
Congestion Driven Incremental Placement Algorithm for Standard Cell Layout

 Zhuoyuan Li, Weimin Wu, Xianlong Hong
 Department of Computer Science and Technology
Tsinghua University, Beijing, 100084, P.R.China

Abstract Congestion minimization is the least understood
in placement objectives, however, it models routability most
accurately. In this paper, a new incremental placement
algorithm C-ECOP for standard cell layout is presented to
reduce routing congestion. Congestion estimation is based on
a new routing model and a more accurate cost function. An
integer linear programming (ILP) problem is formulated to
determine cell flow direction and avoid the conflictions
between adjacent congestion areas. Experimental results
show that the algorithm can considerably reduce routing
congestion and preserve the performance of the initial
placement with high speed.
Key words: congestion, standard cell, incremental placement

1. Introduction

As VLSI technology advances, the system
complexity continues to increase and physical design is
getting more and more difficult. With the advent of
overcell routing, the goal of every place and route
methodology has been to utilize all available active area to
prevent spilling of routes into channels. It is the overflow
of routes that account for an increase in area. Further
heuristic method should be applied in placement to
manage local congestion to enhance and improve the latter
route ability.

Traditional placement objectives involve reducing
net-cut costs or minimizing wire length [1-2]. Because of
its constructive nature, min-cut based strategies minimize
the number of net crossings but fail to distribute them
uniformly [3]. For the same reason, traditional placement
schemes which are based mainly on wirelength
minimization can not adequately account for congestion.
Reducing net-cut and minimizing wirelength only help
reduce the routing demand globally but do not prevent
causing local routing congestion. How to estimate and
reduce congestion in placement is not well studied.
Congestion-driven placement based on multi-partitioning
was proposed in [4]. It uses the actual congestion cost
calculated from precomputed Steiner trees to minimize the
congestion of the chip. However, the number of partitions
is limited due to the excessive computational load.

Wang et al. [8-10] proposed a consistent routing
model defined by demand/supply relationship.
Experimental results show that the congestion objective is
very ill behaved. So it adapts a post processing approach

after placement to reduce congestion. But the
demand/supply congestion model and bounding-box
routing estimation is too simple and will affect the final
result. Since congestion and wirelength are globally
consistent, Jason et al. [11-12] considered improving local
congestion with incremental placement. However, how to
minimize the wirelength changes caused by congestion
reducing and maintain the metrics of the initial placement
is very difficult.

In this paper, an incremental placement algorithm
C-ECOP for improving local congestion is proposed. It
first estimates the routing congestion through a new route
model. Then it constructs an integer linear programming
(ILP) to move cells to reduce congestion. Finally it adjusts
the positions of cells to resolve overlap. The rest of this
paper is organized as follows. Section 2 describes the
routing estimation and congestion measurement used in
this work. The algorithm C-ECOP is presented in section 3.
Section 4 gives the experimental results to show the
effectives of our algorithm. Section 5 is the conclusion.

2. Congestion Estimation in Placement

2.1 Congestion Cost

The congestion cost is defined based on the global
bin concept. We partition a given chip into several
rectangular regions, each of which is called a global bin.
The boundaries of global bins are called global bin edges
as shown in Fig.1. The congestion is “related” to the
number of crossings between routed nets and global bin
edges.

Cells Bins

Edges

Fig.1 Bin Structure

Given a detailed placement, all the cells and pads

have fixed positions on the chip. We can use a “router” to
route all the nets. The router can be a very simple global
router or even a bounding box router. Therefore, for each
global edge e, the routing demand of e, de, can be defined
as the number of the nets crossing e. The routing supply of
e, se, is known easily from the technology parameter. A

* The work was supported by the National Natural Science
Foundation of China (NSFC) 60121120706, the National
Natural Science Foundation of USA (NSF) CCR-0096383,
Hi-Tech Research & Development (863) Program of China
2002AA1Z1460 and The National Foundation Research (973)
Program of China G1998030403

global edge is congested if and only if routing demand de
exceeds the routing supply se. The overflow is defined as
follows:





>−
≤

=
)(
)(0

)(
eeee

ee

sdsd
sd

eoverflow (1)

Then estimating the congestion of a global bin can be
replaced by computing the total overflow of the global
edges as (2) and cost function is defined as (3). Most of
the algorithms for reducing congestion [6-10] estimate
congestion like this.

∑
=

=
4

1
)()(

k
kij eoverflowbcon (2)

∑∑
= =

=
n

i

n

j
ijc bcont

1 1
)(cos (3)

This method to estimate congestion is ill behaved. It
can only detect the congestion area that is crossed by a
global edge. Actually, the congestion area can be in any
place on the chip and it may just locate inside a global bin.
Table 1 gives the result of the congestion estimation on a
circuit CNT100 with the method above. The chip is
partitioned into 4x4, 5x5, 6x6 and 7x7 global bins. It is
shown that the total number of congest areas (TNC.), the
total demand (TD.) changed due to different partition. The
max demand (MD.) even increases when the partition
amount increases from 4x4 to 5x5. Because the global
edges become shorter, it seems that the routing demand
crossing the edge should decrease.

Table 1. Estimation of Congestion on CNT100

Grids Supply
(H/V)*

TNC.
(H/V)

TD.
(H/V)

MD.
(H/V)

MO.**
(H/V)

4 x 4 19/12 0/1 261/198 18/13 0/1
5 x 5 15/10 4/4 269/192 20/14 5/4
6 x 6 13/8 2/8 322/226 17/11 4/3
7 x 7 11/7 4/6 391/251 18/8 7/1
*H: Horizontal V: Vertical **MO.: Max Overflow

 From the table we can see that the total demand
increases when partition amount increases. It is because
that the nets inside a larger global bin may become cross a
global edge when the chip be partitioned with smaller bins.
So the vertical and horizontal congestion estimation of a
global bin in our algorithm is defined as follows:

∑
=

+=
2

1
21)()()(

k
kvijvijv eoverlfowbrbcon ωω

∑
=

+=
2

1
21)()()(

k
khijhijh eoverlfowbrbcon ωω (4)

where rv and rh are the vertical and horizontal routing
demand inside bij. It can be obtained by the routing model
described in 2.2. ω1 and ω2 are the weights.

2.2 Routing Estimation Model

When we are performing congestion reducing, we
need to estimate congestion of placement incrementally. A
global router is needed here. Obviously, the more accurate
is the router, the more accurate is the estimation at the
placement stage. Routing with a real global router will
provide an accurate congestion estimation. But it will be
very time consuming and could not be applied in
incremental placement algorithm. Routing with a simple
routing model such as the bounding box model will be
very fast. But the bounding box model may be far
different with the characteristics of the detailed router so
that it causes a bad estimation. Wang et al. verify the
bounding box model in [8] and prove that it does not
correlate with the real router and could not be applied. So
it is critical that the algorithm for this application is
accurate while maintaining computational efficiency.

A new star model proposed in [6] is used here. It first
computes and adjusts the coordinate of the net center. The
vertical and horizontal possible route paths connecting
each cell to the center are on the edges of a rectangle
whose two vertexes locate on the cell and the center.
Route possibility on each path is 0.5. Then all the route
possibility on the same path is added up and could not
exceed 1 as shown in Fig. 2. Experimental results show
that the new star model is very close to the real routing in
practice [6].

A

B

Cell
0.5

Center
0.5

0.5
0.5

1.0
Cell

0.5

0.5 0.5

1.0

1.0
1.0

1.0 1.0

0.5
0.5

0.5

1.0

0.5

0.5

0.5

Fig.2 Routing Estimation with new star model

 b in (i0 , j0)

b in (i1 , j1)

b in (ik , jk)

Fig.3 Route Probability

This model has an obvious drawback. The possible

route path between a cell and the net center does not
necessarily locate on the rectangle edges. It may cross any

bin edges inside the rectangle as shown in Fig.3.
If cell Ck is in bin(i0, j0), the net center is in bin(i1, j1),

all the possible routes crossing the left edge of bin(ik, jk)
are those from bin(i0, j0) to bin(ik-1, jk), crossing the edge
between bin(ik-1, jk) and bin(ik, jk), then from bin(ik, jk) to
bin(i1, j1). It is in the symmetric form on the right edge of
bin(ik, jk). So the route possibility crossing the left and
right edges of bin(ik, jk) could be denoted as:







≤≤
≤≤

=







≤≤
≤≤

=

otherwise
jjj

iii
wkp

otherwise
jjj

iii
wkp

k

k
kr

r

k

k
kl

l

0
)(

0
)(

10

10

10

10

 (5)

01

0101

1

11

0

00
/1

1
ii

jjii
ii

jjii
ii

jjiikl CCCw k

kk

k

kk

−
−+−

−
−+−

−−
−+−− ×= (6)

01

0101

1

11

0

00
/1

1
ii

jjii
ii

jjii
ii

jjiikr CCCw k

kk

k

kk

−
−+−

−−
−+−−

−
−+− ×= (7)

And the possibility of crossing the top and bottom
edges, which are denoted as pt(k) and pb(k), are computed
in the symmetric form. The vertical and horizontal routing
demand inside a global bin can be easily known from this
approach. The running time of congestion estimation on
some circuits through this approach is listed in Table 2. It
is shown that this approach is so fast that it could be used
in our algorithm.

Table 2. Running Time on Routing Estimation
Circuits #cells #nets Grids Running time(s)
Ibm01 12,036 11,507 30 x 30 0.57
Ibm02 19,062 18,429 40 x 40 1.95
Ibm03 21,924 21,621 50 x 50 2.05
Ibm04 26,346 26,163 50 x 50 1.93
Ibm05 28,146 28,446 60 x 60 4.48

3. Congestion Reducing through ILP

3.1 Overview

Generally, minimizing congestion and minimizing
wirelength conflict each other in local regions. The
reducing of congestion means to sacrifice the wirelength.
Incremental placement algorithm should achieve trade-off
between congestion reducing and preserving the metrics,
e.g. wirelength, of the initial placement.

The design flow is shown in Fig.4. The flow
tendency of each cell is computed based on force driven
by nets. Then cells could move due to the tendency to
reduce congestion. An integer linear programming is
formulated to deal with the conflicts between multiple
congested regions. After that a post process is carried out
to place the moved cells and resolve overlap. The iteration
of the ECO flow stops when the congestion result is

acceptable.

Fig.4 C-ECOP Algorithm

3.2 Cell Flow Tendency Computation

Based on routing estimation, we can identify the
congestion bins on the chip. Each global bin whose
congestion cost defined by (4) is greater than a certain
threshold value or at least one of its global edge is
overflowed is considered to be a congest bin. Cells in
congest bins should move outside to decrease routing
demand and achieve more routing resource. Which cells
can be moved out so that the perturbation to the initial
placement could be minimized is the key problem. We
compute the flow tendency of each cell to deal with this.

The horizontal flow tendency of a cell Ck in bin(i, j)
is computed as follows:

∑∑∑ −−=
321

1)()()(
kkk netnet

r
net

lkl kpkpcxflow (8)

∑∑∑ −−=
312

1)()()(
kkk netnet

l
net

rkr kpkpcxflow (9)

where netk1 are the nets whose center are in bins on the left,
netk2 are the nets whose center are in bins on the right,
netk3 are the nets whose center are in bin b(i, j). pl(k) and
pr(k) are defined in (5).

Xflowl denotes the gain of crossing nets decreased on
the left edge of bin(i, j) when moving Ck from bin(i, j) to
bin(i-1, j). If it is positive, moving Ck to the left will lead
crossing nets on the edge decreased. It means a decrease in
overflow on the edge. Xflowr denotes the gain when
moving right. And it is in the symmetric form for the
vertical flow tendency. These parameters decide the move
tendency of cells.

Moreover, the flow tendency of cells could be
regarded as the net-cuts crossing the global edges.
Generally speaking, reducing in net-cuts is consistent with
reducing in wirelength, so moving cells according to the
flow tendency will lead a decrease in wirelength.

3.3 Congestion Reducing Based on Integer Programming

For a congest bin, cells inside should move out to
reduce the nets inside and achieve more free space for
routing. If bin(i, j) is vertical-congest, cells in it should
move along the horizontal direction as shown in Fig.5:

bin(i, j) bin(i+1, j)

Ck

Fig.5 Move Cell to Reduce Congestion

 When Ck is moved into bin(i+1, j), the vertical route
in bin(i, j) will decrease by:

∑∑ +=
kbkt net

b
net

tkv kpkpcgain)()()((10)

where netkt are nets connected to Ck and their centers are in
the top bins. netkb are nets whose centers are in the bottom
bins. pt(k) and pb(k) are the possibility of crossing the top
and bottom edges of bin(i, j) estimated by the route model.
Whether Ck should move to the left or the right bin is
according to Xflowl(Ck) and Xflowr(Ck). It assures that the
horizontal congestion will not increase when reducing
vertical congestion. To reduce the horizontal congest is in
the symmetric method.
 Note that the vertical route demand in bin(i+1, j) will
increase after Ck moves into it. This may cause unexpected
congest regions. Furthermore, if bin(i+1, j) is already
vertical-congested, moving Ck will lead a more severe
congest in it. An arbitrative mechanism is needed to deal
with the conflicts between the congestion reducing among
multiple congest regions. An integer programming
problem is constructed to resolve it.
 As mentioned above, only the cells with one or more
positive flow tendency could be moved. Experimental
results show that the conditions are too strict. For some
circuits there are few cells could move to reduce
congestion. So we relax the conditions here. For a congest
bin bin(i, j), horizontal-movable cells should satisfy the
following conditions:

hkl tcxflow >)(or hkr tcxflow >)((11)
where th is a negative threshold. It means that we allow a
little horizontal congest increase when reducing vertical
congest. And the condition for vertical-movable cells is as
follows:

vkt tcxflow >)(or vkb tcxflow >)((12)
 It is obvious that only one equation in (8) and (9)
could be positive. If th equal 0, only one of the two
inequations in (11) may be satisfied, so for a movable cell
Ck, its flow orientation is certain. When we relax the

conditions, both of the two inequations in (11) may be
satisfied. Then we randomly prescribe the moving
orientation of Ck. Later we can see that this will assure
high efficiency when solving the ILP problem.
 The integer linear programming problem is defined
as follows:
 minimize Cmax

s.t.








≤−

≤−

∑
∑

max

max

)()(

)()(

CCgainymbcon

CCgainxmbcon

k

k

C
kvkkijijv

C
khkkijijh

 i, j = 1, 2, …, N
xk + yk ≤ 1
xk, yk ∈ {0, 1} k = 1, 2, …, M
mkij ∈ {-1, 0, 1}

where Cmax is the maximum congestion degree over all the
global bin.

xk could equal 1 only when (11) is satisfied.
yk could equal 1 only when (12) is satisfied.
xk + yk ≤ 1 means that Ck could not move vertically

and horizontally at the same time.
mkij denote which Ck should be included in the

inequations. For a movable Ck in bin(ik, jk), because its
vertical and horizontal flow orientation is certain, the bin it
could move into is only. So the parameter could be defined
as follows:








−

==
=

otherwise
tomovesCbintheisjibin

jjandii
m k

kk

kij

0
),(1

1
 (13)

mkij equals 1 means route demand in bin(ik, jk) will
reduce after moving Ck out. It equals -1 means route
demand in the destination bin will increase for the same
amount. And the perturbation to the route probability in
other bins is ignored. Experimental results show that it
slightly affects the final results but considerably saves the
running time.

Then for some bin, the number of its related cells is
limited. Actually, it is only the movable cells inside the bin
and in the four adjacent bins that may be included in the
inequations. The ILP problem can be optimally solved.
The problem solution determines the total number and
destination bins of moved cells. A post processing is then
carried out to place the cells and resolve overlap inside
each bin.

3.4 Post Processing

 After the congestion reducing process, some cells are
redistributed among different global bins. These cells
should be placed without overlap. An efficient algorithm is
needed to adjust the positions of cells with the minimal
perturbation to the initial placement. We use the W-ECOP
algorithm [5] here to accomplish the process. For a cell

need to be placed, it is inserted into the adjacent row and
an optimal scheme to rearrange the cells in the row is
found. If free space in the row can not accept the cell, a
shifting path searching process is carried on to assure cells
restrict in their neighboring area so that the performance
of the circuit will be preserved.

4. Experimental Results

The algorithm has been implemented in C. All the
experiments were done on a Sun E450 workstation with
4GB memory. To show the effectiveness and utility of our
algorithm, a part of the experimental circuits are chosen
from IBM-PLACE benchmark [13] placed with a
wirelength-driven placer, Dragon [14]. Other set of
circuits are from industry (Ultima Company). We compare
the global routing results (overflow and wirelength) for the
design before and after incremental placement.

Table 3 shows the results on the circuits from
industry. As one can see, the congestion reducing approach
considerably reduces the total overflow. It has a 50 percent
cut down in average. And the total wirelength increased
less than 0.1 percent compared to the initial placement.
Some circuits even have a decrease in wrelength after
placement. This indicates that the wirelength is not
sacrificed much due to the reducing of congestion. It is
owed to the wirelength optimization approach in W-ECOP
algorithm.

 Table 4 shows the results on the IBM-PLACE
benchmarks placed with Dragon. Dragon has done
wirelength and routability optimization by combining
powerful hypergraph partitioning package with simulated
annealing technique [14]. From the results we can see that
the total overflow can be reduced continually through our
method. And the optimization in wirelength is preserved.
The algorithm is much faster on the benchmarks than on
the industry circuits. The short amount of running time
shows that our method can scale well for large circuits.

5. Conclusion

A new incremental placement algorithm for
congestion alleviation is presented in this paper. The
proposed algorithm automatically evaluates the routing
congestion of a detailed placement with a fast and accurate
routing estimation model. Congestion areas on the chip are
relieved through cell moving. An integer linear
programming (ILP) problem is formulated to resolve
conflicts among multiple congest areas and avoid causing
unexpected congest areas. After that an efficient algorithm
for resolving overlap is used to ensure perturbing the
initial placement the least. Experimental results
demonstrate the effectiveness of the new approach.

Table 3 Experimental results on industry circuits

Overflow Wirelength
Circuits #Cells Grids V/H

Cap* BIP** AIP** Dec. % W(mm) W’(mm) Inc. %
Runtime

(s)

Cnt100 760 5 x 5 15/15 18 12 -33.33 46376 46961 +1.26 2.01
Cnt1000 8150 20 x 20 18/18 54 13 -75.93 1684936 1688686 +0.22 19.53
M32_my 7150 20 x 20 22/22 252 132 -47.62 962017 969448 +0.77 2.72
Gfsm300 4154 20 x 20 15/15 52 26 -50.0 727760 725522 -0.31 4.71
Sony_1 24847 40 x 40 57/57 442 419 -5.2 9940513 9928071 -0.13 193.09
Toshiba 16444 30 x 30 61/61 387 227 -41.34 4264968 4259167 -0.14 63.87

 *V/H Cap: The vertical/horizontal capacity of each grid. **BIP/AIP: overflow before and after incremental placement

Table 4 Experimental results compared with Dragon on IBM-PLACE benchmarks
Overflow Wirelength Circui

ts #Cells Grids V/H
Cap BIP AIP Dec. % W(mm) W’(mm) Inc. %

Runtime
(s)

Ibm01 12,036 20 x 20 27/45 156 132 -15.38 5171658 5118393 -1.03 2.94
Ibm02 19,062 25 x 25 54/85 597 552 -7.53 16403624 16422055 +0.11 12.95
Ibm03 21,924 30 x 30 36/49 413 363 -12.10 14193033 14210763 +0.12 7.08
Ibm04 26,346 35 x 35 38/52 337 275 -18.40 16057004 16093988 +0.23 6.91
Ibm05 28,146 40 x 40 67/110 546 415 -23.99 42195069 42230608 +0.08 13.49

 References

[1] A. E. Dunlop and B.W. Kernighan, “A procedure for
placement of standard cell VLSI circuits,” IEEE Trans.
Computer Aided Design, vol. 4, pp. 92–98, Jan. 1985.
[2] H. Eisenmann and F. M. Johannes, “Generic global
placement and floorplanning,” in Proc. Design Automation Conf.,
1998, pp. 269–274.
[3] Saab et.al, “A fast clustering-based Min-cut placement
algorithm with simulated-annealing performance,” VLSI Design:
Int. J. Custom-Chip Design, Simulation, Testing, vol. 5, no. 1, pp.
37–48, 1996.
[4] G. Meixner and U. Lauther, “Congestion-driven placement
using a new multi-partitioning heuristic,” in Proc. Int. Conf.
Computer-Aided Design, Nov. 1990, pp. 332–335.
[5] Zhuoyuan Li, Weimin Wu, Xianlong Hong, Jun Gu,
“Incremental placement algorithm for standard-cell layout”,
Circuits and Systems, 2002 IEEE International Symposium on ,
Volume: 2 , 2002, Page(s): 883 -886.
[6] Wenting Hou, Hong Yu, Xianlong Hong, Yici Cai, Weimin
Wu, Jun Gu, Kao W.H., "A new congestion-driven placement
algorithm based on cell inflation", Design Automation
Conference, 2001. Proceedings of the ASP-DAC 2001. Asia and
South Pacific , 2001, Page(s): 605 -608

[7] Xiaojian Yang; Kastner, R.; Sarrafzadeh, M., "Congestion
reduction during placement based on integer programming",
Computer Aided Design, 2001. ICCAD 2001. IEEE/ACM
International Conference on , 2001, Page(s): 573 -576
[8] Maogang Wang; Xiaojian Yang; Sarrafzadeh, M.,
"Congestion minimization during placement", Computer-Aided
Design of Integrated Circuits and Systems, IEEE Transactions on,
Volume: 19 Issue: 10 , Oct. 2000, Page(s): 1140 -1148
[9] Maogang Wang; Sarrafzadeh, M., "Modeling and
minimization of routing congestion", Design Automation
Conference, 2000. Proceedings of the ASP-DAC 2000. Asia and
South Pacific , 2000, Page(s): 185 -190
[10] Maogang Wang; Sarrafzadeh, M., "On the Behavior of
Congestion Minimization During Placement", International
Symposium on Physical Design, April 1990, Page(s): 145-150
[11] O. Coudert, J. Cong, S. Malik, M. Sarrafzadeh, "Incremental
CAD", Computer Aided Design, 2000. ICCAD-2000.
IEEE/ACM International Conference on , 2000, Page(s): 236
-243
[12] J. Cong and M. Sarrafzadeh, "Incremental Physical Design",
Proc. International Symposium on Physical Design, San Diego,
California, April 2000, Page(s): 84-92
[13] http://er.cs.ucla.edu/benchmarks/ibm-place/
[14] http://er.cs.ucla.edu/Dragon/

	Main
	ASP-DAC03
	Front Matter
	Table of Contents
	Author Index

