
Silicon Virtual Prototyping: The New Cockpit for Nanometer Chip Design

Wei-Jin Dai, Dennis Huang, Chin-Chih Chang, Michel Courtoy
Cadence Design Systems, Inc.

Abstract – A design methodology for the implementation of
multi-million gate system-on-chip designs is described. The
new methodology is based on the creation of a silicon virtual
prototype early in the back-end design process. The prototype
is generated in a fraction of the time required to complete the
traditional back-end flow but still maintains very high
correlation with the final design. The physical prototype
becomes the ‘cockpit’ where many design implementation
decisions can be optimized by leveraging the short iteration
times. Hierarchical design methodologies benefit from the
prototyping stage by enabling a more optimal partitioning.
The silicon virtual prototype also alters the nature of the
hand-off model between front-end and back-end designers.
The netlist can now be quickly validated using the prototype:
the physical reality is being injected early in the design
process resulting in fewer iterations between front-end and
back-end.

I. Introduction

The successful design and implementation of
nanometer generations of high-performance, multi-million
gates, nanometer system-on-chip (SoC) integrated circuits
(ICs) requires linking the front-end logic design and
back-end physical design in a more collaborative manner.
However, current EDA point tools are typically geared for
use exclusively by one group or the other. Front-end logic
designers resist engaging in physical design issues.
Back-end physical designers in an ASIC flow rarely have
sufficient design perspective to make high-level
micro-architectural changes. The methodology relies on
an iterative process between the front-end and the
back-end. Moreover, in an interconnect-dominated design,
simply iterating between existing tools can no longer
ensure that the design process will converge to a physical
implementation that meets both schedule and performance
constraints. Performance constraints include timing, area,
signal integrity and power requirements. Schedule
constraints mean the time schedules demanded by the
competitive time-to-market pressures. As a result,
designers either resort to overly pessimistic designs (with
wider than necessary guard banding), or suffer from the
pain of many iterations between synthesis and layout. Each
back-end iteration currently takes several days in order to
discover if the chip can meet its constraints. Therefore, it is
crucial to establish a more efficient and faster way to
check design feasibility and allow trial-and-error analysis
to a successful physical implementation.

On the other hand, given the size and complexity of
today’s chips, it is virtually inconceivable to flat-place and
route all the layout objects. Thus a hierarchical design
method has to be applied to manage the design complexity
while preserving optimization quality comparable with the
flat design approach.

II. Traditional Floorplanning

The problem with traditional floorplanning is its lack of
accurate physical information. One approach to address
this drawback is a faster physical implementation for better
prediction of the performance given the area, timing,
routing resource constraints. Based on the fast physical
implementation, the circuit can be partitioned more
effectively into a set of macro blocks, each of which is
either a set of standard cells or an IP block (design reuse).
A new approach to floorplanning and physical
implementation, called alternatively silicon virtual
prototyping or physical prototyping, has been gaining
significant momentum [1][2]. The silicon virtual prototype
(SVP) is a fast implementation of the physical design to
evaluate design trade-offs and creates a realistic
implementation plan.

Given a circuit netlist, traditional floorplanning tries to
determine the chips’ block location, shape, orientation, pin
assignment, and timing budget, plus the power routing,
and clock tree. The objectives are to meet the chip area,
timing, power, and routing resource constraints. All of
these problems have been studied for more than a decade
(see [3] for detailed discussion), but the results still leave
room for improvement due to the huge search space. Many
approaches have been reported for floorplanning in the last
few decades [4].

III. Continuous Convergence Methodology

A key benefit of a design methodology based on the
silicon virtual prototype is that it provides continuous
convergence. This begins with an initial full-chip design
representation with wires, that treats all aspects of the
design—logic, timing, SI, power drop, electromigration
(EM), I/O issues, and manufacturability—concurrently [5].
Design teams use the SVP to identify and prioritize
performance and manufacturing issues, and then individual
designers work on the highest priorities. When ready, the
team integrates all design changes into the SVP and
re-analyzes the entire design. Design teams that use
continuous convergence often standardize on a one-day
turnaround—in essence, performing a virtual tape-out
every day. Thus, every day they see predictable,
measurable, systematic progress toward their goal of
silicon closure and final tape-out.

The full-chip SVP is key to the continuous convergence
methodology (Fig. 1). An SVP must be a complete
full-chip implementation that is close enough to tape-out
quality where designers can accurately assess all relevant
aspects of the design. Yet, it must execute fast enough that
designers can iterate rapidly in order to try different
implementation directions. A prototype without detailed

IV. Correlation of Timing, Routability, Power and
Signal Integrity Analysis

wiring may help guide logic design, but it will not guide
nanometer physical design adequately.

Correlation of the timing results (RC parasitics, delay
and timing reports) between a silicon virtual prototype and
tape-out-quality back-end tools is critical. The correlation
can be verified by feeding a placement produced by a
prototyping tool into a back-end flow and comparing the
final timing information against the timing estimate at the
prototyping. We have confirmed a tight correlation
between the two for First Encounter. For a 200MHz design
using a 180 nm process, engineers at Infineon concluded
that the timing difference is only about 50-picosecond
between the First Encounter prototyping tool and
Synopsys’ PrimeTime with Star-RCXT data [6]. Further
analysis confirmed that the critical paths identified by the
two are identical.

The physical prototype’s timing calculations are based
on the placement and trial routing produced by its fast
engines. The trial route data approximate detail routing
very closely. Therefore the extracted RC parasitics are also
closely correlated. Fig. 1. Continuous convergence methodology. Well-correlated timing relies heavily on three aspects:
RC extraction, delay calculation and static timing analysis.
A calibration procedure is required to fine-tune the RC
extraction and the delay calculation. Actually, a simple
constant scaling approach is very effective to centralize the
error distribution [7]. Centralization of each delay stage’s
error distribution plays an important role to reduce the
total path delay error, because the delay stages in a timing
path may compensate each other. In addition, the speed
can be dramatically improved by adaptively choosing
different algorithms depending on the importance of each
individual delay stage in the entire timing path.

The SVP must support clock structures, power grid,

top-level interconnect, and other characteristics of the
tape-out design. It must account for all relevant overhead
in order to represent a known, physically feasible solution
which can guide decisions such as timing-budget and pin
assignments—a fully detailed layout with wiring is the
only way to guarantee feasible budgets and assignments.

An SVP can serve as a universal cockpit for all tools
and functions, combining all aspects of implementation
and analysis within a single full-chip environment (Fig. 2).
This environment can include implementation
functions—floorplanning, placement, physical synthesis,
routing, clock-tree synthesis, and power planning—and
analysis functions—timing, signal integrity, routability,
and power analysis.

Correlation between the prototype and the final tape-out
version of the chip is required for power and signal
integrity analysis as well. The prototype is used for power
network planning, and noise prevention and repair. The
accurate power analysis performed at the prototyping stage
eliminates the need of the over-design of power and
ground networks, which is practiced commonly in the
traditional design flow without prototyping.

V. A New Approach To The Nanometer Design Flow

Silicon Virtual Prototyping can be used early in a

design cycle to guide the implementation and partitioning
of a whole chip. The proposed new design flow is shown
in fig. 3.

A. Quick Logic Synthesis

The first step in this design methodology is to perform a
quick logic synthesis of a netlist. The assumption at this
stage is that the netlist is functionally clean, but that the
timing is not necessarily accurate. Simple wire load
models (WLM) can be used at this stage.

The gate-level netlist generated through this initial
quick synthesis stage and the timing constraints form the
inputs to the physical prototyping stage. Fig. 2. An SVP can serve as a design cockpit.

Logic Synthesis

Physical Prototype

Block-level
Physical

Synthesis

Top-level
Physical

Synthesis

Partitioning Partitioning

IPO?

Clock Tree Synthesis

Routing

Fig. 3. Design flow with physical prototyping.

B. Floorplanning

The creation of the SVP starts with the floorplanning of

the chip. This includes floorplanning tasks such as I/O
placement, macro placement and power topology. Given
the increasing importance of design reuse and the large
number of macros being used, a combination of interactive
and automatic floorplanning is required. The best results
are achieved by a manual placement of the major design
elements driven by the engineer’s knowledge of the chip
architecture, followed by an automatic placement of the
remaining elements.

For the first pass at floorplanning, a netlist, physical
libraries, corresponding synthesis libraries (.lib), top-level
constraints, and a technology file (process description) are
created and then imported. Interactive or constraint-driven
placement of I/O pads is then used to meet the chip’s
specification. Placement guides or constraints are usually
created for the major modules and used to ‘guide’ the
placement engine where to roughly place the module cells.

C. Quick Physical Implementation

Next the remaining standard cells are placed using a
timing-driven algorithm. The placement includes a routing
stage (‘Trial Route’) that ensures the elimination of major
congestion issues. The design is then RC extracted and
timing analyzed, followed by In-Place Optimization (IPO)
and clock tree synthesis. All of the complex physical
effects are then analyzed and the performance objectives
are verified. This prototype thus serves as a design basis.

The prototype is used for the creation of a netlist plus
physical and timing design constraints for each block. The
block-level constraints are used for design refinement of
each block through logic or physical synthesis. The refined
blocks can be assembled with other blocks to check timing
and physical closure. This process is repeated until the
designers achieve their design objectives. The results can

be taken back through the backend design flow. Any IPO
should be done within the prototyping tool to finalize
timing closure.

Note that every cell is placed during the creation of a
full-chip prototype, and a trial routing that closely
approximates the final routing is also performed. This
guarantees that the prototype is physically feasible.

D. Hierarchical Design Flow

The advantage of the hierarchical approach is that a
design is decomposed into modules of manageable size,
which are then refined in parallel by multiple teams.
Controlling the block size is the key to the productivity of
the design teams because back-end physical
implementation tools such as detailed place-and-route and
verification tend to be capacity-limited. Partitioning based
on a flat full-chip physical prototype benefits from the
optimization of a flat design while supporting a
hierarchical design methodology.

This global perspective enables designers to
experiment, using fast placement, with optimizations such
as determining the most desirable aspect ratio for each
block and the optimum location of the block relative to
other blocks. Using fast routing and timing analysis,
designers can also get very realistic pin assignments and
timing budgets for each block before proceeding to the
detailed design of the block. The prototype tools provide a
high-capacity environment to build a flat chip model, from
which the optimal physical hierarchy can be created. Fig. 4
shows the hierarchical design flow used in Cadence’s First
Encounter silicon virtual prototyping tool.

Fig. 4. First Encounter hierarchical design flow.

During the creation of the hierarchy, the aspect ratio, the
pin assignment and the timing budgets are generated for
each design module. Again, because they are based on the
aforementioned physical prototype, the elements created
are guaranteed to result in physical feasibility of the chip
in the back-end. Optimal pin assignment is critical to
reduce the complexity of the routing between the modules
[8]. This directly translates to narrower channel width,
which results in smaller die size. The allocation of the
optimal timing budgets between the partitions is also
critical to guarantee the timing closure of the chip. Without
the full-chip prototype, the timing budgets are assigned
arbitrarily to the modules. This leads to the situation where
some modules will be impossible to implement while some
other modules will have timing to spare. The result is an
unnecessary iteration on under-budgeted modules, which
delays the tape-out of the whole chip.

E. Timing Budget Generation and Refinement

The flow from the prototype to a final implementation
needs to ensure predictable design convergence at all
stages of the design flow. During the early phases of the
design process, most of the elements of the design are still
‘black boxes’ or RTL code. At this early stage, the initial
timing budgets created by the prototype are rough
estimations. As more portions of the design get completed,
a larger fraction of the design netlist becomes available in
gate-level format. During this process, the full-chip
physical prototype is built on a daily basis and the timing
budgets are continuously refined based on the latest
prototype. When the gate-level netlist is completed, final
optimized timing budgets are generated. The key to this
implementation process is that the most accurate view of
the design is available at all stages through the quick
generation of the prototype.

The faster turn-around time of the tool will help
front-end engineers effectively develop chip-level timing
constraints by taking into account physical design data.
The prototyping tool will also generate hierarchical timing
and physical constraints for each block automatically from
the chip-level constraints. This is a labor-intensive and
error-prone process if done manually. The prototype’s fast
turn-around time and strong correlation with the back-end
implementation simplify the above two tasks.

VI. SVP Performance

Silicon virtual prototyping must show its value by

improving turn-around-time. The prototyping system
should provide an order-of-magnitude speed-up in
comparison to existing physical design tools. The
turn-around time has significant impact on designers’
productivity and design schedules. The turn-around time
from a netlist through placement, routing, RC extraction,
delay calculation and timing analysis within a day for a
multi-million-gate design is possible with today’s
leading-edge prototyping tools such as Cadence’s First
Encounter.

Table 1 shows data on three designs of increasing
complexity from a networking company. The top section
of the table shows the physical prototyping runtime using

First Encounter physical prototyping tool running on a
desktop workstation. All the times shown are the total
times for the iterations actually required (4, 6 and 8 for
design A, B and C respectively). This demonstrates how
the quick turn-around time of prototyping makes it
possible to optimize the design through multiple iterations
without delaying a design schedule. Timing reports are
shown before and after In-Place Optimization (IPO)
indicating that the prototype is a key tool to achieve timing
closure; all or most timing problems are solved at this
stage.

The bottom section of the table summarizes the
back-end implementation steps starting from the floorplan
and placement produced by the prototyping tool. The tool
set includes Synopsys Apollo router, Star-RCXT extractor
and PrimeTime timing analyzer, and Mentor Graphics
Calibre physical verification tool.

TABLE I
Performance data for the First Encounter prototyping tool

Design Design A Design B Design C

Prototyping Tool
Gate count 73K 330K 1142K
Components
count

49K (+ 1
memory)

86K (+ 6
memories)

145K (+ 62
memories)

Floorplan
(initial creation
+ manually
adjustment)

30 min + 3
min

1 hr + 5 min 1.5 hr + 5 min

Placement 30 min (non
timing
driven)

1 hr (timing
driven)

1.2 hr (timing
driven)

Clock tree
synthesis

20 min 30 min 40 min

Trial route 2 min 5 min 10 min
Extraction 1 min 2 min 3 min
Timing analysis 10 min 15 min 20 min
Timing report -10 ns setup,

9 ns transition
(clock 6.5 ns)

-5.5 ns setup,
10 ns transition
(clock 6.7 ns)

-1.9 ns setup,
17 ns transition
(clock 6.7 ns)

IPO 1 hr 1.5 hr 2 hrs ~ 30 min
Timing report -2 ns setup, 3

ns transition
-1 ns setup, 3
ns transition

-1.2 ns setup, 3
ns transition

Number of
iterations

4 6 8

Traditional Back-End
Apollo routing
+ antenna (non
timing driven)

2.5 hrs 4 hrs 5 hrs

Star-RCXT
extraction

50 min 1.5 hr 1.8 hr

PrimeTime
timing analysis

45 min 1.5 hr 2 hrs

Timing results
(clock 7.5 ns)

0 violation,
+0.67 ns
setup, 2.3 ns
transition
(clock 7.5 ns)

no setup &
hold, +0.21 ns
setup, 2.7 ns
transition
(clock 7 ns)

no hold, -0.15
ns setup

Calibre DRC 1.5 hr 2 hrs NA
Calibre antenna
check

1 hr 1.5 hr NA

Calibre LVS 1 hr 1.5 hr NA

Comparison of the routing, extraction and timing
analysis times between the prototyping environment and
the traditional back-end implementation tools shows that
the productivity gain with quick prototyping in the design
cycle is significant.

VII. Summary and Conclusions

Detailed physical effects dominate performance and
manufacturability in nanometer designs, making traditional
linear flows obsolete. Wires are so important that
performance analysis or optimization without detailed
physical information is essentially meaningless. Successful
nanometer physical IC design requires a continuous
convergence methodology presented in this paper. Design
teams that use continuous convergence see predictable,
measurable, systematic progress toward their goal of
silicon closure and final tapeout.

Unlike the traditional floorplanning approaches that are
blind to the underlying complex nanometer physical
effects, silicon virtual prototyping provides a playground
where any design trade-off and constraints can be
constantly monitored and verified. Moreover, this
prototype can be refined using a detail implementation tool
without losing consistency of design quality. Therefore,
design closure can be achieved with high efficiency and
predictability.

Physical prototyping tools also help to find better
partitioning into manageable blocks, resulting in a
hierarchical design methodology. Because the partitioning
is based on the physically feasible prototype, the
block-level timing budgets created are realistic and lead to
a much easier task for traditional logic synthesis. The
prototyping tool thus can become the hub of the design
environment, covering partitioning, generation of
block-level constraints, top-level design closure, clock-tree
synthesis and power grid design.

References

[1] W.J. Dai, “Hierarchical design methodology for
multi-million gates ASICs,” DesignCon 2001.
[2] First Encounter User Manual V2002.1. Cadence
Design Systems, Inc., March 2002.
[3] N. Sherwani, Algorithms for VLSI Physical Design
Automation, 3rd Ed., Kluwer Academic Publishers, 1999.
[4] S.M. Sait and H. Youssef, VLSI physical design
automation, theory and practice, IEEE Press, 1995.
[5] K. Bernstein, K. M. Carrig, C. M. Durham, P. R.
Hansen, D. Hogenmiller, High Speed CMOS Design Styles,
Kluwer Academic Publishers, 1998.
[6] V. Gerousis and W.J. Dai, “Frond-end physical design
solutions provides hierarchical methodology”, Design
Automation and Test in Europe Conference, 2002.
[7] M. Selzer, B. Birkl and F. Lenke, “Silicon virtual
prototyping using First Encounter”, Evaluation Report,
Motorola, Feb. 2002.
[8] J. Cong, “Pin assignment with global routing for
general cell design”, IEEE Trans. Computer-Aided Design,
vol. 28, no. 20, pp. 1882-1884, 1992.

	Main
	ASP-DAC03
	Front Matter
	Table of Contents
	Author Index

