells could move due to the tendency to 
reduce congestion. An integer linear programming is 
formulated to deal with the conflicts between multiple 
congested regions. After that a post process is carried out 
to place the moved cells and resolve overlap. The iteration 
of the ECO flow stops when the congestion result is 

acceptable. 
  

 
  

Fig.4 C-ECOP Algorithm 
  

3.2 Cell Flow Tendency Computation 
  

Based on routing estimation, we can identify the 
congestion bins on the chip. Each global bin whose 
congestion cost defined by (4) is greater than a certain 
threshold value or at least one of its global edge is 
overflowed is considered to be a congest bin. Cells in 
congest bins should move outside to decrease routing 
demand and achieve more routing resource. Which cells 
can be moved out so that the perturbation to the initial 
placement could be minimized is the key problem. We 
compute the flow tendency of each cell to deal with this. 

The horizontal flow tendency of a cell Ck in bin(i, j) 
is computed as follows: 
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where netk1 are the nets whose center are in bins on the left, 
netk2 are the nets whose center are in bins on the right, 
netk3 are the nets whose center are in bin b(i, j). pl(k) and  
pr(k) are defined in (5). 

Xflowl denotes the gain of crossing nets decreased on 
the left edge of bin(i, j) when moving Ck from bin(i, j) to 
bin(i-1, j). If it is positive, moving Ck to the left will lead 
crossing nets on the edge decreased. It means a decrease in 
overflow on the edge. Xflowr denotes the gain when 
moving right. And it is in the symmetric form for the 
vertical flow tendency. These parameters decide the move 
tendency of cells. 

Moreover, the flow tendency of cells could be 
regarded as the net-cuts crossing the global edges. 
Generally speaking, reducing in net-cuts is consistent with 
reducing in wirelength, so moving cells according to the 
flow tendency will lead a decrease in wirelength. 
 



3.3 Congestion Reducing Based on Integer Programming 
  

For a congest bin, cells inside should move out to 
reduce the nets inside and achieve more free space for 
routing. If bin(i, j) is vertical-congest, cells in it should 
move along the horizontal direction as shown in Fig.5: 

 

bin(i, j) bin(i+1, j) 

Ck 

 
Fig.5 Move Cell to Reduce Congestion 

  
 When Ck is moved into bin(i+1, j), the vertical route 
in bin(i, j) will decrease by: 
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where netkt are nets connected to Ck and their centers are in 
the top bins. netkb are nets whose centers are in the bottom 
bins. pt(k) and pb(k) are the possibility of crossing the top 
and bottom edges of bin(i, j) estimated by the route model. 
Whether Ck should move to the left or the right bin is 
according to Xflowl(Ck) and Xflowr(Ck). It assures that the 
horizontal congestion will not increase when reducing 
vertical congestion. To reduce the horizontal congest is in 
the symmetric method. 
 Note that the vertical route demand in bin(i+1, j) will 
increase after Ck moves into it. This may cause unexpected 
congest regions. Furthermore, if bin(i+1, j) is already 
vertical-congested, moving Ck will lead a more severe 
congest in it. An arbitrative mechanism is needed to deal 
with the conflicts between the congestion reducing among 
multiple congest regions. An integer programming 
problem is constructed to resolve it. 
 As mentioned above, only the cells with one or more 
positive flow tendency could be moved. Experimental 
results show that the conditions are too strict. For some 
circuits there are few cells could move to reduce 
congestion. So we relax the conditions here. For a congest 
bin bin(i, j), horizontal-movable cells should satisfy the 
following conditions: 

hkl tcxflow >)(  or hkr tcxflow >)(      (11)  
where th is a negative threshold. It means that we allow a  
little horizontal congest increase when reducing vertical 
congest. And the condition for vertical-movable cells is as 
follows: 

vkt tcxflow >)(  or vkb tcxflow >)(   (12) 
 It is obvious that only one equation in (8) and (9) 
could be positive. If th equal 0, only one of the two 
inequations in (11) may be satisfied, so for a movable cell 
Ck, its flow orientation is certain. When we relax the 

conditions, both of the two inequations in (11) may be 
satisfied. Then we randomly prescribe the moving 
orientation of Ck. Later we can see that this will assure 
high efficiency when solving the ILP problem. 
 The integer linear programming problem is defined 
as follows: 
 minimize   Cmax 
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     i, j = 1, 2, …, N 
xk + yk ≤ 1 
xk, yk ∈ {0, 1}  k = 1, 2, …, M 
mkij ∈ {-1, 0, 1} 

  
where Cmax is the maximum congestion degree over all the 
global bin. 

xk could equal 1 only when (11) is satisfied. 
yk could equal 1 only when (12) is satisfied. 
xk + yk ≤ 1 means that Ck could not move vertically 

and horizontally at the same time. 
mkij denote which Ck should be included in the 

inequations. For a movable Ck in bin(ik, jk), because its 
vertical and horizontal flow orientation is certain, the bin it 
could move into is only. So the parameter could be defined 
as follows: 
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mkij equals 1 means route demand in bin(ik, jk) will 
reduce after moving Ck out. It equals -1 means route 
demand in the destination bin will increase for the same 
amount. And the perturbation to the route probability in 
other bins is ignored. Experimental results show that it 
slightly affects the final results but considerably saves the 
running time. 

Then for some bin, the number of its related cells is 
limited. Actually, it is only the movable cells inside the bin 
and in the four adjacent bins that may be included in the 
inequations. The ILP problem can be optimally solved. 
The problem solution determines the total number and 
destination bins of moved cells. A post processing is then 
carried out to place the cells and resolve overlap inside 
each bin. 
  
3.4 Post Processing 
  
 After the congestion reducing process, some cells are 
redistributed among different global bins. These cells 
should be placed without overlap. An efficient algorithm is 
needed to adjust the positions of cells with the minimal 
perturbation to the initial placement. We use the W-ECOP 
algorithm [5] here to accomplish the process. For a cell 



need to be placed, it is inserted into the adjacent row and 
an optimal scheme to rearrange the cells in the row is 
found. If free space in the row can not accept the cell, a 
shifting path searching process is carried on to assure cells 
restrict in their neighboring area so that the performance 
of the circuit will be preserved. 
  
4. Experimental Results 
  

The algorithm has been implemented in C. All the 
experiments were done on a Sun E450 workstation with 
4GB memory. To show the effectiveness and utility of our 
algorithm, a part of the experimental circuits are chosen 
from IBM-PLACE benchmark [13] placed with a 
wirelength-driven placer, Dragon [14]. Other set of 
circuits are from industry (Ultima Company). We compare 
the global routing results (overflow and wirelength) for the 
design before and after incremental placement. 

Table 3 shows the results on the circuits from 
industry. As one can see, the congestion reducing approach 
considerably reduces the total overflow. It has a 50 percent 
cut down in average. And the total wirelength increased 
less than 0.1 percent compared to the initial placement. 
Some circuits even have a decrease in wrelength after 
placement. This indicates that the wirelength is not 
sacrificed much due to the reducing of congestion. It is 
owed to the wirelength optimization approach in W-ECOP 
algorithm. 

 Table 4 shows the results on the IBM-PLACE 
benchmarks placed with Dragon. Dragon has done 
wirelength and routability optimization by combining 
powerful hypergraph partitioning package with simulated 
annealing technique [14]. From the results we can see that 
the total overflow can be reduced continually through our 
method. And the optimization in wirelength is preserved. 
The algorithm is much faster on the benchmarks than on 
the industry circuits. The short amount of running time 
shows that our method can scale well for large circuits. 
  
5. Conclusion 
  

A new incremental placement algorithm for 
congestion alleviation is presented in this paper. The 
proposed algorithm automatically evaluates the routing 
congestion of a detailed placement with a fast and accurate 
routing estimation model. Congestion areas on the chip are 
relieved through cell moving. An integer linear 
programming (ILP) problem is formulated to resolve 
conflicts among multiple congest areas and avoid causing 
unexpected congest areas. After that an efficient algorithm 
for resolving overlap is used to ensure perturbing the 
initial placement the least. Experimental results 
demonstrate the effectiveness of the new approach. 
 

  
Table 3 Experimental results on industry circuits 

Overflow Wirelength 
Circuits #Cells  Grids V/H 

Cap* BIP** AIP** Dec. % W(mm) W’(mm) Inc. % 
Runtime

(s) 

Cnt100 760 5 x 5 15/15 18 12 -33.33 46376 46961 +1.26 2.01 
Cnt1000 8150 20 x 20 18/18 54 13 -75.93 1684936 1688686 +0.22 19.53 
M32_my 7150 20 x 20 22/22 252 132 -47.62 962017 969448 +0.77 2.72 
Gfsm300 4154 20 x 20 15/15 52 26 -50.0 727760 725522 -0.31 4.71 
Sony_1 24847 40 x 40 57/57 442 419 -5.2 9940513 9928071 -0.13 193.09 
Toshiba 16444 30 x 30 61/61 387 227 -41.34 4264968 4259167 -0.14 63.87 

       *V/H Cap: The vertical/horizontal capacity of each grid.  **BIP/AIP: overflow before and after incremental placement 
 

  

Table 4 Experimental results compared with Dragon on IBM-PLACE benchmarks 
Overflow Wirelength Circui

ts #Cells Grids V/H 
Cap BIP AIP Dec. % W(mm) W’(mm) Inc. % 

Runtime
(s) 

Ibm01 12,036 20 x 20 27/45 156 132 -15.38 5171658 5118393 -1.03 2.94 
Ibm02 19,062 25 x 25 54/85 597 552 -7.53 16403624 16422055 +0.11 12.95 
Ibm03 21,924 30 x 30 36/49 413 363 -12.10 14193033 14210763 +0.12 7.08 
Ibm04 26,346 35 x 35 38/52 337 275 -18.40 16057004 16093988 +0.23 6.91 
Ibm05 28,146 40 x 40 67/110 546 415 -23.99 42195069 42230608 +0.08 13.49 
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