
Issues in Debugging Highly Parallel FPGA-based Applications Derived from
Source Code

K. Scott Hemmert and Brad Hutchings
Department of Electrical and Computer Engineering

Brigham Young University
Provo, UT, USA

{hemmert,hutch}@ee.byu.edu

Abstract— Using high-level synthesis tools to map programs
written in general-purpose languages to FPGA hardware has
grown in popularity and it is becoming necessary to provide com-
prehensive debugging tools in order to verify the correctness of
the synthesized hardware. Currently, post-synthesis debugging
is done at the circuit level. This paper discusses the issues, as
well as some early results, of creating a source level debugger for
hardware synthesized from source code. This study is meant to
provide some insight into what needs to be added or built into
synthesizing compilers in order to allow debug of a synthesized
circuit at the source level, which will provide the programmer
with a familiar view of the program being debugged.

I. I NTRODUCTION

With the increasing use of synthesizing compilers which
create FPGA circuits from general purpose programming lan-
guages [2, 5, 10], computer programmers are becoming more
and more involved in the process of creating hardware. While
this can have many advantages, it can be difficult for a software
engineer without hardware experience to debug a synthesized
circuit which does not work properly.

In an ideal world, the synthesized circuit would behave ex-
actly as the program from which it was generated, thus allow-
ing the programmer to debug software rather than the synthe-
sized hardware. However, there are cases where this may not
be true. For example, due to the complexity of synthesizers,
there is no guarantee that the resulting circuit will behave iden-
tically to the software. Also, during the synthesis process, the
synthesizer will need to make decisions about the widths of
variables (or they will need to be specified by the user). To re-
duce the size of the synthesized circuit, these widths will typi-
cally be smaller in hardware than in software, possibly creating
different behavior.

It is also beneficial to debug the actual hardware, as it could
potentially be much more efficient. Since the software is being
mapped to hardware to greatly improve performance, execu-
tion times of the software may be too long to provide efficient
debugging.

In order to study how we can facilitate the debugging of syn-
thesized circuitry, we propose to build a hardware debugger
that will provide feedback to the programmer using a source-

level view. The goal is to provide a feature set which provides
the same controllability and observability as that of a typical
software debugger. This will allow the programmer to debug
the code in a context similar to that in which the code was writ-
ten. The feature set for the hardware debugger will include the
following:

1. Controllability. Provide the user control over the state of
the running circuit by allowing the user to single-step, set
breakpoints, and set the values of variables.

2. Observability. Provide the user with views of the state of
the program by showing the location of current execution
points and allowing the watching of values of variables.

3. Performance debugging. Provide the user information
to improve the performance of the program, by gather-
ing profiling information from the application executing
in hardware and relating it back to the original source
code.

As with any software debugger, the effectiveness of the
hardware debugger depends on information provided by the
compiler. We will refer to this information as the debug
database. The issues in creating this database are similar to
those involved when mapping code to very long instruction
word (VLIW) machines, where you must deal with explicit
parallelism, code reordering, optimizations, etc. Although
there are a number of similarities between mapping code to
hardware and mapping code to VLIW machines, the problems
are more pronounced in hardware mapping. For example, a
VLIW compiler need only find enough parallelism to keep all
the available units in the target CPU busy. When mapping to
hardware, the synthesizer is free to find and exploit all avail-
able parallelism. This can result in an order of magnitude more
parallelism and an accompanying increase in debugging com-
plexity.

Due to the complexities of debugging optimized code, many
people advocate turning off optimizations when debugging,
though there have been a number of studies done on how to
debug optimized code [3, 4, 13]. This work extends many of
the ideas proposed in these previous works to apply to the task



at hand. Specifically, we are introducing two modes of oper-
ation for the debugger to debug circuits generated from gen-
eral purpose programming languages. The first mode provides
“truthful behavior” [14] and is called clock step mode. The
second mode of operation is called source step mode and pro-
vides “expected behavior” to the user by using a novel buffer-
ing approach. These approaches will be discussed in greater
detail in Section IV.

Whereas some approaches allow debug for only a subset of
optimizations, it is important for this work that the user be al-
lowed to debug the final, fully optimized circuit. This guaran-
tees that the user doesn’t debug an unoptimized circuit, only to
find that the optimized circuit does not operate correctly. De-
bugging the fully optimized circuit will also provide the pro-
grammer with insight into how the synthesizer is mapping the
code, allowing the code to be rewritten in a more efficient man-
ner.

This paper will discuss the issues involved in creating both
a hardware debug database and a hardware source-level de-
bugger for circuits derived from general purpose programming
languages. We will begin by giving some necessary back-
ground on synthesizing compilers. We will then talk specif-
ically about the information required in the hardware debug
database, and how this information is used by the hardware
debugger. We will also discuss some general issues involved
with debugging hardware at the source level.

II. BACKGROUND

To provide ourselves with a well defined scope for the
project, we chose to concentrate our work on synthesizing
compilers that use predicated static single assignment (PSSA)
[1] to find exploitable parallelism. This work will also apply
to those compilers which use only predication or static single
assignment (SSA). In order to verify our results, we chose to
use the Sea Cucumber [11] compiler, as it is representative of
synthesizing compilers available today and because we have
access to the source code for the compiler.

Sea Cucumber reads in Java bytecode and generates an opti-
mized circuit to implement the behavior of the bytecode. A
graphical representation of the Sea Cucumber framework is
shown in Fig. 1. During the analysis of the bytecode, all ref-
erences to variables are made unique by applying SSA tech-
niques. This is done by creating a new version of the variable
each time it is assigned a new value. SSA reduces the number
of dependencies in the final program which allows for more
instruction reordering. The output of the bytecode analyzer is
a control flow graph where each node represents a basic block
of the program.

As the control flow graph is converted to the internal data
structure, the compiler will create hyperblocks [9] from the
basic blocks. This is accomplished by applying predication
to the instructions in each basic block. Predication makes it
possible to compute all branches of a conditional statement in
parallel. The result is selected later, after the condition has
been computed. This is done by adding a predicate equation

CFG & DFG Graph Conversion

Java Source File Java Compiler Java Class File

PSSAGraph Optimizations OPSSAGraph

Netlister
Builder

Netlist

Hardware Names

Bytecode Analyzer

Sea Cucumber Compiler

Debug Database

Debug Database

Fig. 1. Overview of operations performed by Sea Cucumber during the
synthesis process, including operations we have added to create the debug
database. Oval nodes represent data files or formats; rectangular nodes
represent operations or tools.

to each instruction in the hyperblock. The equation gives the
conditions that must be met for the result of that operation to
be committed. Using predication allows hyperblocks to be a
much larger code grouping than a basic block. This allows
the compiler to do more code reordering, thus allowing more
parallel execution.

After the hyperblocks are formed, the compiler will then ap-
ply several optimizations to improve efficiency and will gen-
erate a netlist of the synthesized circuit. We have also added
the ability to the compiler to create a debug database for the
circuit. The general contents of this database are discussed in
the next section.

III. H ARDWARE DEBUG DATABASE

The information required in a hardware debug database par-
allels that required for software debugging and can be put
into two general groups: variable table and line number table.
While the information needed in the databases is similar, the
hardware database generally requires more information than
its software counterpart. The following sections will compare
the information in a typical software symbol table with that
needed for a hardware debug database.

A. Line Number Table

For a software debugger, the line number table is used to
map program counter values or offsets in the program to the
line numbers in the source file responsible for the creation of
the operation stored at each program offset. In this case, the
process of enumerating this information is quite straightfor-
ward (at least for unoptimized code). Because of the distri-
bution of computation in a synthesized circuit, recording this
type of information is much less direct.



As no program counter exists in the hardware, the hardware
debug database is required to store information that shows the
relationship between the state of the control circuitry and the
line numbers of the source file. The way this relationship is es-
tablished can be quite different depending on the synthesizer.
There is also another related problem in hardware that does not
exist in software. Because the hardware representation is not
simply a list of instructions to process as it is in software, the
scheduling information for the instructions is not given explic-
itly. This information much be computed and inserted into the
debug database.

For circuits which utilize predication, there is another issue
to tackle. With predication, instructions can be executed and
later invalidated. If the debugger wishes to differentiate be-
tween instructions whose predicate equations are met or those
whose are not, then it will be necessary for the debug database
to list the predicate equation for each operation.

While working on the debug database for Sea Cucumber
generated circuits, we found it easiest to store the line num-
ber, schedule and predicate information in data structures that
would be comparable to assembly code in software. The data
structure essentially contains a list of all the hyperblocks along
with the operations within each hyperblock. Stored with each
operation is its line number, schedule information and predi-
cate equation. For Sea Cucumber, the scheduling information
is simply a reference to the state number during which an in-
struction executes within its hyperblock.

B. Variable Table

For software compilers the variable table contains a list of
the names of all variables, along with their memory locations
and scoping information. This allows the debugger to find and
set the value of each variable. For hardware debuggers, the
variable table is slightly different; rather than mapping vari-
ables to memory locations, the hardware variable table maps
the variables to locations (circuit elements) in hardware. The
debugger will also need to know to which type of circuit ele-
ment the variable is mapped. For example, if the variable is
not mapped to a state element (register), then it is possible that
the debugger will not be able to set its state. It will also not be
possible to directly read the state of the variable, but it may be
possible that the value can be computed given the values of the
variables used to create it.

For synthesizers which use SSA, it is also necessary to have
a list of each version of each variable, along with informa-
tion about the sections of code for which each version is valid.
It is also necessary for the variable table to contain informa-
tion about variables that are not explicitly found in the source
file. This is the case with the variables used for predication.
These variables are the boolean values generated from condi-
tional statements. The values of these variables are not typ-
ically shown in the debugger, but the debugger will need to
know their values in order to correctly display other informa-
tion about the running program.

For the Sea Cucumber debugger, the debug database con-
tains a listing of all versions of all variables in the final cir-

cuit, whether or not they are explicitly found in the source file.
The names of the variables from the original source file are
extracted from the local variable table in the Java class file
from which the circuit is synthesized. As the compiler cre-
ates the variables used for predication, they are given unique
names generated by the compiler. The name of the circuit el-
ement which holds the value of the variable in the final circuit
is stored long with each variable. This allows the debugger to
extract the values of the variables at runtime.

IV. H ARDWARE DEBUGGER

The way source code is mapped to hardware greatly affects
the ability of the debugger to support the features listed in Sec-
tion I. The main issues arise because of the compiler’s many
degrees of freedom in creating custom hardware. This ranges
from the ability to exploit all available parallelism to the in-
creased clock control gained in mapping to FPGAs.

Because of the increased clock control of FPGA circuits
over that of a general purpose CPU, it is possible to define
a single-step in two ways: clock stepping or source stepping.
The choice of definitions plays an important role in how the
feature set of the debugger is implemented, and each has ad-
vantages and disadvantages. We will first define each of the
associated stepping modes and then describe the general hard-
ware issues with the implementation of each of the debugger
features, as well as issues specific to each stepping mode.

Source Stepping Source stepping is meant to imitate the
single-stepping found in a software debugger. It allows the
user to see the execution move sequentially through each line
in the source code, even though the circuit is actually execut-
ing many instructions in parallel. This is a much more familiar
view for a software engineer, but poses some interesting prob-
lems due to the parallel nature of the hardware as compared
to the sequential nature of the source code. These issues are
discussed in the following sections.

Clock Stepping Clock stepping defines a single-step as a
single cycle of the clock running the circuit. In this mode, the
user would be shown all the lines of code that are executing on
any given clock cycle. This has the advantage of simplicity, but
the disadvantage of being unfamiliar to the programmer. An-
other advantage of this method is that it gives a more accurate
view and allows more insight into the running circuit.

A. Single-Stepping

Both methods of single-stepping depend on the availability
of certain features in the target platform. The ability to pre-
cisely control the execution of the circuit requires control of
the clock from both the host and from the circuit. This al-
lows the debugger to do both single-stepping (host controlled)
and breakpointing (circuit controlled). If the platform does not
support clock control, then the synthesizer would have to add
circuitry in order to provide this feature.



Whereas single-stepping in clock step mode is very straight-
forward (the debugger simply advances the hardware clock one
cycle for each single-step), single-stepping in source step mode
is more complex. In order to single-step in source step mode,
the debugger needs to refer to the debug database to find what
operation represents the next line of source code. The debug-
ger must then advance the clock until this instruction is exe-
cuted.

When advancing the clock multiple cycles in order to exe-
cute the next line of code, the debugger will need to buffer the
state of the circuit, because future instructions in the source
code may actually execute during these clock cycles. Thus,
if the next instruction was already executed, stepping to it may
involving looking back into the state buffer, rather than advanc-
ing the clock.

B. Breakpointing

In order to be consistent, the definition of a breakpoint
changes depending on which stepping mode is chosen. In
clock stepping mode, a breakpoint is triggered when the op-
eration synthesized from the breakpointed line is executed. In
the case of a line resulting in multiple operations in the final
circuit, the operation scheduled earliest is used to trigger the
breakpoint.

The most important issue in this mode arises when the com-
piler uses predication. Because instructions are predicated,
many instructions will be executed even though they would not
be executed in a strictly sequential execution. In the compiled
circuit, the results of these instructions are simply never com-
mitted if their predicates are not satisfied. Execution should
only stop if the predicate equation for that operation has been
satisfied. However, the predicate may be scheduled to be ex-
ecuted after the actual instruction is executed. In this case,
it may be impossible to stop execution exactly on the break-
pointed line, however, the debugger would be able to tell the
user exactly how many cycles late execution will stop.

In the source stepping mode, a breakpoint would be trig-
gered once all previous instructions (in the source file) of the
breakpointed instruction have executed. If predication is used
all predicates used by any of these instructions would also need
to be computed before the breakpoint is triggered. This is con-
sistent with the results you would get if you single-stepped the
circuit to the breakpoint.

Because of the necessity to buffer information while step-
ping, it is not enough to allow the hardware to free run to the
breakpointed instruction. If this occurs, then the debugger will
not have the information buffered to reconstruct information
for reordered instructions. Of course, if the circuit were single-
stepped from this point, the buffer could be filled, and eventu-
ally things would operate as usual. There are two ways to solve
this problem. In the first approach, the debugger finds an ear-
lier instruction on which to break. The instruction is selected
such that it allows the debugger to single-step to the actual
breakpoint and fill the state buffer. The second approach is to

store this information in the circuit by adding extra circuitry.
However, this solution would necessarily limit the visibility
into the circuit because of storage issues.

C. Setting Values of Variables

We intend to target the Xilinx Virtex and Virtex II FPGAs.
These devices will allow us to use a method described in [8]
to read and set the values of variables. This method uses read-
back to get the state of the circuit, and modifies the configura-
tion bitstream for the FPGA to change the set/reset state of the
flip-flops in the design to force all registers to power up with a
specific state. This would allow us to change the value of any
variable. If a synthesizer targets a platform that does not sup-
port these features, then it is also possible for the synthesizer to
add a scan chain to the design in order to read and write circuit
state [12].

One other concern of mapping to hardware is the fact that
the compiler is free to map variables to a variety of circuit el-
ements. For example, if a variable is not mapped to a state
element, then its state cannot be set. It is also possible that
variables will have multiple versions in the hardware, as is the
case when using SSA. The debugger will then need to deter-
mine which versions of the variable need to be altered.

Another problem arises when using source stepping: A user
may set the value of a variable thinking it will affect the out-
come of a future computation, when in fact that computation
has already taken place because the compiler scheduled the in-
structions out of order. The debugger would need to be able to
warn the user of this case. Another option is to use the buffered
state data to “roll-back” the clock, set the value of the variable
and run the clock forward again. It is not clear at this time how
difficult this would be to accomplish.

D. Location of current execution points

When using clock step mode, the amount of parallelism that
is exploited by the synthesizer means that there are usually a
large number of operations executing in parallel. Couple this
with the fact that the instructions have possibly been scheduled
out of order, and it often becomes impossible to locate a single
point of execution in the source code.

Predication complicates this even further. Because of pred-
ication, it is possible for multiple branches of a conditional
statement to be active at the same time. As the predicate equa-
tions for these instructions are calculated, the circuit will know
which values to commit for future use. However, these equa-
tions may not be fully computed until after many, or all, of the
instructions on a given branch have been executed. This makes
it very difficult to convey to the user where to find the current
execution point. In this case the best thing to do is simply show
the user all of the instructions which are currently executing.

E. Watching Values of Variables

While in clock stepping mode, watching values of variables
is complicated by the use of SSA. The fact that many versions



of a variable exist makes it necessary to force the user to either
specify which version of the variable to watch, or it requires
that the debugger determine which of the versions of that vari-
able is currently the correct one, given the current execution
points in the program.

Predication will, of course, also play a role in watching vari-
ables. The debugger will need to take into account the predi-
cate equation for each variable1. If the equation for a variable
is not satisfied, then the debugger need not consider that ver-
sion as one of the possible values of a variable. Again, this is
complicated by the fact that the predicate for a variable could
be calculated after the assignment to the variable. In this case,
the debugger may have to delay reporting the change of value
until the predicates are computed.

While in source stepping mode, the debugger does not have
these problems. Because the debugger is making it appear that
there is a single point of execution, it is well defined which
version of a variable is valid at any time, and the predicates are
guaranteed to be computed. However, the debugger will need
to determine if the value in the current state snapshot is valid
or if it needs to look in the buffered state data to find this value.

F. Profiling

Since synthesis tools commonly inline all method calls, the
typical software approach of reporting total times spent in each
method is not necessarily the best approach. A better approach
may be to allow the user to select a range of lines in the source
code and ask how much time is spent in that range. It may also
be possible to report how much execution time is spent on each
line. It may actually be possible to get more information from
the hardware profile than is possible with a software profiler.

However, the ability to gather this amount of information
comes with a price: it will be necessary to add hardware to
the circuit to gather the statistics required to generate the in-
formation. The good news is that this hardware can be added
in parallel to the other circuitry, thus having no effect on the
operation of the rest of the circuit2. This is an advantage over
a software profile which can actually change the profile while
gathering the information, making it impossible to get a totally
accurate profile.

The goal of profiling will be to minimize the amount of in-
formation needed from the running circuit to create the profile.
This will, in turn, minimize the amount of on-chip memory
required to store the information. Because we will be mini-
mizing the amount of data received from the circuit, the details
of the profile will need to be computed in software from the
statistics gathered from the running circuit.

1The predicate equation of a variable is simply the predicate equation of
the instruction which assigns a value to that variable. Because of SSA, each
version of a variable is guaranteed to be set only once.

2It is possible, even likely, that the addition of this circuitry will reduce
the maximum operating frequency of the circuit. However, since we can use
clock cycles as a metric for the profile, rather than time, this will not effect the
results of the profiling.

V. M ETHODOLOGY

The Sea Cucumber compiler is still in development, but is
able to analyze a subset of Java programs and create circuits to
implement the behavior described in the programs. The out-
put of our modified version of Sea Cucumber is a netlist of the
synthesized circuit and the hardware debug database required
by the debugger. The debugger uses JHDL [7] to simulate the
synthesized circuit at the gate level. The debugger commu-
nicates with the simulator to control clock stepping and to get
values of key circuit elements. These values are then processed
using the information in the debug database to present the state
of the circuit to the user in the source-level view. Since JHDL
simulates at the gate level, this is equivalent to executing the
actual circuit in an FPGA. Because there has been a consider-
able amount of research done which has resulted in JHDL hav-
ing the built-in ability to communicate directly with circuits
executing in FPGAs [6], we plan to use JHDL to act as the
communication interface between the debugger and the syn-
thesized circuit running on the FPGA.

Using JHDL as either the simulation layer or the hardware
communication layer also provides us with another useful de-
bugging tool: circuit visualization. Since JHDL provides a
structural view of the synthesized circuit, it is possible to get
information both at the source level and at the circuit level.
This has proven quite useful to us while writing and verify-
ing the debugger. This type of functionality could also prove
a boon to programmers using the Sea Cucumber system. It
would allow them to gain some insight into how the synthe-
sizer works, as well as provide additional information at debug
time (assuming the programmers were also versed in hardware
design).

VI. PRELIMINARY RESULTS

In order to verify the correctness of the information in the
hardware debug database, we used the approach described in
the previous section to create a plug-in to JHDL which pro-
vides a source-level view of a simulating circuit. We have pro-
totyped the location of execution points, as well as the watch-
ing of variable values, using clock stepping mode. A screen
capture of the prototype tool is shown in Fig. 2. The initial
results have been quite promising.

The tool extracts the state of the running circuit from the
JHDL simulation and highlights all of the currently running
operations. This is done by looking at the state bit which indi-
cates the idle state for each hyperblock and determining which
hyperblock is not currently idle; this is the active hyperblock.
The debugger then looks at all of the state bits for the active hy-
perblock to determine its current state. It then refers to the de-
bug database to determine which instructions are executed dur-
ing that state, along with their corresponding line numbers in
the source code. These lines are then highlighted in the source
level view.

The debugger also shows the current values of all variables
found in the source code. It does this by looking at the cur-
rently executing instructions to determine which version of the



Fig. 2. Screen shot of the prototype debugger for Sea Cucumber, showing the
location of current execution points and variable values.

variable is currently valid. If more than one version is cur-
rently valid, all the valid values are displayed. Optionally, the
tool can also show the user the value of each variable on a line
by line basis. We have found this to be a very effective way
of interpreting the circuit given the complex nature of circuits
generated using PSSA.

VII. C ONCLUSIONS ANDFUTURE WORK

We have had some promising early results with the work on
the source-level debugger for synthesized hardware. With our
prototype debugger, We have been able to demonstrate that it
is possible to identify the current execution points of a run-
ning circuit, as well as watch the values of variables. This also
demonstrates the ability of the compiler to build the hardware
debug database.

We will continue to implement the remaining features in the
debugger using clock step mode. This will allow us to verify
the information that needs to be present in the hardware debug
database. After we have verified the information in the debug
database and the features of the debugger, we will re-verify the
work in hardware by downloading the circuits to FPGAs.

After we have created the full debugger using clock step
mode, we will extend the work to include source stepping
mode. This will allow us to study how the buffering will need
to work in order to reconstruct circuit state for out of order exe-
cution. We will also look at the possibility of “rolling back” the
clock to support variable setting in the presence of reordered
instructions.

REFERENCES

[1] Lori Carter, Beth Simon, Brad Calder, Larry Carter, and Jeanne Fer-
rante. Predicated static single assignment. InIEEE PACT, pages 245–
255, 1999.

[2] Celoxica. Handel-C Language Reference Manual. Celoxica Limited,
2001.

[3] Lyle Edward Cool. Debugging vliw code after instruction scheduling.
Master’s thesis, Oregon Graduate Institute of Science & Technology,
1992.

[4] Max Copperman. Debugging optimized code without being mis-
led. ACM Transactions on Programming Languages and Systems,
16(3):387–427, May 1994.

[5] Maya B. Gokhale, Janice M. Stone, Jeff Arnold, and Mirek Kalinowski.
Stream-oriented fpga computing in the streams-c high level language.
In Proceedings of the IEEE Symposium on Field-Programmable Custom
Computing Machines, page n/a, Napa, CA, 2000. IEEE.

[6] Paul S. Graham.Logical Hardware Debuggers for FPGA-Based Sys-
tems. PhD thesis, Brigham Young University, 2001.

[7] B. Hutchings, P. Bellows, J. Hawkins, S. Hemmert, B. Nelson, and
M. Rytting. A cad suite for high-performance fpga design. In K. L.
Pocek and J. M. Arnold, editors,Proceedings of the IEEE Workshop on
FPGAs for Custom Computing Machines, page n/a, Napa, CA, April
1999. IEEE Computer Society, IEEE.

[8] Wesley J. Landaker. Using hardware context-switching to enable a mul-
titasking reconfigurable computer system. Master’s thesis, Brigham
Young University, 2002.

[9] S. A. Mahlke, D. C. Lin, W. Y. Chen, R. E. Hank, and R. A. Bring-
mann. Effective compiler support for predicated execution using the
hyperblock. In25th Annual International Symposium on Microarchitec-
ture, 1992.

[10] Stuart Swan, Dirk Vermeersch, Dündar Dumlug̈ol, Peter Hardee, Takashi
Hasegawa, Adam Rose, Marcello Coppolla, Martin Janssen, Thorsten
Grötker, Abhijit Ghosh, and Kevin Kranen.Functional Specification for
SystemC 2.0. Open SystemC Initiative, 2.0-p edition, October 2001.

[11] Justin L. Tripp, Preston A. Jackson, and Brad L. Hutchings. Sea cucum-
ber: A synthesizing compiler for fpgas. In Manfred Glesner, Peter Zopf,
and Michel Renovell, editors,Field-Programmable Logic and Applica-
tions, pages 875–885. Springer, September 2002.

[12] Timothy Brian Wheeler. Improving design obervability and controlla-
bility for functional verification of fpga-based circuits using design-level
scan techniques. Master’s thesis, Brigham Young University, 2001.

[13] Le-Chun Wu, Rajiv Mirani, Harish Patil, Bruce Olsen, and Wen mei
W. Hwu. A new framework for debugging globally optimized code.
In Proceedings of the ACM SIGPLAN ’99 conference on Programming
language design and implementation, pages 181–191. ACM Press, 1999.

[14] Polle T. Zellweger. Interactive Source-Level Debugging of Optimized
Programs. PhD thesis, University of California, Berkeley, May 1984.
This work is also available as Technical Report CSL-84-5 from Xerox
PARC.


	Main
	ASP-DAC03
	Front Matter
	Table of Contents
	Author Index




