

Abstract – In this paper, we show the performance
comparison and analysis result among three RTOSes: the
Real-Time Unit (RTU) hardware RTOS, the pure software
Atalanta RTOS and a hardware/software RTOS composed of
part of Atalanta interfaced to the System-on-a-Chip Lock
Cache (SoCLC) hardware. We also present our RTOS
configuration framework that can automatically configure
these three RTOSes. The average-case simulation result of a
database application example on a three-processor system
running thirty tasks with RTU and the same system with
SoCLC showed 36% and 19% overall speedups, respectively,
as compared to the pure software RTOS system.

I. Introduction
Trends in chip design show rapidly increasing levels of

integration. Processors, custom hardware, reconfigurable
logic and memory can all be integrated onto a single
system-on-a-chip (SoC). Part of future chip designs will
certainly include a significant percentage of high
performance processors. Another significant portion will
be custom application specific integrated circuits (ASICs).
However, chips like the Virtex-II Pro from Xilinx [1]
which integrate reconfigurable logic and custom processor
logic will likely make up an increasing percentage of chip
volumes as time progresses.

To fully exploit such chips, we started implementing a
framework, which we call δ Hardware/Software RTOS
Generation Framework, to help the developers of an SoC
codesign both the SoC architecture and the SoC’s RTOS at
the same time in the beginning of the design phase [2].
The fundamental goal of the δ Framework is to allow the
user to more easily configure and explore various RTOS
combinations from RTOS components available in a
library. Previous work has shown the usefulness of a
hardware/software RTOS for SoC [2, 3]. Furthermore,
even earlier work has shown the advantage of implemen-
ting an RTOS in hardware [4, 5, 6].

In this paper, we present a performance comparison
and analysis among three configured systems: (i) a three-
processor system with only a pure software RTOS, (ii) a
three-processor system with System-on-a-Chip Lock
Cache (SoCLC, hardware-supported semaphores [3]), and
(iii) a three-processor system with Real-Time Unit
(RTU, [4]). We also describe the integration of the RTU
into the δ Framework.

This paper is organized as follows: Section II discusses
previous work related to this research. Section III gives
our motivation and Section IV describes detailed interfaces
needed for the implementation. Section V describes the δ
Framework which can be used to configure a target system
architecture with or without specialized hardware in the
RTOS. In Section VI, we describe an application example,
three configurations generated from the framework and our
simulation environment. In Section VII, we present the
performance comparison results of three configured
systems and analyze thoroughly where the performance
difference comes from so that the user may be able to use
the result of the analysis for RTOS design space
exploration and also to decide which configuration is most
suitable for his or her application(s). Finally, conclusion
and future work are addressed in Section VIII.

II. Previous Work

Previously, a hardware RTOS unit called RTU was
developed as shown in Figure 1 [4]. The RTU is a hard-
ware operating system that moves the scheduling, inter-
process communication (IPC) such as semaphores as well
as time management control such as time ticks and delays
from the software OS-kernel to hardware. The RTU
decreases the system overhead and can improve
predictability and response time by an order of magnitude.
(This increased performance is due to the reduced CPU
load when the RTOS functionality is placed into
hardware.) The RTU also dramatically reduces the
memory footprint of the OS to consist of only a driver that
communicates with the RTU. Thus, less cache misses are
seen when the RTU RTOS is used. The RTU also
supports task and semaphore creation and deletion, even
dynamically at run time.

Another previous work is the Sysem-on-a-Chip Lock
Cache (SoCLC, shown in Figure 2) which was introduced
as a hardware support to accelerate software locks and
semaphores in a software RTOS [3]. Lock variables
including binary semaphore functionality are moved into a
separate “lock cache” outside of the memory system but in
the SoC, thereby improving performance due to reduced
delay in accessing a lock variable and reduced bus
contention in a shared memory multi-processor SoC.

Jaehwan Lee and Vincent John Mooney III

School of Electrical and Computer Engineering
Georgia Institute of Technology

Atlanta, Georgia, U.S.A.
Tel: 404-894-0966

e-mail: {jaehwan, mooney}@ece.gatech.edu

Anders Daleby, Karl Ingström, Tommy Klevin* and Lennart Lindh*

Computer Architecture Laboratory
Mälardalen University (also RealFast*)

Västerås, Sweden
Tel: +46-21-10-1452

e-mail: {ady99002, kim99001, klevin, llh}@mdh.se

A Comparison of the RTU Hardware RTOS with a Hardware/Software RTOS

Also recently, some research efforts in addition to ours
have paid much attention to the field of automatic
generation of application specific operating system and
architecture [7, 8].

III. Motivation

Suppose an SoC architecture such as Figure 3 is
designed and simulated with a pure software RTOS and is
found to not meet the timing constraints of applications to
be run on the SoC. One reaction could be to wish to
change to a larger SoC with more processors. However,
suppose we want to investigate the use of logic gates to
speed up the application because, for example, we are in a
post-fabrication scenario and no larger SoC exists! In this
case, we can explore different ways of using the
reconfigurable logic to speed up RTOS functionality.
Thus, we introduced δ SoC/RTOS Codesign Framework
which is designed to provide automatic hardware/software
RTOS configurability to support user-directed hardware/

software co-design [9, 10]. We previously focused on the
configuration of an RTOS which may include parts of the
RTOS in hardware. On top of this initial framework, we
have included the generation of header files to use the
RTU.

In this paper, we compare and contrast the previous
two solutions (the RTU hardware RTOS and the SoCLC
hardware lock cache) with each other and with a pure
software solution. Furthermore, we present an upgraded
framework able to configure the SoC for all three RTOS
configurations: RTU, SoCLC and pure software RTOS.

IV. Implementation
In this section, we describe detailed interfaces needed

for the automatic configuration of the RTOS chosen for the
SoC under consideration. As shown in Figure 1, the RTU
is partitioned into functional units: Accelerator Interface,
Scheduler unit, MsgQLib (which handles message passing,
semaphores and time-related scheduling such as task
delay), IRQ – intelligent interrupt handler – and RTC –
real-time control. The interface to the RTU is divided into
a generic bus interface (GBI) and a technology dependent
bus interface (TDBI). The GBI is independent of external
bus while TDBI is dependent on the bus architecture in the
system. Thus, this design of RTU makes it easy to
interface it towards different busses. All communication
(service calls) with the RTU is carried out through a set of
registers located in the Accelerator Interface. A service
call is decoded in the Accelerator Interface and routed out
to the unit that will carry out the supported service call. In
order to fully accommodate the RTU, the system needs
RTU application programming interfaces (APIs) to handle
software hand-shaking between the CPU and the RTU.

 MsgQLib

RTC

IRQ

GBI

Figure 1. The Real-Time Unit (RTU)

 Pr1 Pr2 … PrN Lv2

 Pr1 Pr2 … PrN LvK

 Pr1 Pr2 … PrN Lv1

Data

Interrupts

Decoder

Control
Logic

RE
WE

Address

Lv k : Lock variable k (k : 1 to K, K : number of locks)
Pr i : Processor i (i : 1 to N, N : number of processors)
RE : Read Enable
WE : Write Enable
p1, p2,…,pN: signals designating transactions from PE1, PE2,…,PEN,
 respectively

 Figure 2. The System-on-a-Chip Lock Cache (SoCLC)

. . .

Lock Unit

…

p1
p2

pN

…

Reconfigurable Logic

Memory Controller

Bus Arbiter

Figure 3. Target SoC architecture (PE: processing element)

PE2

L1

PE1

L1

PE3

L1

PE4

L1

Interrupt Controller

Clock

L2 Cache Memory

Custom Logic

The SoCLC, as shown in Figure 2, contains lock
variables and Pr (which stands for processor) bit locations
associated with each lock variable. The Pr bit locations are
kept for every processor and indicate whether or not the
processor is waiting for the lock. The waiting processors
are sent an interrupt to signal the processor when the lock
is released. Also, the SoCLC reports which lock has been
released so that the RTOS can search for the correct task
corresponding to this lock.

For a pure software RTOS, we use Atalanta RTOS
version 0.4 [11], a shared-memory heterogeneous multi-
processor RTOS. The Atalanta RTOS is similar in
functionality to other small RTOSes such as µC/OS-II [12]
or VRTX RTOS [13].

V. Framework

In this section, we briefly describe the δ Framework
(please see [2] for more information), its main idea and the
environment which makes the δ Framework possible. The
flow of automatic generation of configuration files in the δ
Framework is shown in Figure 4. From the description
library of (i) the SoC architecture, (ii) the Atalanta
software RTOS, (iii) the RTU hardware RTOS and (iv)
other hardware RTOS components, the δ Framework
generates configuration files for a hardware/ software
RTOS for SoC directed by the user through the graphical
user interface (GUI) tool (written in Tcl&Tk [14]). The
configuration files are header files for C pre-processing,
makefiles and a hardware description language (HDL) top
file to glue the system together. To verify generated
configurations from the tool, the HDL top file is compiled,
the application(s) and the configured software RTOS are
compiled and linked by the GNU gcc compiler for
PowerPC. As a next step, to judge performance, we
execute various configured RTOS code and SoC hardware
in the Mentor Graphics Seamless Co-Verification
Environment (CVE) [15] with the Modelsim mixed-
VHDL/Verilog simulator. Within the Seamless

framework, Processor Support Packages (PSPs) and
Instruction Set Simulators (ISSes) for processors, e.g.,
ARM920T and PowerPC MPC755, are provided.

The information in the libraries shown in Figure 4
includes signals and parameters of the IP (intellectual
property) library of the RTU hardware RTOS and other
hardware components such as System-on-a-Chip Lock
Cache (SoCLC [3]), System-on-a-Chip Deadlock
Detection Unit (SoCDDU [16]) and System-on-a-Chip
Dynamic Memory Management Unit (SoCDMMU [17]).

Because we precisely described the GUI and the
generation and linking process of Makefile and C header
files in a previous paper [2], in this section we only
address the generation process of an HDL top file and
focus on presenting how the RTU can be integrated into
the desired system.

Since we use Modelsim as a mixed VHDL/ Verilog
simulator, all modules and IP modules (either written in
VHDL or written in Verilog) that can possibly be
integrated into the target architecture are each pre-
compiled and stored to a directory of its own name.
Moreover, the tool does not have to extract each module
from an HDL library to an HDL file described in the
previous paper [2]. Therefore, our tool only needs to
manipulate a top-level HDL file so that the configuration
and generation process becomes much simplified. Also, a
processing element (PE) IP core is wrapped as an
independent module so that it can be instantiated multiple
times without each instance interfering each other. This
rule is applied to all other modules possibly needing to be
instantiated multiple times. Therefore, scalability is
ensured.

Here, we take a system utilizing the RTU, shown in
Figure 5, as an example target to describe the hardware
configuration process. The RTU system of Figure 5
consists of more than ten modules such as a clock
generator, three MPC755s, a memory controller, L2
memory, a bus arbiter, an interrupt controller and an RTU.
We store the module information in the hardware system

HW
Compile

SW

Compile

RTOS
library

top.v

user.h

makefile

RTU
RTOS
Info.

Excutable
HW

Excutable
SW

XRAY

Modelsim

Compiled
Hardware

library

Simulation

in
Seamless

CVE

Result
and

feedback

Figure 4. δ Framework for customized hardware/software RTOS design

application

GUI tool

Software
RTOS
Info.

User
input

Hardware
Description

library

 (i) and (iv)

(ii) (iii)

description library shown in Figure 4. Also, the RTU
interface information and Atalanta software RTOS
information are stored in separate files. If the user selects
the RTU in order for the system to be as fast as possible
and most easily proven to be deterministic, then the GUI
tool executes the Archi_gen program with the arguments
specified by the user. Archi_gen generates an application
specific HDL top file utilizing the RTU. The final output
of the configured SoC is a Verilog top module, which
contains all module instantiation code for PE wrappers,
memory, a memory controller, bus, a bus arbiter and an
RTU.

VI. Experimental Setup
In this section, we describe our database application

example, three configured systems and experimental setup.
As an application, we implemented a database system
model which has many different task level synchronization
scenarios [18]. As illustrated in Figure 6, a database
system may have several transactions. Each task must
acquire a lock before initiating a transaction in order for
the transaction to be atomic. A transaction is a process of
accessing a database object (labeled Oi in Figure 6), which
is equivalent to a critical section (CS) in our example. In
Figure 6, any thick or dotted arrow labeled “Ti” indicates
an object copying action from source to destination, which
is a job assigned to each task.

We have used δ Framework to generate three
hardware/software RTOS configurations for three systems.
Here, a “system” is defined as an SoC architecture with an
associated RTOS. We also define a “base architecture” as
an SoC architecture that contains only essential hardware
components in an SoC (needed for almost all systems)
such as PE wrappers with PE instantiation description, an
arbiter, an address decoder, a memory and a clock. Each
SoC architecture we simulated contained three MPC755s
and additional hardware modules (as shown in Figure 5 for
the case of placing the RTU in the on-chip reconfigurable
logic). The clock speed of each system is 125 MHz (8 ns
clock period), and the size of the L2 memory is 16 Mbytes.

The MPC755 has separate instruction and data caches each
of size 32KB.

The first configuration for the system illustrated in
Figure 7 uses only the Base architecture with a pure
software RTOS, and, therefore, the synchronization is
performed with software semaphores and spin-locks in the
system. Note that in this first system, all of the
reconfigurable logic is available for other uses as needed.
For comparison with the first system, we generated a
second configuration for the system, illustrated in Figure 8,
which utilizes SoCLC for the synchronization in the same
database example. The third configuration includes the
RTU as shown in Figure 5, exploiting the reconfigurable
logic for scheduling, synchronization and even time-
related services. In short, in the system shown in Figure 5,
the hardware RTU handles most of the RTOS services.

Simulations of two database examples were carried out
on each of these three systems using Seamless CVE [15],
as illustrated on the far right-hand side of Figure 4. We
used Modelsim from Mentor Graphics for mixed
VHDL/Verilog simulation and XRAYTM debugger from
Mentor Graphics for application code debugging. To
simulate each configured system, both the software part
including application and the hardware part of the Verilog
top module were compiled. Then the executable appli-
cation and the multi-processor hardware setup consisting
of three MPC755’s were connected in Seamless CVE.

VII. Experimental Results

Experimental results in Table 1 present the total
execution time of (i) simulation with software semaphores,
(ii) simulation with SoCLC (hardware-supported sema-
phores) and (iii) simulation with RTU. As seen in the
table, the RTU system achieves a 50% speedup over case
(i) in the total execution time of the 6-task database
application. On the other hand, the SoCLC system showed
a 41% speedup over case (i). We also simulated these
systems with a 30-task database application, where the
RTU system and the SoCLC system showed 36% and 19%
speedups, respectively, compared to the pure software

MPC755-3

MPC755-2

RTU in
Reconfigurable

Logic

MPC755-1

Memory
Controller

and Memory

Arbiter,
Intr. controller,

Clock

Figure 5. An SoC architecture with RTU

L1 L1 L1

O1

O2

PE1

Shared Memory

PE2

PE3

T1

Figure 6. A database transaction application

T2

T3

T4

T5

T6

Server

Clients

RTOS system of case (i). The reason why smaller
execution time reductions are seen when comparing to the
pure software system in the 30-task case is that, when
compared to the 6-task case, software for the 30-task case
was able to take much more advantage of the caches.

In order to gain some insight to explain the
performance differences observed, we looked in more
detail at the different scenarios and RTOS interactions.
Table 2 shows the total number of interactions including
semaphore interactions and context switches while
executing the applications. Table 3 shows in which of
three broad areas – communication using the bus, context
switching and computation – PEs have spent their clock
cycles. The numbers for communication shown in Table 3
indicate the time period between just before posting a
semaphore and just after acquiring the semaphore in a task
that waits the semaphore and has the highest priority for
the semaphore. For example, if Task 1 in PE1 releases a
semaphore for Task 2 in PE2 (which is waiting for the
semaphore), the communication time period would be
between just before a post_semaphore statement (sema-
phore release call) of Task 1 in PE1 and just after a
pend_semaphore statement (semaphore acquisition call) of
Task 2 in PE2. In the similar way, the numbers for context

switch were measured. The time spent on communication
in the pure software RTOS case is prominent because the
pure software RTOS does not have any hardware notifying
mechanism for semaphores, while the RTU and the
SoCLC system exploit an interrupt notification mechanism
for semaphores.

We also noted that the context switch time when using
the RTU is not much less than others. To explain why,
recall that a context switch consists of three steps: (i)
pushing all PE registers to the current task stack, (ii)
selecting (scheduling) the next task to be run, and (iii)
popping all PE registers from the stack of the next task.
While Step (ii) can be done by hardware, Steps (i) and (iii)
cannot be done by hardware in general PEs because all
registers inside a PE must be stored to or restored from the
memory by the PE itself. That is why the context switch
time of the RTU cannot be reduced significantly (as
evidenced in Table 3).

We synthesized and measured the hardware area of the
SoCLC and RTU with TSMC 0.25um standard cell library
from LEDA [19]. The number of total gates for an SoCLC
with 64 short CS locks and 64 long CS locks was 7435 and
the number of total gates for the RTU was approximately
250,000 as shown in Table 4.

In conclusion, from the information about (i) the size
of a specific hardware RTOS component, (ii) the
simulation results and (iii) available reconfigurable logic,
the user can choose which configuration is most suitable
for his or her application or set of applications.

Table 1. Average-case simulation results of the examples

Total Execution Time Pure SW* With
SoCLC With RTU

 (in cycles) 100398 71365 67038 6 tasks
Speedup 0% 41% 50%

 (in cycles) 379440 317916 279480 30 tasks
Speedup 0% 19% 36%

* Semaphores are used in pure software while a hardware
mechanism is used in SoCLC and RTU.

Table 2. Number of interactions

Times 6 tasks 30 tasks
Number of semaphore

interactions 12 60

Number of context switches 3 30

Number of short locks 10 58

Table 3. Average time spent on (6 task case)

cycles Pure SW With SoCLC With RTU
communication 18944 3730 2075
context switch 3218 3231 2835
computation 8523 8577 8421

Reconfigurable

Logic

Memory
(Atalanta RTOS)

Bus Arbiter,
Intr. controller,

Clock

MPC755-3

MPC755-2

SoCLC in
Reconfigurable

Logic

MPC755-1

Memory
(Atalanta RTOS)

Bus Arbiter,
Intr. controller,

Clock

Figure 8. An SoC architecture with SoCLC

L1 L1 L1

MPC755-3

MPC755-2

MPC755-1

Figure 7. An SoC architecture with no hardware RTOS
components

L1 L1 L1

VIII. Conclusion

In this paper, we presented the average-case simulation
result of two database application examples, an example of
two client-server triad of tasks and an example of ten
client-server triad of tasks. We simulated the total
execution time of the examples on (i) a three-processor
system with only a software synchronization imple-
mentation, (ii) a three-processor system with System-on-a-
chip Lock Cache (SoCLC, hardware-supported sema-
phores [3]) and (iii) a three-processor system with the
RTU. As seen in Table 1, the RTU system achieves a 50%
speedup over case (i) in the total execution time of the
6-task database application. On the other hand, the SoCLC
system showed a 41% speedup over case (i). In case of a
30-task database application, the RTU system and the
SoCLC system showed 36% and 19% speedups,
respectively, compared to the pure software RTOS system
of case (i).

We showed the total number of interactions including
semaphore interactions and context switches while
executing the applications. We also presented in which of
three broad areas – communication using the bus, context
switching and computation – PEs have spent their clock
cycles. The time spent on communication in the pure
software RTOS case took almost an order of magnitude
longer than the others because the pure software RTOS
does not have any hardware notifying mechanism for
semaphores between PEs. The context switching time of
the RTU case is not much less than the others because of
the time spent in storing and restoring all registers of the
PE, which cannot be done by hardware because all
registers inside a PE must be stored to or restored from the
memory by the PE itself.

We also showed automatic generation of configuration
files for a multi-processor system with the RTU hardware
RTOS. To compare this system having an RTU with
others, we configured two more multi-processor systems
with or without the SoCLC hardware RTOS component
with the aid of the δ Framework. To measure the
performance difference among the configured systems, we
compiled and simulated them with two examples within
the Seamless Co-Verification Environment [15].

We also showed that, with the δ Framework, the user
may be able to use the result of the analysis for RTOS
design space exploration and also to decide which
configuration is most suitable for his or her application or
set of applications. Thus, the δ Framework helps evaluate
different SoC/RTOS architectures that employ a hardware
RTOS, hardware/software RTOS or a pure software
RTOS. In other words, the δ Framework helps in user-
directed hardware/software codesign [9, 10].

We plan to extend our research to the configuration of
heterogeneous multi-processor systems each with a custom
hardware/software RTOS.

Acknowledgements
The two researchers in the U.S. were funded by NSF

under INT-9973120, CCR-9984808 and CCR-0082164.
Funding for the Swedish researchers was provided by the
KK-foundation and ABB. The U.S. researchers also
acknowledge donations received from Denali, Hewlett-
Packard, Intel, LEDA, Mentor Graphics, National
Semiconductor, Sun and Synopsys.

References
 [1] Xilinx, http://www.xilinx.com.
 [2] J. Lee, K. Ryu and V. Mooney, “A Framework for Automatic

Generation of Configuration Files for a Custom Hardware/Software
RTOS,” Proc. of the International Conference on Engineering of
Reconfigurable Systems and Algorithms (ERSA'02), pp. 31-37, June
2002.

 [3] B. S. Akgul, J. Lee and V. Mooney, “System-on-a-Chip processor
synchronization hardware unit with task preemption support,”
International Conference on Compilers, Architecture and Synthesis
for Embedded Systems (CASES ‘01), pp.149-157, November 2001.

 [4] A. Daleby and K. Ingström, Technical Reference Manual for RTU
Operating System Accelerator, Västerås, Sweden, 2002.

 [5] RealFast, http://www.realfast.se.
 [6] T. Nakano, Y. Komatsudaira, A. Shiomi and M. Imai, “VLSI

Implementation of a Real-time Operating System,” Proc. of ASP-
DAC '97, pp. 679-680, January 1997.

 [7] L. Gauthier, S. Yoo and A. Jerraya, “Automatic generation and
targeting of application-specific operating systems and embedded
systems software,” IEEE Transactions on Computer-Aided Design of
Integrated Circuits and Systems, 20(11), pp.1293-1301, November
2001.

 [8] D. Lyonnard, S. Yoo, A. Baghdadi and A. Jerraya, “Automatic
generation of application-specific architectures for heterogeneous
multiprocessor system-on-chip,” 38th Design Automation Conference
(DAC 2001), June 2001.

 [9] G. D. Micheli and M. Sami, editors, Hardware/Software Co-Design,
Kluwer Academic Publishers, Norwell, MA, 1996.

[10] R. K. Gupta, Co-synthesis of Hardware and Software for Digital
Embedded Systems, Kluwer Academic Publishers, Boston, MA,
1995.

[11] D. Sun et al., Atalanta: A new multiprocessor RTOS kernel for
System-on-a-Chip Applications, Technical Report GIT-CC-02-19,
http://www.cc.gatech.edu/pubs.html, Atlanta, GA, 2002.

[12] µC/OS-II, http://www.ucos-ii.com/
[13] VRTX RTOS, http://www.mentor.com/embedded/vrtxos/
[14] J. Ousterhout, Tcl/Tk, http://home.pacbell.net/ouster/.
[15] Mentor Graphics, Hardware/Software Co-Verification: Seamless,

http://www.mentor.com/seamless/.
[16] P. H. Shiu, Y. Tan and V. Mooney, “A novel parallel deadlock

detection algorithm and architecture,” 9th International Workshop on
Hardware/Software Co-Design (CODES ‘01), pp.30-36, April 2001.

[17] M. Shalan and V. Mooney, “A dynamic memory management unit
for embedded real-time System-on-a-Chip,” International
Conference on Compilers, Architecture and Synthesis for Embedded
Systems (CASES '00), November 2000, pp. 180-186.

[18] M. A. Olson, “Selecting and implementing an embedded database
system,” IEEE Computer, pp.27-34, September 2000.

[19] LEDA Systems, inc. http://www.ledasys.com/

Table 4. Hardware area in total gates

Total area SoCLC (64 short CS locks +
64 long CS locks) RTU for 3 processors

TSMC 0.25µm
library from LEDA 7435 gates About 250000 gates

	Main
	ASP-DAC03
	Front Matter
	Table of Contents
	Author Index

