
 

Abstract – In this paper, we show the performance 
comparison and analysis result among three RTOSes: the 
Real-Time Unit (RTU) hardware RTOS, the pure software 
Atalanta RTOS and a hardware/software RTOS composed of 
part of Atalanta interfaced to the System-on-a-Chip Lock 
Cache (SoCLC) hardware.  We also present our RTOS 
configuration framework that can automatically configure 
these three RTOSes.  The average-case simulation result of a 
database application example on a three-processor system 
running thirty tasks with RTU and the same system with 
SoCLC showed 36% and 19% overall speedups, respectively, 
as compared to the pure software RTOS system. 
 

I. Introduction 
Trends in chip design show rapidly increasing levels of 

integration.  Processors, custom hardware, reconfigurable 
logic and memory can all be integrated onto a single 
system-on-a-chip (SoC).  Part of future chip designs will 
certainly include a significant percentage of high 
performance processors.  Another significant portion will 
be custom application specific integrated circuits (ASICs).  
However, chips like the Virtex-II Pro from Xilinx [1] 
which integrate reconfigurable logic and custom processor 
logic will likely make up an increasing percentage of chip 
volumes as time progresses. 

To fully exploit such chips, we started implementing a 
framework, which we call δ Hardware/Software RTOS 
Generation Framework, to help the developers of an SoC 
codesign both the SoC architecture and the SoC’s RTOS at 
the same time in the beginning of the design phase [2].  
The fundamental goal of the δ Framework is to allow the 
user to more easily configure and explore various RTOS 
combinations from RTOS components available in a 
library.  Previous work has shown the usefulness of a 
hardware/software RTOS for SoC [2, 3].  Furthermore, 
even earlier work has shown the advantage of implemen-
ting an RTOS in hardware [4, 5, 6]. 

In this paper, we present a performance comparison 
and analysis among three configured systems: (i) a three-
processor system with only a pure software RTOS, (ii) a 
three-processor system with System-on-a-Chip Lock 
Cache (SoCLC, hardware-supported semaphores [3]), and 
(iii) a three-processor system with Real-Time Unit 
(RTU, [4]).  We also describe the integration of the RTU 
into the δ Framework. 

This paper is organized as follows: Section II discusses 
previous work related to this research.  Section III gives 
our motivation and Section IV describes detailed interfaces 
needed for the implementation.  Section V describes the δ 
Framework which can be used to configure a target system 
architecture with or without specialized hardware in the 
RTOS.  In Section VI, we describe an application example, 
three configurations generated from the framework and our 
simulation environment.  In Section VII, we present the 
performance comparison results of three configured 
systems and analyze thoroughly where the performance 
difference comes from so that the user may be able to use 
the result of the analysis for RTOS design space 
exploration and also to decide which configuration is most 
suitable for his or her application(s).  Finally, conclusion 
and future work are addressed in Section VIII. 

 
II. Previous Work 

Previously, a hardware RTOS unit called RTU was 
developed as shown in Figure 1 [4].  The RTU is a hard-
ware operating system that moves the scheduling, inter-
process communication (IPC) such as semaphores as well 
as time management control such as time ticks and delays 
from the software OS-kernel to hardware.  The RTU 
decreases the system overhead and can improve 
predictability and response time by an order of magnitude.  
(This increased performance is due to the reduced CPU 
load when the RTOS functionality is placed into 
hardware.)  The RTU also dramatically reduces the 
memory footprint of the OS to consist of only a driver that 
communicates with the RTU.  Thus, less cache misses are 
seen when the RTU RTOS is used.  The RTU also 
supports task and semaphore creation and deletion, even 
dynamically at run time.  

Another previous work is the Sysem-on-a-Chip Lock 
Cache (SoCLC, shown in Figure 2) which was introduced 
as a hardware support to accelerate software locks and 
semaphores in a software RTOS [3].  Lock variables 
including binary semaphore functionality are moved into a 
separate “lock cache” outside of the memory system but in 
the SoC, thereby improving performance due to reduced 
delay in accessing a lock variable and reduced bus 
contention in a shared memory multi-processor SoC. 
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Also recently, some research efforts in addition to ours 
have paid much attention to the field of automatic 
generation of application specific operating system and 
architecture [7, 8]. 

 
III. Motivation 

Suppose an SoC architecture such as Figure 3 is 
designed and simulated with a pure software RTOS and is 
found to not meet the timing constraints of applications to 
be run on the SoC.  One reaction could be to wish to 
change to a larger SoC with more processors.  However, 
suppose we want to investigate the use of logic gates to 
speed up the application because, for example, we are in a 
post-fabrication scenario and no larger SoC exists!  In this 
case, we can explore different ways of using the 
reconfigurable logic to speed up RTOS functionality.  
Thus, we introduced δ SoC/RTOS Codesign Framework 
which is designed to provide automatic hardware/software 
RTOS configurability to support user-directed hardware/ 

software co-design [9, 10].  We previously focused on the 
configuration of an RTOS which may include parts of the 
RTOS in hardware.  On top of this initial framework, we 
have included the generation of header files to use the 
RTU. 

In this paper, we compare and contrast the previous 
two solutions (the RTU hardware RTOS and the SoCLC 
hardware lock cache) with each other and with a pure 
software solution.  Furthermore, we present an upgraded 
framework able to configure the SoC for all three RTOS 
configurations: RTU, SoCLC and pure software RTOS. 
 

IV. Implementation 
In this section, we describe detailed interfaces needed 

for the automatic configuration of the RTOS chosen for the 
SoC under consideration.  As shown in Figure 1, the RTU 
is partitioned into functional units: Accelerator Interface, 
Scheduler unit, MsgQLib (which handles message passing, 
semaphores and time-related scheduling such as task 
delay), IRQ – intelligent interrupt handler – and RTC – 
real-time control.  The interface to the RTU is divided into 
a generic bus interface (GBI) and a technology dependent 
bus interface (TDBI).  The GBI is independent of external 
bus while TDBI is dependent on the bus architecture in the 
system.  Thus, this design of RTU makes it easy to 
interface it towards different busses.  All communication 
(service calls) with the RTU is carried out through a set of 
registers located in the Accelerator Interface.  A service 
call is decoded in the Accelerator Interface and routed out 
to the unit that will carry out the supported service call. In 
order to fully accommodate the RTU, the system needs 
RTU application programming interfaces (APIs) to handle 
software hand-shaking between the CPU and the RTU. 
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Figure 1. The Real-Time Unit (RTU) 
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     Figure 2. The System-on-a-Chip Lock Cache (SoCLC) 
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Figure 3. Target SoC architecture (PE: processing element) 
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The SoCLC, as shown in Figure 2, contains lock 
variables and Pr (which stands for processor) bit locations 
associated with each lock variable.  The Pr bit locations are 
kept for every processor and indicate whether or not the 
processor is waiting for the lock.  The waiting processors 
are sent an interrupt to signal the processor when the lock 
is released.  Also, the SoCLC reports which lock has been 
released so that the RTOS can search for the correct task 
corresponding to this lock. 

For a pure software RTOS, we use Atalanta RTOS 
version 0.4 [11], a shared-memory heterogeneous multi-
processor RTOS.  The Atalanta RTOS is similar in 
functionality to other small RTOSes such as µC/OS-II [12] 
or VRTX RTOS [13]. 

 
V. Framework 

In this section, we briefly describe the δ Framework 
(please see [2] for more information), its main idea and the 
environment which makes the δ Framework possible.  The 
flow of automatic generation of configuration files in the δ 
Framework is shown in Figure 4.  From the description 
library of (i) the SoC architecture, (ii) the Atalanta 
software RTOS, (iii) the RTU hardware RTOS and (iv) 
other hardware RTOS components, the δ Framework 
generates configuration files for a hardware/ software 
RTOS for SoC directed by the user through the graphical 
user interface (GUI) tool (written in Tcl&Tk [14]).  The 
configuration files are header files for C pre-processing, 
makefiles and a hardware description language (HDL) top 
file to glue the system together.  To verify generated 
configurations from the tool, the HDL top file is compiled, 
the application(s) and the configured software RTOS are 
compiled and linked by the GNU gcc compiler for 
PowerPC.  As a next step, to judge performance, we 
execute various configured RTOS code and SoC hardware 
in the Mentor Graphics Seamless Co-Verification 
Environment (CVE) [15] with the Modelsim mixed-
VHDL/Verilog simulator.  Within the Seamless 

framework, Processor Support Packages (PSPs) and 
Instruction Set Simulators (ISSes) for processors, e.g., 
ARM920T and PowerPC MPC755, are provided. 

The information in the libraries shown in Figure 4 
includes signals and parameters of the IP (intellectual 
property) library of the RTU hardware RTOS and other 
hardware components such as System-on-a-Chip Lock 
Cache (SoCLC [3]), System-on-a-Chip Deadlock 
Detection Unit (SoCDDU [16]) and System-on-a-Chip 
Dynamic Memory Management Unit (SoCDMMU [17]). 

Because we precisely described the GUI and the 
generation and linking process of Makefile and C header 
files in a previous paper [2], in this section we only 
address the generation process of an HDL top file and 
focus on presenting how the RTU can be integrated into 
the desired system. 

Since we use Modelsim as a mixed VHDL/ Verilog 
simulator, all modules and IP modules (either written in 
VHDL or written in Verilog) that can possibly be 
integrated into the target architecture are each pre-
compiled and stored to a directory of its own name.  
Moreover, the tool does not have to extract each module 
from an HDL library to an HDL file described in the 
previous paper [2].  Therefore, our tool only needs to 
manipulate a top-level HDL file so that the configuration 
and generation process becomes much simplified.  Also, a 
processing element (PE) IP core is wrapped as an 
independent module so that it can be instantiated multiple 
times without each instance interfering each other.  This 
rule is applied to all other modules possibly needing to be 
instantiated multiple times.  Therefore, scalability is 
ensured. 

Here, we take a system utilizing the RTU, shown in 
Figure 5, as an example target to describe the hardware 
configuration process.  The RTU system of Figure 5 
consists of more than ten modules such as a clock 
generator, three MPC755s, a memory controller, L2 
memory, a bus arbiter, an interrupt controller and an RTU.  
We store the module information in the hardware system 

 

HW 
Compile 

 
SW 

Compile 

RTOS 
library 

top.v 

user.h 

makefile

RTU 
RTOS 
Info. 

Excutable 
HW 

Excutable 
SW 

XRAY 

Modelsim 

Compiled 
Hardware 

library 

 
Simulation 

in 
Seamless 

CVE 

Result 
and 

feedback 

Figure 4. δ Framework for customized hardware/software RTOS design 

application 

 
GUI tool 

Software 
RTOS 
Info. 

User 
input 

Hardware 
Description 

library 

  (i) and (iv) 

(ii)    (iii) 



 

description library shown in Figure 4.  Also, the RTU 
interface information and Atalanta software RTOS 
information are stored in separate files.  If the user selects 
the RTU in order for the system to be as fast as possible 
and most easily proven to be deterministic, then the GUI 
tool executes the Archi_gen program with the arguments 
specified by the user.  Archi_gen generates an application 
specific HDL top file utilizing the RTU.  The final output 
of the configured SoC is a Verilog top module, which 
contains all module instantiation code for PE wrappers, 
memory, a memory controller, bus, a bus arbiter and an 
RTU. 
 

VI. Experimental Setup 
In this section, we describe our database application 

example, three configured systems and experimental setup.  
As an application, we implemented a database system 
model which has many different task level synchronization 
scenarios [18].  As illustrated in Figure 6, a database 
system may have several transactions.  Each task must 
acquire a lock before initiating a transaction in order for 
the transaction to be atomic.  A transaction is a process of 
accessing a database object (labeled Oi in Figure 6), which 
is equivalent to a critical section (CS) in our example.  In 
Figure 6, any thick or dotted arrow labeled “Ti” indicates 
an object copying action from source to destination, which 
is a job assigned to each task.  

We have used δ Framework to generate three 
hardware/software RTOS configurations for three systems.  
Here, a “system” is defined as an SoC architecture with an 
associated RTOS.  We also define a “base architecture” as 
an SoC architecture that contains only essential hardware 
components in an SoC (needed for almost all systems) 
such as PE wrappers with PE instantiation description, an 
arbiter, an address decoder, a memory and a clock.  Each 
SoC architecture we simulated contained three MPC755s 
and additional hardware modules (as shown in Figure 5 for 
the case of placing the RTU in the on-chip reconfigurable 
logic).  The clock speed of each system is 125 MHz (8 ns 
clock period), and the size of the L2 memory is 16 Mbytes.  

The MPC755 has separate instruction and data caches each 
of size 32KB. 

The first configuration for the system illustrated in 
Figure 7 uses only the Base architecture with a pure 
software RTOS, and, therefore, the synchronization is 
performed with software semaphores and spin-locks in the 
system.  Note that in this first system, all of the 
reconfigurable logic is available for other uses as needed.  
For comparison with the first system, we generated a 
second configuration for the system, illustrated in Figure 8, 
which utilizes SoCLC for the synchronization in the same 
database example.  The third configuration includes the 
RTU as shown in Figure 5, exploiting the reconfigurable 
logic for scheduling, synchronization and even time-
related services.  In short, in the system shown in Figure 5, 
the hardware RTU handles most of the RTOS services. 

Simulations of two database examples were carried out 
on each of these three systems using Seamless CVE [15], 
as illustrated on the far right-hand side of Figure 4.  We 
used Modelsim from Mentor Graphics for mixed 
VHDL/Verilog simulation and XRAYTM debugger from 
Mentor Graphics for application code debugging.  To 
simulate each configured system, both the software part 
including application and the hardware part of the Verilog 
top module were compiled.  Then the executable appli-
cation and the multi-processor hardware setup consisting 
of three MPC755’s were connected in Seamless CVE. 

 
VII. Experimental Results 

Experimental results in Table 1 present the total 
execution time of (i) simulation with software semaphores, 
(ii) simulation with SoCLC (hardware-supported sema-
phores) and (iii) simulation with RTU.  As seen in the 
table, the RTU system achieves a 50% speedup over case 
(i) in the total execution time of the 6-task database 
application.  On the other hand, the SoCLC system showed 
a 41% speedup over case (i).  We also simulated these 
systems with a 30-task database application, where the 
RTU system and the SoCLC system showed 36% and 19% 
speedups, respectively, compared to the pure software 

MPC755-3 
 

MPC755-2 
  

RTU in 
Reconfigurable 

Logic 

MPC755-1 
 

Memory 
Controller 

and Memory 

Arbiter, 
Intr. controller, 

Clock 

Figure 5. An SoC architecture with RTU 
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Figure 6. A database transaction application 
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RTOS system of case (i).  The reason why smaller 
execution time reductions are seen when comparing to the 
pure software system in the 30-task case is that, when 
compared to the 6-task case, software for the 30-task case 
was able to take much more advantage of the caches. 

In order to gain some insight to explain the 
performance differences observed, we looked in more 
detail at the different scenarios and RTOS interactions.   
Table 2 shows the total number of interactions including 
semaphore interactions and context switches while 
executing the applications.  Table 3 shows in which of 
three broad areas – communication using the bus, context 
switching and computation – PEs have spent their clock 
cycles.  The numbers for communication shown in Table 3 
indicate the time period between just before posting a 
semaphore and just after acquiring the semaphore in a task 
that waits the semaphore and has the highest priority for 
the semaphore.  For example, if Task 1 in PE1 releases a 
semaphore for Task 2 in PE2 (which is waiting for the 
semaphore), the communication time period would be 
between just before a post_semaphore statement (sema-
phore release call) of Task 1 in PE1 and just after a 
pend_semaphore statement (semaphore acquisition call) of 
Task 2 in PE2. In the similar way, the numbers for context 

switch were measured.  The time spent on communication 
in the pure software RTOS case is prominent because the 
pure software RTOS does not have any hardware notifying 
mechanism for semaphores, while the RTU and the 
SoCLC system exploit an interrupt notification mechanism 
for semaphores. 

We also noted that the context switch time when using 
the RTU is not much less than others.  To explain why, 
recall that a context switch consists of three steps: (i) 
pushing all PE registers to the current task stack,    (ii) 
selecting (scheduling) the next task to be run, and (iii) 
popping all PE registers from the stack of the next task.  
While Step (ii) can be done by hardware, Steps (i) and (iii) 
cannot be done by hardware in general PEs because all 
registers inside a PE must be stored to or restored from the 
memory by the PE itself. That is why the context switch 
time of the RTU cannot be reduced significantly (as 
evidenced in Table 3). 

We synthesized and measured the hardware area of the 
SoCLC and RTU with TSMC 0.25um standard cell library 
from LEDA [19].  The number of total gates for an SoCLC 
with 64 short CS locks and 64 long CS locks was 7435 and 
the number of total gates for the RTU was approximately 
250,000 as shown in Table 4.  

In conclusion, from the information about (i) the size 
of a specific hardware RTOS component, (ii) the 
simulation results and (iii) available reconfigurable logic, 
the user can choose which configuration is most suitable 
for his or her application or set of applications. 

Table 1. Average-case simulation results of the examples 

Total Execution Time Pure SW* With 
SoCLC With RTU

 (in cycles) 100398 71365 67038 6 tasks
Speedup 0% 41% 50% 

 (in cycles) 379440 317916 279480 30 tasks
Speedup 0% 19% 36% 

* Semaphores are used in pure software while a hardware 
mechanism is used in SoCLC and RTU. 

Table 2. Number of interactions 

Times 6 tasks 30 tasks 
Number of semaphore 

interactions 12 60 

Number of context switches 3 30 

Number of short locks 10 58 

Table 3. Average time spent on (6 task case) 

cycles Pure SW With SoCLC With RTU
communication 18944 3730 2075 
context switch 3218 3231 2835 
computation 8523 8577 8421 
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VIII. Conclusion 

In this paper, we presented the average-case simulation 
result of two database application examples, an example of 
two client-server triad of tasks and an example of ten 
client-server triad of tasks.  We simulated the total 
execution time of the examples on (i) a three-processor 
system with only a software synchronization imple-
mentation, (ii) a three-processor system with System-on-a-
chip Lock Cache (SoCLC, hardware-supported sema-
phores [3]) and (iii) a three-processor system with the 
RTU.  As seen in Table 1, the RTU system achieves a 50% 
speedup over case (i) in the total execution time of the 
6-task database application.  On the other hand, the SoCLC 
system showed a 41% speedup over case (i).  In case of a 
30-task database application, the RTU system and the 
SoCLC system showed 36% and 19% speedups, 
respectively, compared to the pure software RTOS system 
of case (i).  

We showed the total number of interactions including 
semaphore interactions and context switches while 
executing the applications.  We also presented in which of 
three broad areas – communication using the bus, context 
switching and computation – PEs have spent their clock 
cycles.  The time spent on communication in the pure 
software RTOS case took almost an order of magnitude 
longer than the others because the pure software RTOS 
does not have any hardware notifying mechanism for 
semaphores between PEs.  The context switching time of 
the RTU case is not much less than the others because of 
the time spent in storing and restoring all registers of the 
PE, which cannot be done by hardware because all 
registers inside a PE must be stored to or restored from the 
memory by the PE itself.  

We also showed automatic generation of configuration 
files for a multi-processor system with the RTU hardware 
RTOS.  To compare this system having an RTU with 
others, we configured two more multi-processor systems 
with or without the SoCLC hardware RTOS component 
with the aid of the δ Framework.  To measure the 
performance difference among the configured systems, we 
compiled and simulated them with two examples within 
the Seamless Co-Verification Environment [15].  

We also showed that, with the δ Framework, the user 
may be able to use the result of the analysis for RTOS 
design space exploration and also to decide which 
configuration is most suitable for his or her application or 
set of applications.  Thus, the δ Framework helps evaluate 
different SoC/RTOS architectures that employ a hardware 
RTOS, hardware/software RTOS or a pure software 
RTOS.  In other words, the δ Framework helps in user-
directed hardware/software codesign [9, 10]. 

We plan to extend our research to the configuration of 
heterogeneous multi-processor systems each with a custom 
hardware/software RTOS.  
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