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Abstract – A design methodology for the implementation of 
multi-million gate system-on-chip designs is described. The 
new methodology is based on the creation of a silicon virtual 
prototype early in the back-end design process. The prototype 
is generated in a fraction of the time required to complete the 
traditional back-end flow but still maintains very high 
correlation with the final design. The physical prototype 
becomes the ‘cockpit’ where many design implementation 
decisions can be optimized by leveraging the short iteration 
times. Hierarchical design methodologies benefit from the 
prototyping stage by enabling a more optimal partitioning. 
The silicon virtual prototype also alters the nature of the 
hand-off model between front-end and back-end designers. 
The netlist can now be quickly validated using the prototype: 
the physical reality is being injected early in the design 
process resulting in fewer iterations between front-end and 
back-end. 
 
 

I. Introduction 
 

The successful design and implementation of 
nanometer generations of high-performance, multi-million 
gates, nanometer system-on-chip (SoC) integrated circuits 
(ICs) requires linking the front-end logic design and 
back-end physical design in a more collaborative manner.  
However, current EDA point tools are typically geared for 
use exclusively by one group or the other. Front-end logic 
designers resist engaging in physical design issues. 
Back-end physical designers in an ASIC flow rarely have 
sufficient design perspective to make high-level 
micro-architectural changes.  The methodology relies on 
an iterative process between the front-end and the 
back-end. Moreover, in an interconnect-dominated design, 
simply iterating between existing tools can no longer 
ensure that the design process will converge to a physical 
implementation that meets both schedule and performance 
constraints. Performance constraints include timing, area, 
signal integrity and power requirements. Schedule 
constraints mean the time schedules demanded by the 
competitive time-to-market pressures. As a result, 
designers either resort to overly pessimistic designs (with 
wider than necessary guard banding), or suffer from the 
pain of many iterations between synthesis and layout. Each 
back-end iteration currently takes several days in order to 
discover if the chip can meet its constraints. Therefore, it is 
crucial to establish a more efficient and faster way to 
check design feasibility and allow trial-and-error analysis 
to a successful physical implementation. 

On the other hand, given the size and complexity of 
today’s chips, it is virtually inconceivable to flat-place and 
route all the layout objects. Thus a hierarchical design 
method has to be applied to manage the design complexity 
while preserving optimization quality comparable with the 
flat design approach. 

 

II. Traditional Floorplanning 
 

The problem with traditional floorplanning is its lack of 
accurate physical information. One approach to address 
this drawback is a faster physical implementation for better 
prediction of the performance given the area, timing, 
routing resource constraints. Based on the fast physical 
implementation, the circuit can be partitioned more 
effectively into a set of macro blocks, each of which is 
either a set of standard cells or an IP block (design reuse). 
A new approach to floorplanning and physical 
implementation, called alternatively silicon virtual 
prototyping or physical prototyping, has been gaining 
significant momentum [1][2]. The silicon virtual prototype 
(SVP) is a fast implementation of the physical design to 
evaluate design trade-offs and creates a realistic 
implementation plan. 

Given a circuit netlist, traditional floorplanning tries to 
determine the chips’ block location, shape, orientation, pin 
assignment, and timing budget, plus the power routing, 
and clock tree. The objectives are to meet the chip area, 
timing, power, and routing resource constraints. All of 
these problems have been studied for more than a decade 
(see [3] for detailed discussion), but the results still leave 
room for improvement due to the huge search space. Many 
approaches have been reported for floorplanning in the last 
few decades [4]. 
 
 

III. Continuous Convergence Methodology 
 

A key benefit of a design methodology based on the 
silicon virtual prototype is that it provides continuous 
convergence. This begins with an initial full-chip design 
representation with wires, that treats all aspects of the 
design—logic, timing, SI, power drop, electromigration 
(EM), I/O issues, and manufacturability—concurrently [5]. 
Design teams use the SVP to identify and prioritize 
performance and manufacturing issues, and then individual 
designers work on the highest priorities. When ready, the 
team integrates all design changes into the SVP and 
re-analyzes the entire design. Design teams that use 
continuous convergence often standardize on a one-day 
turnaround—in essence, performing a virtual tape-out 
every day. Thus, every day they see predictable, 
measurable, systematic progress toward their goal of 
silicon closure and final tape-out. 

The full-chip SVP is key to the continuous convergence 
methodology (Fig. 1). An SVP must be a complete 
full-chip implementation that is close enough to tape-out 
quality where designers can accurately assess all relevant 
aspects of the design. Yet, it must execute fast enough that 
designers can iterate rapidly in order to try different 
implementation directions. A prototype without detailed 



IV. Correlation of Timing, Routability, Power and 
Signal Integrity Analysis 

wiring may help guide logic design, but it will not guide 
nanometer physical design adequately. 
  

 

Correlation of the timing results (RC parasitics, delay 
and timing reports) between a silicon virtual prototype and 
tape-out-quality back-end tools is critical. The correlation 
can be verified by feeding a placement produced by a 
prototyping tool into a back-end flow and comparing the 
final timing information against the timing estimate at the 
prototyping. We have confirmed a tight correlation 
between the two for First Encounter. For a 200MHz design 
using a 180 nm process, engineers at Infineon concluded 
that the timing difference is only about 50-picosecond 
between the First Encounter prototyping tool and 
Synopsys’ PrimeTime with Star-RCXT data [6]. Further 
analysis confirmed that the critical paths identified by the 
two are identical. 

The physical prototype’s timing calculations are based 
on the placement and trial routing produced by its fast 
engines. The trial route data approximate detail routing 
very closely. Therefore the extracted RC parasitics are also 
closely correlated.  Fig. 1. Continuous convergence methodology. Well-correlated timing relies heavily on three aspects: 
RC extraction, delay calculation and static timing analysis. 
A calibration procedure is required to fine-tune the RC 
extraction and the delay calculation. Actually, a simple 
constant scaling approach is very effective to centralize the 
error distribution [7]. Centralization of each delay stage’s 
error distribution plays an important role to reduce the 
total path delay error, because the delay stages in a timing 
path may compensate each other. In addition, the speed 
can be dramatically improved by adaptively choosing 
different algorithms depending on the importance of each 
individual delay stage in the entire timing path. 

 
 
The SVP must support clock structures, power grid, 

top-level interconnect, and other characteristics of the 
tape-out design. It must account for all relevant overhead 
in order to represent a known, physically feasible solution 
which can guide decisions such as timing-budget and pin 
assignments—a fully detailed layout with wiring is the 
only way to guarantee feasible budgets and assignments. 

An SVP can serve as a universal cockpit for all tools 
and functions, combining all aspects of implementation 
and analysis within a single full-chip environment (Fig. 2). 
This environment can include implementation 
functions—floorplanning, placement, physical synthesis, 
routing, clock-tree synthesis, and power planning—and 
analysis functions—timing, signal integrity, routability, 
and power analysis. 

Correlation between the prototype and the final tape-out 
version of the chip is required for power and signal 
integrity analysis as well. The prototype is used for power 
network planning, and noise prevention and repair. The 
accurate power analysis performed at the prototyping stage 
eliminates the need of the over-design of power and 
ground networks, which is practiced commonly in the 
traditional design flow without prototyping. 

 
 
  

 

 
V. A New Approach To The Nanometer Design Flow 

 
Silicon Virtual Prototyping can be used early in a 

design cycle to guide the implementation and partitioning 
of a whole chip. The proposed new design flow is shown 
in fig. 3. 

 
A. Quick Logic Synthesis 
 

The first step in this design methodology is to perform a 
quick logic synthesis of a netlist. The assumption at this 
stage is that the netlist is functionally clean, but that the 
timing is not necessarily accurate. Simple wire load 
models (WLM) can be used at this stage. 

The gate-level netlist generated through this initial 
quick synthesis stage and the timing constraints form the 
inputs to the physical prototyping stage. Fig. 2. An SVP can serve as a design cockpit. 
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Fig. 3. Design flow with physical prototyping. 

 
 
B. Floorplanning 

 
The creation of the SVP starts with the floorplanning of 

the chip. This includes floorplanning tasks such as I/O 
placement, macro placement and power topology. Given 
the increasing importance of design reuse and the large 
number of macros being used, a combination of interactive 
and automatic floorplanning is required. The best results 
are achieved by a manual placement of the major design 
elements driven by the engineer’s knowledge of the chip 
architecture, followed by an automatic placement of the 
remaining elements. 

For the first pass at floorplanning, a netlist, physical 
libraries, corresponding synthesis libraries (.lib), top-level 
constraints, and a technology file (process description) are 
created and then imported. Interactive or constraint-driven 
placement of I/O pads is then used to meet the chip’s 
specification. Placement guides or constraints are usually 
created for the major modules and used to ‘guide’ the 
placement engine where to roughly place the module cells. 
 
C. Quick Physical Implementation 
 

Next the remaining standard cells are placed using a 
timing-driven algorithm. The placement includes a routing 
stage (‘Trial Route’) that ensures the elimination of major 
congestion issues. The design is then RC extracted and 
timing analyzed, followed by In-Place Optimization (IPO) 
and clock tree synthesis. All of the complex physical 
effects are then analyzed and the performance objectives 
are verified. This prototype thus serves as a design basis. 

The prototype is used for the creation of a netlist plus 
physical and timing design constraints for each block. The 
block-level constraints are used for design refinement of 
each block through logic or physical synthesis. The refined 
blocks can be assembled with other blocks to check timing 
and physical closure. This process is repeated until the 
designers achieve their design objectives. The results can 

be taken back through the backend design flow. Any IPO 
should be done within the prototyping tool to finalize 
timing closure. 

Note that every cell is placed during the creation of a 
full-chip prototype, and a trial routing that closely 
approximates the final routing is also performed. This 
guarantees that the prototype is physically feasible. 

 
D. Hierarchical Design Flow 
 

The advantage of the hierarchical approach is that a 
design is decomposed into modules of manageable size, 
which are then refined in parallel by multiple teams. 
Controlling the block size is the key to the productivity of 
the design teams because back-end physical 
implementation tools such as detailed place-and-route and 
verification tend to be capacity-limited. Partitioning based 
on a flat full-chip physical prototype benefits from the 
optimization of a flat design while supporting a 
hierarchical design methodology. 

This global perspective enables designers to 
experiment, using fast placement, with optimizations such 
as determining the most desirable aspect ratio for each 
block and the optimum location of the block relative to 
other blocks.  Using fast routing and timing analysis, 
designers can also get very realistic pin assignments and 
timing budgets for each block before proceeding to the 
detailed design of the block. The prototype tools provide a 
high-capacity environment to build a flat chip model, from 
which the optimal physical hierarchy can be created. Fig. 4 
shows the hierarchical design flow used in Cadence’s First 
Encounter silicon virtual prototyping tool. 

 
 

 
 

Fig. 4. First Encounter hierarchical design flow. 
 



During the creation of the hierarchy, the aspect ratio, the 
pin assignment and the timing budgets are generated for 
each design module. Again, because they are based on the 
aforementioned physical prototype, the elements created 
are guaranteed to result in physical feasibility of the chip 
in the back-end. Optimal pin assignment is critical to 
reduce the complexity of the routing between the modules 
[8]. This directly translates to narrower channel width, 
which results in smaller die size. The allocation of the 
optimal timing budgets between the partitions is also 
critical to guarantee the timing closure of the chip. Without 
the full-chip prototype, the timing budgets are assigned 
arbitrarily to the modules. This leads to the situation where 
some modules will be impossible to implement while some 
other modules will have timing to spare. The result is an 
unnecessary iteration on under-budgeted modules, which 
delays the tape-out of the whole chip. 
 
E. Timing Budget Generation and Refinement 
 

The flow from the prototype to a final implementation 
needs to ensure predictable design convergence at all 
stages of the design flow. During the early phases of the 
design process, most of the elements of the design are still 
‘black boxes’ or RTL code. At this early stage, the initial 
timing budgets created by the prototype are rough 
estimations. As more portions of the design get completed, 
a larger fraction of the design netlist becomes available in 
gate-level format. During this process, the full-chip 
physical prototype is built on a daily basis and the timing 
budgets are continuously refined based on the latest 
prototype. When the gate-level netlist is completed, final 
optimized timing budgets are generated. The key to this 
implementation process is that the most accurate view of 
the design is available at all stages through the quick 
generation of the prototype. 

The faster turn-around time of the tool will help 
front-end engineers effectively develop chip-level timing 
constraints by taking into account physical design data. 
The prototyping tool will also generate hierarchical timing 
and physical constraints for each block automatically from 
the chip-level constraints. This is a labor-intensive and 
error-prone process if done manually. The prototype’s fast 
turn-around time and strong correlation with the back-end 
implementation simplify the above two tasks. 

 
 

VI. SVP Performance 
 
Silicon virtual prototyping must show its value by 

improving turn-around-time. The prototyping system 
should provide an order-of-magnitude speed-up in 
comparison to existing physical design tools. The 
turn-around time has significant impact on designers’ 
productivity and design schedules. The turn-around time 
from a netlist through placement, routing, RC extraction, 
delay calculation and timing analysis within a day for a 
multi-million-gate design is possible with today’s 
leading-edge prototyping tools such as Cadence’s First 
Encounter. 

Table 1 shows data on three designs of increasing 
complexity from a networking company. The top section 
of the table shows the physical prototyping runtime using 

First Encounter physical prototyping tool running on a 
desktop workstation. All the times shown are the total 
times for the iterations actually required (4, 6 and 8 for 
design A, B and C respectively). This demonstrates how 
the quick turn-around time of prototyping makes it 
possible to optimize the design through multiple iterations 
without delaying a design schedule. Timing reports are 
shown before and after In-Place Optimization (IPO) 
indicating that the prototype is a key tool to achieve timing 
closure; all or most timing problems are solved at this 
stage. 

The bottom section of the table summarizes the 
back-end implementation steps starting from the floorplan 
and placement produced by the prototyping tool. The tool 
set includes Synopsys Apollo router, Star-RCXT extractor 
and PrimeTime timing analyzer, and Mentor Graphics 
Calibre physical verification tool. 

 
 

TABLE I 
Performance data for the First Encounter prototyping tool 

 
Design Design A Design B Design C 

Prototyping Tool 
Gate count 73K 330K 1142K 
Components 
count 

49K (+ 1 
memory) 

86K (+ 6 
memories) 

145K (+ 62 
memories) 

Floorplan 
(initial creation 
+ manually 
adjustment) 

30 min + 3 
min 

1 hr + 5 min 1.5 hr + 5 min 

Placement 30 min (non 
timing 
driven) 

1 hr (timing 
driven) 

1.2 hr (timing 
driven) 

Clock tree 
synthesis 

20 min 30 min 40 min 

Trial route 2 min 5 min 10 min 
Extraction 1 min 2 min 3 min 
Timing analysis 10 min 15 min 20 min 
Timing report -10 ns setup, 

9 ns transition 
(clock 6.5 ns) 

-5.5 ns setup, 
10 ns transition 
(clock 6.7 ns) 

-1.9 ns setup, 
17 ns transition 
(clock 6.7 ns) 

IPO 1 hr 1.5 hr 2 hrs ~ 30 min 
Timing report -2 ns setup, 3 

ns transition 
-1 ns setup, 3 
ns transition 

-1.2 ns setup, 3 
ns transition 

Number of 
iterations 

4 6 8 

Traditional Back-End 
Apollo routing 
+ antenna (non 
timing driven) 

2.5 hrs 4 hrs 5 hrs 

Star-RCXT 
extraction 

50 min 1.5 hr 1.8 hr 

PrimeTime 
timing analysis 

45 min 1.5 hr 2 hrs 

Timing results 
(clock 7.5 ns) 

0 violation, 
+0.67 ns 
setup, 2.3 ns 
transition 
(clock 7.5 ns) 

no setup & 
hold, +0.21 ns 
setup, 2.7 ns 
transition 
(clock 7 ns) 

no hold, -0.15 
ns setup 

Calibre DRC 1.5 hr 2 hrs NA 
Calibre antenna 
check 

1 hr  1.5 hr NA 

Calibre LVS 1 hr 1.5 hr NA 
 



Comparison of the routing, extraction and timing 
analysis times between the prototyping environment and 
the traditional back-end implementation tools shows that 
the productivity gain with quick prototyping in the design 
cycle is significant. 
 
 

VII. Summary and Conclusions 
 

Detailed physical effects dominate performance and 
manufacturability in nanometer designs, making traditional 
linear flows obsolete. Wires are so important that 
performance analysis or optimization without detailed 
physical information is essentially meaningless. Successful 
nanometer physical IC design requires a continuous 
convergence methodology presented in this paper. Design 
teams that use continuous convergence see predictable, 
measurable, systematic progress toward their goal of 
silicon closure and final tapeout. 

Unlike the traditional floorplanning approaches that are 
blind to the underlying complex nanometer physical 
effects, silicon virtual prototyping provides a playground 
where any design trade-off and constraints can be 
constantly monitored and verified. Moreover, this 
prototype can be refined using a detail implementation tool 
without losing consistency of design quality. Therefore, 
design closure can be achieved with high efficiency and 
predictability.  

Physical prototyping tools also help to find better 
partitioning into manageable blocks, resulting in a 
hierarchical design methodology. Because the partitioning 
is based on the physically feasible prototype, the 
block-level timing budgets created are realistic and lead to 
a much easier task for traditional logic synthesis. The 
prototyping tool thus can become the hub of the design 
environment, covering partitioning, generation of 
block-level constraints, top-level design closure, clock-tree 
synthesis and power grid design. 
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