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Abstract -This paper proposes Dual Transition Skewed 
Logic (DTSL) based Carry Select Adder (CSA) suitable for 
processing units requiring low power and high performance 
with high noise immunity. We implemented 31-bit Carry 
Select Adders in three different logic styles: Dual Transition 
Skewed Logic (DTSL), Domino, and conventional static 
CMOS in TSMC 0.25um technology and compared them in 
terms of performance, power consumption and layout area. 
CSA using DTSL shows 36.7% and 17.7% improvements in 
power dissipation and performance, respectively, over 
domino, and 40.4% improvement in performance compared 
to a static CMOS CSA. 

I.  Introduction 

Adders are critical components of the ALU’s 
(Arithmetic Logic Unit) or DSP (Digital Signal 
Processing) chips. Therefore, high performance adders 
with low power consumption are essential for the design 
of high performance processing units. Several different 
types of high performance adder algorithms are available 
in literature. Among them, Carry Look–Ahead Adder 
(CLA) and Carry Select Adder (CSA) are widely used for 
high speed operations [1][2].  

The circuit style is as important as the adder algorithm 
and architecture. Traditionally, static CMOS circuits have 
been mostly used in adder designs. However, as the 
demand for high performance is increasing, several new 
circuit techniques such as Domino have been used.  

However, noise immunity of Domino circuits is worse 
than static CMOS circuits (especially for scaled 
technologies) and they consume larger power than static 
CMOS. Precharge/Evaluate logic using static CMOS 
technology (e.g. skewed CMOS circuits) is one solution 
to achieve high performance with low power 
consumption and good noise immunity [3]. The circuit 
topology of skewed logic is the same as that of static 
CMOS logic, however, the PMOS or the NMOS 
transistors are preferentially sized to achieve fast high-to- 
low or low-to-high transitions. For example, to speed up 
high to low transition, the sizes of PMOS transistors are 
reduced while the NMOS transistors are sized up [4][5]. 

DTSL (Dual Transition Skewed Logic) is a skewed 
logic style. However, it does not require clock signal. It 
has dual paths for data propagation – one path is used for 

fast propagation of rising transition, while the other path 
is used for fast propagation of falling transition [5]. In 
this paper we propose a new CSA using DTSL at the 
input, which consists of carry propagation logic, control 
logic, and logic for generating SUM.  In order to reduce 
the carry propagation delay of the proposed CSA using 
DTSL, we implemented carry propagation logic with one 
transmission gate and one skewed inverter for each stage.  
Skewed CMOS circuits are also used in control logic to 
speed up carry propagation. Logic for generating SUM 
consists of static CMOS circuits to increase noise 
immunity and to reduce power consumption. 

For comparison we implemented 31-bit CSA using 
the proposed adder design style, and compared it with 
31-bit CSA’s using Domino and static CMOS circuits. 

The rest of the paper is organized as follows. Section 
II explains Dual Transition Skewed Logic style. In 
section III, we explain the standard CSA and CSA using 
DTSL. Section IV shows implementation and operation 
of the proposed CSA using DTSL. Sections V and VI 
show the simulation results and conclusions. 

 
II.   Dual Transition Skewed Logic 

Skewed logic is suitable for high performance, low 
power and high noise immunity.  However, skewed 
CMOS circuits do require clock signal, though only a 
few logic gates may require the clock [4]. Dual 
Transition Skewed Logic (DTSL) consists of dual data 
paths using skewed circuits. Fig. 1 shows one example of 
DTSL circuit. If the input of the first stage of the logic 
block toggles from high to low, faster data transition 
takes place through the top data path. On the other hand, 
if the input toggles from low to high, the data transits 
faster through the bottom path than through the top path. 
The arrows represent the skew direction. The combiner 
detects earliest transition, latches it, and then transfer the 
data to the next stage [5]. 

Implementing CSA using DTSL does not require 
insertion of extra data path since CSA algorithm 
inherently uses dual data paths; one for input carry of 0, 
the other for input carry of 1. However, even though 
there is no extra overhead due to dual data paths, the 



increase in layout area due to control logic for skewed 
circuits may not be small [5].     
 
 
 

 
 
 
 

Fig. 1.  DTSL block structures 

We propose a new CSA using DTSL, which improves 
performance and has a smaller area than the previous 
CSA using DTSL. This is achieved by removing carry 
generation logic on carry propagation paths, and some 
circuits in control logic.  

III.  Implementation of Carry Select Adder 

A. Carry Select Adder 
 
A general Ripple Carry Adder (RCA) should wait for 

incoming carry before generating Carry-out for every 
full-adder cell. However, CSA does not need to do that. 
Since CSA consists of 2 pairs of logic blocks for carry 
propagation, and the CARRY inputs for each block are 
already determined: one is CARRY 0, the other is 
CARRY 1, each block can generate CARRY outputs 
simultaneously [6] [7]. Then, the worst delay of the 
square root CSA having M blocks is determined as  
             

carrymuxd NttMt +−= )1(  

where, N is the number of stages in the first block, tmux is 
delay of multiplexor, and tcarry is the carry propagation 
delay of one stage of ripple carry adder. In order to 
reduce tcarry we should use a fast carry propagation logic 
style. 

 
B. Carry Select Adder Using DTSL  

 
CSA using DTSL can achieve high performance with 

robustness and low power consumption comparable to 
CSA using static CMOS circuits [5]. Fig. 2 shows the 
block diagram of one ith stage of the CSA using DTSL. It 
consists of logic for generating sum (L7), some 
complicated control logic (L4, L5, L6), and logic on the 
carry propagation paths (L1, L2, L3), which is the same 
as that of a general mirror adder.  

In this CSA, Carry-out from the previous stage 
propagates through the logic on the carry propagation 
paths when Ak≠Bk (for all k:  k ≤ i), and Carry-out of the 
current stage is generated by the control logic and switch 
gates when Ak=Bk for any k (k ≤ i).  

When Ai=Bi, the Carry-out of this stage will be 
generated by control logic (L5, or L6). The output of the 

first XOR gate, G1 in logic, L7 (logic for generating 
sum) will be low, which makes the output of G2 low. 
Therefore, the transmission gates (X, Y) will be turned 
off. On the other hand, when Ai≠Bi, if the inputs of any 
previous stage are same (Ak=Bk, k<i) the transmission 
gates should also be off. For example, in any previous 
stage (kth stage; k < i) if Ak=Bk, both control signals 
(CNT<k,1>, CNT<k,2>) generated by L5 and L6 will be 
the same (0 or 1) depending on input value. In k+1st 
stage, if Ak+1 ≠ Bk+1, both control signals propagate to 
the next stage and CNT<k+1,1> and CNT<k+1,2> will 
be equal to CNT<k,1> and CNT<k,2> respectively.   
Therefore, at the ith stage, CNT<i-1,1> and CNT<i-1,2> 
will be equal and makes the output of G2 low, which in 
turn disables the transmission gates.  

 
 

       Fig. 2.  Block diagram of a stage of CSA using 
DTSL 

We must turn off the transmission gates with the 
above input conditions to avoid any short circuit current 
flowing through them. For example, if Ai≠Bi and 
CNT<i-1, 1> and CNT<i-1, 2> are equal, nodes N3 and 
N5 will be the same as N4 and N6 respectively. The 
logic level at N3 and N5 are determined by CNT<i-1,1> 
and CNT<i-1,2> and N4 and N6 are determined by 
CNT<i,1> and CNT<i,2>. However, since two carry 
propagation paths have different delays due to the 
skewing of transistors there may be a shorts circuit 
current if the transmission gates are not turned off.  

The logic for carry generation (L2) on carry 
propagation paths is used only to maintain input level of 
L3 when Ai=Bi=0 and Ci=1 or Ai=Bi=1 and Ci=0 
because the output of L1 can be floated for these input 
conditions. The carry propagation logic (L1) propagates 
Carry-in to the next stage when Ai≠Bi. In this case, one 
PMOS of the top PMOS transistors and one NMOS of 
the bottom NMOS transistors are always turned on, i.e., 
L1 acts like an inverter when Ai≠Bi. Therefore, L1 can 
be changed to an inverter having Carry-in as its input, 
and L2 is not necessary because there is no floating node. 
This means that the logic of the carry propagation paths 
of CSA using DTSL can be simplified to two inverters. 
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IV. Proposed CSA using DTSL 
 
Fig. 3 shows the ith stage of the proposed CSA using 

DTSL. The transmission gates (X, Y) are controlled only 
by the output of XOR gate G1 of the current stage, i.e., 
switching of transmission gates is independent of the 
status of previous stage. In order to reduce the 
transmission time we use only a skewed inverter between 
transmission gates on a carry propagation path. However, 
since only one inverter is used in each stage, the Carry-
out of each even stage is opposite to the Carry-out of 
each odd stage, and hence, the control logic of even 
stages should be different from that of odd stages. This 
simplicity of circuits on carry propagation paths reduces 
the load capacitance, which in turn reduces the critical 
path delay. 

 
 

 

Fig. 3.  Block diagram of the proposed CSA using DTSL 

Let us explain of operation of the proposed CSA. Fig. 
4 shows the CSA consists of two stages. Each stage 
contains data paths for carry propagation, logic for 
generating SUM, and control logic. The logic in the circle 
is for generating the SUM. We can, therefore, improve 
performance by using properly skewed inverters in the 
upper and lower carry propagation paths.  The skew 
direction of inverter on the top data path should be 
opposite to that on the bottom in the same stage. 

 If inputs Ai’s are different from Bi's (for all i = 0 to 
n), all transmission gates (X, Y) will turn on and the 
switching transistors (MNi, MPi) will be disabled. In this 
case, the operation of the skewed circuits on the carry 
propagation paths is not different from that of normal 
static CMOS circuits. 

However, the delay time of the skewed circuits is 
smaller than that of the static CMOS circuits because the 
direction of CARRY transition in every stage is always 
the same as the skew direction. Even though transitions of 
each skewed inverter is fast, the carry propagation delay 
under this condition is the largest because Carry-out of 
the first stage will propagate to the last stage. Under such 
inputs the Carry-outs will be inversions of Carry-in for 
every stage because each Carry-in goes through one 
inverter and one transmission gate. 

However, if any Ai is equal to Bi at Stage i (i = 0 to 
n), the Carry-outs on both paths from that stage to the last 
stage (i ~ n) will be the same, and determined only by 

inputs Ai and Bi regardless of Carry-outs of the previous 
stage. This means that the carry propagation starts 
simultaneously at the first stage and the ith stage.  

Hence, in this case, the propagation delay of CSA is 
the same as one of the carry propagation delays from the 
first stage to i-1st stage and from ith stage to the last 
stage. Then, we have to switch Carry-in of the next stage 
(i+1st) to low or high depending on the value of Ai and 
Bi. For example, let us assume A1=B1=0 at Stage 1, 
then the outputs of the compound gates, G1_T and 
G1_B, in the control logic of this stage will be 0, and 
PMOS switching transistor (MP1) will turn on. 
Therefore, the Carry-in (C2_T, C2_B) at the next stage 
will be low regardless of Carry-in (C1_T, C1_B) of 
Stage 1. Hence, we do not need to wait for the Carry-in 
to propagate to the output node of Stage 1, i.e. when 
inputs A1, B1 of Stage 1 are set, we can switch Carry-in 
of the next stage (Stage 2) immediately to low after 
turning off the transmission gates on data path. Similarly, 
if A1=B1=1 at Stage 1, then we change Carry-in of the 
next stage (Stage 2) to high. For such cases, the total 
propagation delay will be shorter than the total delay of 
the previous case (Ai ≠ Bi, for all i = 0 to n) because the 
time taken to switch Carry-in of the next stage (Stage 2) 
is shorter than the time in which Carry-in of the first 
stage (Stage 0) propagates to the Carry-in node of Stage 
2 having A2, B2 as inputs. 

Finally, let us consider the case when Ai = Bi and Aj 
≠ Bj (j=i+1). In this case, even though Aj is not the same 
as Bj, we have to switch Carry-in of j+1st stage on the 
data path because the skew direction of one data path at 
Stage (j+i) is opposite to Carry-in of j+1st stage. For 
example, when A1=B1=0 at Stage 1 and A2=0, B2=1 at 
Stage 2, the outputs of the compound gates (G1_T, 
G1_B) in the control logic of stage 1 will be 0 and 
PMOS switching transistor (MP1) will turn on, which 
makes Carry-in of Stage 2 (C1_T and C1_B) low. In this 
condition, although C1_T switches fast from high to low, 
node C1_B switches to low slowly because the transition 
direction is opposite to the skew direction (arrow 
direction). At the next stage (Stage 2) since A2=0 and 
B2=1, the transmission gates are on, and data on C1_T 
and C1_B should be propagated to C2_T and C2_B. 
However, the delay of the bottom data path increases 
because the transition direction is opposite to the skew 
direction. Therefore, at the final stage the delay of the 
bottom data path may be very large. In order to prevent 
this effect, the control logic at Stage 2 generates Carry-in 
for the next stage. The compound gate (G2_T) in the 
control logic of Stage 2 has 4 inputs: one is the output of 
G1_B, and others are A2, B2, and the output of XOR 
gate G2. 

Since A2=0, B2=1, the output of the XOR gate G2 is 
high, and the output of G1_B is also low. Therefore, the 
output of G2_T is high, which makes NMOS switching 
transistor (MN2) turn on, and the Carry-out (C3_T, 
C3_B) at that stage be low. 
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Fig. 4.  Block diagram of the proposed Carry Select Adder 

 
 
 

      Fig. 5.  Layouts of 31-bit CSA in different styles 

V. Results 

To compare the propagation delay, the power 
consumption and layout area of the proposed CSA with 
CSA using Domino logic and static CMOS logic, we 
implemented 31-bit CSA’s having 5 blocks, laid out, and 
simulated each design in TSMC 0.25µm CMOS 
technology with Vdd=2.5 volts. 

Table 1 shows comparison of simulation results and 
layout area of each CSA. Fig. 5 shows the layouts of the 
proposed CSA using DTSL and CSA’s using Domino 
and static CMOS circuits. The propagation delays are 
obtained under the worst case carry propagation. The 
average power consumption is obtained with random 
input vectors with a clock cycle of 10ns.  

 Table 1 shows that the proposed adder is superior to 
static adder in terms of performance. Comparison shows 
that the proposed CSA has a 36.7% power improvement 
with 17.7% improvement in performance compared to 
Domino CSA. The results also show that the area of the 
proposed CSA is comparable to that of the static CMOS 

implementation. The power delay product of the 
proposed CSA is almost half of that of Domino CSA. 

VI.  Conclusions 

In this paper we proposed a robust high performance 
low power carry select adder using DTSL and 
transmission gates. Results show that the proposed 31bit 
Carry Select Adder has superior performance to Domino 
based CSA implementation while being 36.7% more 
power efficient. The layout area is comparable to static 
CMOS CSA. 
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    TABLE 1 

 Comparison results for 31-bit Carry Select Adders 

Parameter Domino Logic Static CMOS Proposed Adder Improvement over 
Domino 

Improvement over 
Static 

Delay [ns] 1.812 2.501 1.491 17.7 % 40.4% 

Power [mW] 5.092 2.667 3.224 36.7 % -20.9% 

PDP [mW X ns] 9.227 6.670 4.807 47.9 % 27.9% 

Layout Area  24,090 28,200 29,727 -23.3 % -5.4% 
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