
Robust High-Performance Low-Power Carry Select Adder 1

Woopyo Jeong and Kaushik Roy
School of Electrical and Computer Engineering,

Purdue University, West Lafayette, IN 47906, USA
{jeongw, kaushik}@ecn.purdue.edu

1 The research was sponsored in part by SRC (98-HJ-638), DARPA,
and Intel Corporation.

Abstract -This paper proposes Dual Transition Skewed
Logic (DTSL) based Carry Select Adder (CSA) suitable for
processing units requiring low power and high performance
with high noise immunity. We implemented 31-bit Carry
Select Adders in three different logic styles: Dual Transition
Skewed Logic (DTSL), Domino, and conventional static
CMOS in TSMC 0.25um technology and compared them in
terms of performance, power consumption and layout area.
CSA using DTSL shows 36.7% and 17.7% improvements in
power dissipation and performance, respectively, over
domino, and 40.4% improvement in performance compared
to a static CMOS CSA.

I. Introduction

Adders are critical components of the ALU’s
(Arithmetic Logic Unit) or DSP (Digital Signal
Processing) chips. Therefore, high performance adders
with low power consumption are essential for the design
of high performance processing units. Several different
types of high performance adder algorithms are available
in literature. Among them, Carry Look–Ahead Adder
(CLA) and Carry Select Adder (CSA) are widely used for
high speed operations [1][2].

The circuit style is as important as the adder algorithm
and architecture. Traditionally, static CMOS circuits have
been mostly used in adder designs. However, as the
demand for high performance is increasing, several new
circuit techniques such as Domino have been used.

However, noise immunity of Domino circuits is worse
than static CMOS circuits (especially for scaled
technologies) and they consume larger power than static
CMOS. Precharge/Evaluate logic using static CMOS
technology (e.g. skewed CMOS circuits) is one solution
to achieve high performance with low power
consumption and good noise immunity [3]. The circuit
topology of skewed logic is the same as that of static
CMOS logic, however, the PMOS or the NMOS
transistors are preferentially sized to achieve fast high-to-
low or low-to-high transitions. For example, to speed up
high to low transition, the sizes of PMOS transistors are
reduced while the NMOS transistors are sized up [4][5].

DTSL (Dual Transition Skewed Logic) is a skewed
logic style. However, it does not require clock signal. It
has dual paths for data propagation – one path is used for

fast propagation of rising transition, while the other path
is used for fast propagation of falling transition [5]. In
this paper we propose a new CSA using DTSL at the
input, which consists of carry propagation logic, control
logic, and logic for generating SUM. In order to reduce
the carry propagation delay of the proposed CSA using
DTSL, we implemented carry propagation logic with one
transmission gate and one skewed inverter for each stage.
Skewed CMOS circuits are also used in control logic to
speed up carry propagation. Logic for generating SUM
consists of static CMOS circuits to increase noise
immunity and to reduce power consumption.

For comparison we implemented 31-bit CSA using
the proposed adder design style, and compared it with
31-bit CSA’s using Domino and static CMOS circuits.

The rest of the paper is organized as follows. Section
II explains Dual Transition Skewed Logic style. In
section III, we explain the standard CSA and CSA using
DTSL. Section IV shows implementation and operation
of the proposed CSA using DTSL. Sections V and VI
show the simulation results and conclusions.

II. Dual Transition Skewed Logic

Skewed logic is suitable for high performance, low
power and high noise immunity. However, skewed
CMOS circuits do require clock signal, though only a
few logic gates may require the clock [4]. Dual
Transition Skewed Logic (DTSL) consists of dual data
paths using skewed circuits. Fig. 1 shows one example of
DTSL circuit. If the input of the first stage of the logic
block toggles from high to low, faster data transition
takes place through the top data path. On the other hand,
if the input toggles from low to high, the data transits
faster through the bottom path than through the top path.
The arrows represent the skew direction. The combiner
detects earliest transition, latches it, and then transfer the
data to the next stage [5].

Implementing CSA using DTSL does not require
insertion of extra data path since CSA algorithm
inherently uses dual data paths; one for input carry of 0,
the other for input carry of 1. However, even though
there is no extra overhead due to dual data paths, the

increase in layout area due to control logic for skewed
circuits may not be small [5].

Fig. 1. DTSL block structures

We propose a new CSA using DTSL, which improves
performance and has a smaller area than the previous
CSA using DTSL. This is achieved by removing carry
generation logic on carry propagation paths, and some
circuits in control logic.

III. Implementation of Carry Select Adder

A. Carry Select Adder

A general Ripple Carry Adder (RCA) should wait for

incoming carry before generating Carry-out for every
full-adder cell. However, CSA does not need to do that.
Since CSA consists of 2 pairs of logic blocks for carry
propagation, and the CARRY inputs for each block are
already determined: one is CARRY 0, the other is
CARRY 1, each block can generate CARRY outputs
simultaneously [6] [7]. Then, the worst delay of the
square root CSA having M blocks is determined as

carrymuxd NttMt +−=)1(

where, N is the number of stages in the first block, tmux is
delay of multiplexor, and tcarry is the carry propagation
delay of one stage of ripple carry adder. In order to
reduce tcarry we should use a fast carry propagation logic
style.

B. Carry Select Adder Using DTSL

CSA using DTSL can achieve high performance with

robustness and low power consumption comparable to
CSA using static CMOS circuits [5]. Fig. 2 shows the
block diagram of one ith stage of the CSA using DTSL. It
consists of logic for generating sum (L7), some
complicated control logic (L4, L5, L6), and logic on the
carry propagation paths (L1, L2, L3), which is the same
as that of a general mirror adder.

In this CSA, Carry-out from the previous stage
propagates through the logic on the carry propagation
paths when Ak≠Bk (for all k: k ≤ i), and Carry-out of the
current stage is generated by the control logic and switch
gates when Ak=Bk for any k (k ≤ i).

When Ai=Bi, the Carry-out of this stage will be
generated by control logic (L5, or L6). The output of the

first XOR gate, G1 in logic, L7 (logic for generating
sum) will be low, which makes the output of G2 low.
Therefore, the transmission gates (X, Y) will be turned
off. On the other hand, when Ai≠Bi, if the inputs of any
previous stage are same (Ak=Bk, k<i) the transmission
gates should also be off. For example, in any previous
stage (kth stage; k < i) if Ak=Bk, both control signals
(CNT<k,1>, CNT<k,2>) generated by L5 and L6 will be
the same (0 or 1) depending on input value. In k+1st
stage, if Ak+1 ≠ Bk+1, both control signals propagate to
the next stage and CNT<k+1,1> and CNT<k+1,2> will
be equal to CNT<k,1> and CNT<k,2> respectively.
Therefore, at the ith stage, CNT<i-1,1> and CNT<i-1,2>
will be equal and makes the output of G2 low, which in
turn disables the transmission gates.

 Fig. 2. Block diagram of a stage of CSA using
DTSL

We must turn off the transmission gates with the
above input conditions to avoid any short circuit current
flowing through them. For example, if Ai≠Bi and
CNT<i-1, 1> and CNT<i-1, 2> are equal, nodes N3 and
N5 will be the same as N4 and N6 respectively. The
logic level at N3 and N5 are determined by CNT<i-1,1>
and CNT<i-1,2> and N4 and N6 are determined by
CNT<i,1> and CNT<i,2>. However, since two carry
propagation paths have different delays due to the
skewing of transistors there may be a shorts circuit
current if the transmission gates are not turned off.

The logic for carry generation (L2) on carry
propagation paths is used only to maintain input level of
L3 when Ai=Bi=0 and Ci=1 or Ai=Bi=1 and Ci=0
because the output of L1 can be floated for these input
conditions. The carry propagation logic (L1) propagates
Carry-in to the next stage when Ai≠Bi. In this case, one
PMOS of the top PMOS transistors and one NMOS of
the bottom NMOS transistors are always turned on, i.e.,
L1 acts like an inverter when Ai≠Bi. Therefore, L1 can
be changed to an inverter having Carry-in as its input,
and L2 is not necessary because there is no floating node.
This means that the logic of the carry propagation paths
of CSA using DTSL can be simplified to two inverters.

Combiner
&

Latch

Combiner
&

Latch

CLK

Combiner
&

Latch

Combiner
&

Latch

CLK

Si_B
Si_T

Ai Bi

Ai Bi

Bi
Ai

Ai
Bi

Ai Bi

Ai Bi

Bi
Ai

Ai
Bi

Ai
Bi

L1 L2 L3

L4
CNT<i-1,1>

X

Y

CNT<i-1,2>

MN1 MP2

MP1 MN2

L7
L5

L6

CNT<i,1>

CNT<i,2>

N3 N4

N5 N6

G1 G2Si_B
Si_T

Ai Bi

Ai Bi

Bi
Ai

Ai
Bi

Ai Bi

Ai Bi

Bi
Ai

Ai
Bi

Ai
Bi

L1 L2 L3

L4
CNT<i-1,1>

X

Y

CNT<i-1,2>

MN1 MP2

MP1 MN2

L7
L5

L6

CNT<i,1>

CNT<i,2>

N3 N4

N5 N6

G1 G2

IV. Proposed CSA using DTSL

Fig. 3 shows the ith stage of the proposed CSA using

DTSL. The transmission gates (X, Y) are controlled only
by the output of XOR gate G1 of the current stage, i.e.,
switching of transmission gates is independent of the
status of previous stage. In order to reduce the
transmission time we use only a skewed inverter between
transmission gates on a carry propagation path. However,
since only one inverter is used in each stage, the Carry-
out of each even stage is opposite to the Carry-out of
each odd stage, and hence, the control logic of even
stages should be different from that of odd stages. This
simplicity of circuits on carry propagation paths reduces
the load capacitance, which in turn reduces the critical
path delay.

Fig. 3. Block diagram of the proposed CSA using DTSL

Let us explain of operation of the proposed CSA. Fig.
4 shows the CSA consists of two stages. Each stage
contains data paths for carry propagation, logic for
generating SUM, and control logic. The logic in the circle
is for generating the SUM. We can, therefore, improve
performance by using properly skewed inverters in the
upper and lower carry propagation paths. The skew
direction of inverter on the top data path should be
opposite to that on the bottom in the same stage.

 If inputs Ai’s are different from Bi's (for all i = 0 to
n), all transmission gates (X, Y) will turn on and the
switching transistors (MNi, MPi) will be disabled. In this
case, the operation of the skewed circuits on the carry
propagation paths is not different from that of normal
static CMOS circuits.

However, the delay time of the skewed circuits is
smaller than that of the static CMOS circuits because the
direction of CARRY transition in every stage is always
the same as the skew direction. Even though transitions of
each skewed inverter is fast, the carry propagation delay
under this condition is the largest because Carry-out of
the first stage will propagate to the last stage. Under such
inputs the Carry-outs will be inversions of Carry-in for
every stage because each Carry-in goes through one
inverter and one transmission gate.

However, if any Ai is equal to Bi at Stage i (i = 0 to
n), the Carry-outs on both paths from that stage to the last
stage (i ~ n) will be the same, and determined only by

inputs Ai and Bi regardless of Carry-outs of the previous
stage. This means that the carry propagation starts
simultaneously at the first stage and the ith stage.

Hence, in this case, the propagation delay of CSA is
the same as one of the carry propagation delays from the
first stage to i-1st stage and from ith stage to the last
stage. Then, we have to switch Carry-in of the next stage
(i+1st) to low or high depending on the value of Ai and
Bi. For example, let us assume A1=B1=0 at Stage 1,
then the outputs of the compound gates, G1_T and
G1_B, in the control logic of this stage will be 0, and
PMOS switching transistor (MP1) will turn on.
Therefore, the Carry-in (C2_T, C2_B) at the next stage
will be low regardless of Carry-in (C1_T, C1_B) of
Stage 1. Hence, we do not need to wait for the Carry-in
to propagate to the output node of Stage 1, i.e. when
inputs A1, B1 of Stage 1 are set, we can switch Carry-in
of the next stage (Stage 2) immediately to low after
turning off the transmission gates on data path. Similarly,
if A1=B1=1 at Stage 1, then we change Carry-in of the
next stage (Stage 2) to high. For such cases, the total
propagation delay will be shorter than the total delay of
the previous case (Ai ≠ Bi, for all i = 0 to n) because the
time taken to switch Carry-in of the next stage (Stage 2)
is shorter than the time in which Carry-in of the first
stage (Stage 0) propagates to the Carry-in node of Stage
2 having A2, B2 as inputs.

Finally, let us consider the case when Ai = Bi and Aj
≠ Bj (j=i+1). In this case, even though Aj is not the same
as Bj, we have to switch Carry-in of j+1st stage on the
data path because the skew direction of one data path at
Stage (j+i) is opposite to Carry-in of j+1st stage. For
example, when A1=B1=0 at Stage 1 and A2=0, B2=1 at
Stage 2, the outputs of the compound gates (G1_T,
G1_B) in the control logic of stage 1 will be 0 and
PMOS switching transistor (MP1) will turn on, which
makes Carry-in of Stage 2 (C1_T and C1_B) low. In this
condition, although C1_T switches fast from high to low,
node C1_B switches to low slowly because the transition
direction is opposite to the skew direction (arrow
direction). At the next stage (Stage 2) since A2=0 and
B2=1, the transmission gates are on, and data on C1_T
and C1_B should be propagated to C2_T and C2_B.
However, the delay of the bottom data path increases
because the transition direction is opposite to the skew
direction. Therefore, at the final stage the delay of the
bottom data path may be very large. In order to prevent
this effect, the control logic at Stage 2 generates Carry-in
for the next stage. The compound gate (G2_T) in the
control logic of Stage 2 has 4 inputs: one is the output of
G1_B, and others are A2, B2, and the output of XOR
gate G2.

Since A2=0, B2=1, the output of the XOR gate G2 is
high, and the output of G1_B is also low. Therefore, the
output of G2_T is high, which makes NMOS switching
transistor (MN2) turn on, and the Carry-out (C3_T,
C3_B) at that stage be low.

CNT<i,1>

CNT<i,2>Si_B
Ai
Bi

Si_T

Ai
Bi

Ai
Bi

X

Y

CNT<i-1,1>

CNT<i-1,2>

MN1 MP2

MP1 MN2

L5

L6

N3 N4

N5 N6

G1

CNT<i,1>

CNT<i,2>Si_B
Ai
Bi

Si_T

Ai
Bi

Ai
Bi

X

Y

CNT<i-1,1>

CNT<i-1,2>

MN1 MP2

MP1 MN2

L5

L6

N3 N4

N5 N6

G1

Fig. 4. Block diagram of the proposed Carry Select Adder

 Fig. 5. Layouts of 31-bit CSA in different styles

V. Results

To compare the propagation delay, the power
consumption and layout area of the proposed CSA with
CSA using Domino logic and static CMOS logic, we
implemented 31-bit CSA’s having 5 blocks, laid out, and
simulated each design in TSMC 0.25µm CMOS
technology with Vdd=2.5 volts.

Table 1 shows comparison of simulation results and
layout area of each CSA. Fig. 5 shows the layouts of the
proposed CSA using DTSL and CSA’s using Domino
and static CMOS circuits. The propagation delays are
obtained under the worst case carry propagation. The
average power consumption is obtained with random
input vectors with a clock cycle of 10ns.

 Table 1 shows that the proposed adder is superior to
static adder in terms of performance. Comparison shows
that the proposed CSA has a 36.7% power improvement
with 17.7% improvement in performance compared to
Domino CSA. The results also show that the area of the
proposed CSA is comparable to that of the static CMOS

implementation. The power delay product of the
proposed CSA is almost half of that of Domino CSA.

VI. Conclusions

In this paper we proposed a robust high performance
low power carry select adder using DTSL and
transmission gates. Results show that the proposed 31bit
Carry Select Adder has superior performance to Domino
based CSA implementation while being 36.7% more
power efficient. The layout area is comparable to static
CMOS CSA.

References

[1] T. Lynch, et al., “A Spanning Tree Carry Lookahead
Adder,” IEEE Trans. On Computers, vol. 41, no. 8, pp.
931-939, Aug., 1992.
[2] V. Kantabutra, “A Recursive Carry-Lookahead /
Carry-Select Hybrid Adder,” IEEE Trans. On
Computers, vol. 42, no. 12, pp. 1495-1499, Dec., 1992.
[3] D. Somasekhar, “Power and dynamic noise
considerations in high performance CMOS VLSI
design,” PhD Thesis, Purdue Univ., Aug., 1999.
[4] A. Solomatmikov, D. Somasekhar, K. Roy,
“Skewed CMOS: Noise-immune high-performance low-
power static circuits family,” ESSCIRC, 2000.
[5] W. Jeong, K. Roy, and C. Koh, “High-
Performance Low-Power Carry Select Adder using
Dual Transition Skewed Logic,” ESSCIRC, 2001.
[6] N. Weste and K. Eshraghian, “Principles of CMON
VLSI Design”, Addison Wesley Publishers, 1994.
[7] O. Bedrij, “Carry-Select Adder,” IRE Trans. on
Electronic Computers, Vol. EC-11, pp.340-346, 1962.

 TABLE 1

 Comparison results for 31-bit Carry Select Adders

Parameter Domino Logic Static CMOS Proposed Adder Improvement over
Domino

Improvement over
Static

Delay [ns] 1.812 2.501 1.491 17.7 % 40.4%

Power [mW] 5.092 2.667 3.224 36.7 % -20.9%

PDP [mW X ns] 9.227 6.670 4.807 47.9 % 27.9%

Layout Area 24,090 28,200 29,727 -23.3 % -5.4%

C0_T

C0_B

C1_T

MP1 MN1

MN1 MP1

C2_T

C2_B

S2_B
A2
B2

S2_T

A2
B2

A2
B2

S1_B

A1
B1

S1_T

A1
B1

A1
B1

B0
A0

B0
A0

S0_B

A0
B0 S0_T

C1_B

MP2 MN2

MN2 MP2

G1_T

G1_B

G2_T

G2_B

Y

X
C0_T

C0_B

C1_T

MP1 MN1

MN1 MP1

C2_T

C2_B

S2_B
A2
B2

S2_T

A2
B2

A2
B2

S1_B

A1
B1

S1_T

A1
B1

A1
B1

B0
A0

B0
A0

S0_B

A0
B0 S0_T

C1_B

MP2 MN2

MN2 MP2

G1_T

G1_B

G2_T

G2_B

Y

X

a) 31-bit Carry Select Adder using Domino circuits

b) 31-b it Carry Select Adder using Static CMOS circu its

c) 31-bit proposed Carry Select Adder using DTSL

a) 31-bit Carry Select Adder using Domino circuits

b) 31-b it Carry Select Adder using Static CMOS circu its

c) 31-bit proposed Carry Select Adder using DTSL

	Main
	ASP-DAC03
	Front Matter
	Table of Contents
	Author Index

