

An Overview of a Compiler for Mapping MATLAB Programs onto FPGAs

P. Banerjee

Department of Electrical and Computer Engineering
Northwestern University

2145 Sheridan Road, Evanston, IL-60208
banerjee@ece.northwestern.edu

Abstract

This paper describes a behavioral synthesis tool called the
MATCH compiler developed as part of the DARPA
Adaptive Computing Systems program. The MATCH
compiler reads in high-level descriptions of DSP
applications written in MATLAB, and automatically
generates synthesizable RTL models in VHDL. The RTL
models can be synthesized using commercial logic
synthesis tools and place and route tools onto FPGAs. By
linking the two design domains of DSP and FPGA
hardware design, the MATCH compiler provides DSP
design teams a significant reduction in design labor and
time, elimination of misinterpretations and costly design
rework, automatic verification of the hardware
implementation, and the ability of systems engineers and
algorithm developers to perform architectural exploration
in the early phases of their development cycle. The paper
describes how powerful directives are used to provide
high-level architectural tradeoffs for the DSP designer.
The MATCH compiler has been transferred to a startup
company called AccelChip which has developed a
commercial version of the compiler called AccelFPGA.
Experimental results are reported using AccelFPGA on a
set of nine MATLAB benchmarks that are mapped onto
the recent Xilinx Virtex II and Altera Stratix FPGAs. The
benchmark programs range in complexity from 20 lines to
170 lines of MATLAB code and produce VHDL code
ranging from 1500 to 4500 lines of code. The
compilation times range from 3 seconds to 40 seconds.

1. Introduction

The performance requirements of today’s communication
systems, such as 3G and 4G wireless communication
systems, MPEG4 video and Video over IP, now exceed
the capabilities of general-purpose processors. With the
introduction of advanced Field-Programmable Gate Array
(FPGA) architectures such as the Xilinx Virtex-II [14],
and the Altera Stratix [2], a new hardware alternative is
available for DSP designers that combines all the benefits

of general-purpose processors with the performance
advantage of ASICs.

DSP design has traditionally been divided into two types
of activities – systems/algorithm development and
hardware/software implementation. The majority of DSP
system designers and algorithm developers use the
MATLAB language [9]. The first step in this flow is the
conversion of the floating point MATLAB algorithm, into
a fixed point version using quantizers from the Filter
Design and Analysis (FDA) Toolbox for MATLAB.
Algorithmic tradeoffs such as the precision of filter
coefficients and the number of taps used in a filter are
performed at the MATLAB level. Hardware design
teams take the specifications created by the systems
engineers and algorithm developers (in the form of a fixed
point MATLAB code) and create a physical
implementation of the DSP design. If the target is an
FPGA, PLD or ASIC, the first task is to create a register
transfer level (RTL) model in a hardware description
language (HDL) such as VHDL and Verilog. The RTL
HDL is synthesized by a logic synthesis tool, and placed
and routed onto an FPGA using backend tools. The
process of creating an RTL model and a simulation
testbench takes about one to two months with the tools
currently used today.

Figure 1. Automated design using MATCH

This paper described the MATCH compiler developed at
Northwestern University under sponsorship of the
DARPA Adaptive Computing Systems program. The
MATCH compiler reads in fixed point MATLAB
behavioral models and automatically outputs
synthesizable RTL models in VHDL. The resultant RTL
VHDL is bit-true with the original fixed point MATLAB
specification. The current manual and new automated
flow is shown in Figure 1. MATCH also allows users to
perform quick iterations of hardware designs, allowing
area and speed trade offs and architecture exploration.

2. Related Work

The problem of translating a high-level or behavioral
language description into a register transfer level
representation is called high-level synthesis [6].
Synopsys developed one of the first successful
commercial behavioral synthesis tools in the industry, the
Behavioral Compiler [12], which took behavioral VHDL
or Verilog and generated RTL VHDL or Verilog.
Recently, there has been a lot of work in the use of the C
programming language and other high-level languages to
generate synthesizable HDL codes or hardware
implementations [7,10]. There have been several
commercial efforts to develop compilers taking C/C++
into VHDL or Verilog. Examples are CoWare, Adelante
[1], Celoxica [3], C Level Design [4] and Cynapps [5].
SystemC is a new language developed by the SystemC
consortium which allows users to write hardware system
descriptions in a language similar to C++ [11]. Synopsys
has a tool called Cocentric which takes SystemC and
generates RTL VHDL/Verilog.

While there are some companies which develop related
tools from C or C++ to VHDL and Verilog, this paper
describes the MATCH compiler [8] from Northwestern
University that takes behavioral MATLAB descriptions
(the default language of DSP design) and generates RTL
VHDL for FPGA design. Some of the unique and
challenging features of the MATLAB language are the
support for array operations (operating on matrices
instead of scalars), an interpretive environment where the
types and shapes of variables are not declared at compile
time but inferred at runtime, and a very powerful set of
built in library functions.

3. Directives in MATCH Compiler

MATCH compiler directives are used to bridge the gap
between the MATLAB source and the synthesis of the
computational structures created by MATCH. The most
important role of the directives is for the user to provide
the tool domain specific knowledge as well as
opportunities of many optimizations. Every compiler

directive is prefixed by “%!ACCEL”. This makes the
directives appear as comments to other environments
dealing with MATLAB since all comments in MATLAB
start with %. Some of these directives are described in
more detail below.

3.1. TARGET Directive

By specifying the %!MATCH TARGET XC2V250
directive, the compiler becomes aware of the
characteristics of that target Virtex II architecture, namely
that it can support 1536 Combinational Logic Blocks, 48
Kbits of distributed RAM, 24 embedded multipliers, 24
embedded RAM blocks. By specifying the %!MATCH
TARGET EP1S10 directive, the compiler becomes aware
of the characteristics of the Altera Stratix architecture,
namely that it consists of 94 M512 RAM Blocks, 60 M4K
RAMs, 1 MegaRAM Blocks, 6 DSP Blocks, and a 40 X
30 array of Logic Array Blocks.

Figure 2. Illustration of the TARGET directive.

3.2. BEGIN_HARDWARE Directive

MATCH allows the user to use hardware partitioning
directive to demarcate parts of the input source that are
targeted for hardware synthesis and parts that are not. The
BEGIN_HARDWARE and END_HARDWARE
directives indicate a section of MATLAB code that is
intended for hardware synthesis.

3.3. SHAPE Directive

MATLAB is designed to be an interpretive environment
where the types and shapes of variables are determined at
run time. For the purpose of compiling MATLAB
programs to hardware in order to generate VHDL or
Verilog, it is necessary to determine the types and shapes
of all variables at compile time. The shape directives are
used to convey necessary shape information with respect
to the variables that appear within the hardware section of

the source code that is being mapped into hardware. For
example, %!MATCH SHAPE a(30,40,50) defines a 3-
dimensional array ‘a’ with 30, 40, and 50 elements in the
corresponding dimensions. The shape information is
required for array variables that appear in the hardware
section (for MATLAB programs enclosed within the
BEGIN_HARDWARE and END_HARDWARE
directives). The compiler attempts to infer the shapes of
many dependent variables.

3.3. STREAM Directive

The purpose of the STREAM directive is the specification
of the type of data flow that inputs and outputs of the
synthesized hardware will handle. Streaming data is
defined as data with a regular rate of flow through the
hardware. For systems that will handle streaming data,
MATCH supports the automatic creation of ports with the
required buffering mechanisms to sustain the regular flow
of data with the use of the STREAM directive. These
mechanisms include ‘double-buffering’ to allow
concurrent processing of data and buffering of new data
samples. The syntax of the STREAM directive is as
follows.
%!MATCH STREAM <stream-index>
for stream-index = STARTVAL:STRIDE:ENDVAL
 BEGIN_HARDWARE indata
 in_buf = indata(stream-index);
 …
 outdata(stream-index) = out_buf;
 END_HARDWARE outdata
end

where stream-index is the index in the control statement
of a ‘for’ loop

Figure 3. Illustration of the UNROLL directive.

3.4. UNROLL Directive

The UNROLL directive is a mechanism to expand the
source MATLAB to create more copies of loop bodies,
thereby increasing performance optimizations. Let us
consider an example MATLAB for loop.

%!MATCH UNROLL 4
for i = 1: 16
 sum = sum + b(i) * c(i) ;
end;

Without the UNROLL directive, the MATLAB code has
one addition and one multiplication operation in the data
flow graph of its basic block hence the MATCH compiler
will generate an RTL VHDL or Verilog which will use
one adder and one multiplier to schedule this computation
which will take 16 cycles. If the code were to be unrolled
as shown, the loop body will be replicated four times and
the loop index in successive copies are incremented. In
addition, scalars that carry values from one iteration to
another iteration are renamed. For example, the scalar
“sum” would be renamed in successive copies. This
exposes opportunities to chain operations to the compiler.

for i = 1:4:16
 sum1 = sum + b(i) * c(i);
 sum2 = sum1 + b(i+1)* c(i+1);
 sum3 = sum2 + b(i+2)* c(i+2);
 sum = sum3 + b(i+3)* c(i+3);
end;

MATCH now recognizes four addition and four
multiplication operations in each basic block hence it will
schedule it across four cycles using four adders and four
multipliers in parallel. The UNROLL directive is
therefore used by the user to generate different area-delay
hardware alternatives. It is illustrated in Figure 3.

Figure 4. Illustration of the PIPELINE directive.

3.5. PIPELINE Directive

Pipelining increases the throughput of a datapath by
introducing registers in the datapath. This increase in
throughput is particularly important when the datapath is
iterated in the overall design. The PIPELINE directive is
placed just before the loop, whose body is to be pipelined.
For pipelining function bodies the directive is placed just
above the function definition.

%!MATCH PIPELINE
for i = init: end
 for body ……..
end;

%!MATCH PIPELINE
function x = foo(y)
 function body …..
end;

The PIPELINE directive is illustrated in Figure 4.

4. Results on Benchmarks

The MATCH compiler has been commercialized by a
company called AccelChip [15] in a product called
AccelFPGA

We now report some experimental results on various
benchmark MATLAB programs using the AccelFPGA
compiler.

• A 16 tap Finite Impulse Response Filter
• A 64 tap memory mapped tiled FIR filter
• A Decimation in Time FIR filter
• A 64 point Fast Fourier Transform
• A Least Mean Square adaptive LMS filter
• An Infinite Impulse Response Filter of type DF1
• An Interpolation FIR filter
• A Block Matching Algorithm
• A Digital Subscriber Line (DSL) algorithm

Table 1 shows some benchmark characteristics of the
MATLAB programs. It can be seen that the MATLAB
programs vary in size from 20 lines to 175 lines with an
average length of 60. We also show the number of
directives used in the 9 benchmark programs. The
corresponding synthesizable RTL Verilog versions of the
designs are quite large, varying in size from 883 lines to
4188 lines with an average length of 2265. We also
include the compile times of AccelFPGA version 1.4 for
each of the benchmarks. All execution times were
measured on a Dell Latitude Model C610 laptop with a
1.2GHz Pentium III CPU, 512 MB RAM, and 80 GB hard
drive running Windows 2000. It can be seen that the
execution time varies from 2.5 seconds to 39 seconds.
We also include the compile times of the backend logic

synthesis tool, namely, Synplify Pro 7.1 [13] where the
times vary from 2.1 seconds to 872.4 second.

Table 2 shows the experimental results of the AccelFPGA
version 1.4 compiler on nine MATLAB benchmarks on a
Xilinx Virtex II device XC2V250. Results are given in
terms of resources used, and performance obtained as
estimated by the Synplify Pro 7.1 tool executed on the
RTL Verilog that was output by AccelFPGA. The
resource results are reported in terms of LUTS,
Multiplexers, embedded multipliers, ROMS and
BlockRAMS used. The performance was measured in
terms clock frequency of the design as estimated by the
internal clock frequency inferred by the Synplify Pro 7.1
tool, and the latency and throughput of the design in terms
of clock cycles by using the ModelSim 5.5e RTL
simulator.

Table 3 shows similar results for the nine MATLAB
benchmark examples on an Altera Stratix EP1S10 device.
Resources are measured in LUTS, ATOMS, MACs, and
DSP Blocks, and performance is again measured in clock
frequency, latency and throughput.

5. Conclusions

This paper described a behavioral synthesis tool called
MATCH which reads in high-level descriptions of DSP
applications written in MATLAB, and automatically
generates synthesizable RTL models and simulation
testbenches in VHDL or Verilog. The RTL models can be
synthesized using commercial logic synthesis tools and
place and route tools onto FPGAs. By linking the two
design domains of DSP and FPGA hardware design,
MATCH provides DSP design teams a significant
reduction in design labor and time, elimination of
misinterpretations and costly design rework, automatic
verification of the hardware implementation, and the
ability of systems engineers and algorithm developers to
perform architectural exploration in the early phases of
their development cycle. The paper described how
powerful directives are used to provide high-level
architectural tradeoffs for the DSP designer.
Experimental results were reported on a set of nine
MATLAB benchmarks that are mapped onto the recent
Xilinx Virtex II and Altera Stratix FPGAs.

6. Acknowledgements

This research was supported by the Defense Advanced
Research Projects Agency (DARPA) under Contract
F30602-98-2-0144.

7. References

[1] Adelante Technologies, A|RT Builder,
www.adelantetechnologies.com
[2] Altera, Stratix Datasheet, www.altera.com
[3] Celoxica Corp, Handle C Design Language,
www.celoxica.com
[4] System Compiler: Compiling ANSI C/C++ to Synthesis-
ready HDL. Whitepaper. C Level Design Incorporated.
www.cleveldesign.com
 [5] CynApps Suite. Cynthesis Applications for Higher Level
Design. www.cynapps.com
 [6] G. DeMicheli, Synthesis and Optimization of Digital
Circuits, McGraw Hill, 1994
[7] Esterel-C Language (ECL). Cadence website.
www.cadence.com

 [8] M. Haldar, A. Nayak, A. Choudhary, and P. Banerjee, “A
System for Synthesizing Optimized FPGA Hardware from
MATLAB,” Proc. International Conference on Computer Aided
Design, San Jose, CA, November 2001, See also
www.ece.northwestern.edu/cpdc/Match/Match.html.
[9] Mathworks Corp, MATLAB Technical Computing
Environment, www.mathworks.com
[10] De Micheli, G. Ku D. Mailhot, F. Truong T. The Olympus
Synthesis System for Digital Design. IEEE Design & Test of
Computers 1990.
[11] Overview of the Open SystemC Initiative. SystemC
website. www.systemc.org
[12] Synopsys Corp, Behavioral Compiler Datasheet,
www.synopsys.com
[13] Synplicity. Synplify Pro Datasheet, www.synplicity.com.
[14] Xilinx, Virtex II Datasheet, www.xilinx.com
[15] AccelChip, AccelFPGA Datasheet, www.accelchip.com

Table 1. MATLAB Benchmark Characteristics.

Benchmark fir16tap fir64tap fft64 dec_fir lms iirdf1 int_fir bma dsl
MATLAB
Lines 20 40 98 38 39 33 38 63 175
Directives
Used 6 8 9 6 6 6 7 10 9
Verilog
Lines 957 1312 4188 1333 2219 883 1084 2758 5654
MATCH
Time (sec) 4.0 39.0 10.2 8.9 20.8 2.7 2.5 12.3 38.8
Synplify
Time (sec) 3.6 248.7 698.8 32.6 872.4 2.1 9.5 11.9 382.1

Table 2. Results of the AccelFPGA 1.4 compiler on a Xilinx Virtex2 XC2V250 device for nine MATLAB
benchmarks.

Benchmark Resources Performance

 LUTS MUX MULTs ROMS RAMS
Freq

(MHz)
Latency
(cycles)

Thruput
(1/cycle)

fir16tap 373 326 8 8 0 134.2 20 1

fir64tap 1654 330 16 8 16 79.7 59 55

fft64 4212 1473 4 16 2 66.8 5722 4

dec_fir 1356 1209 0 0 0 61.2 8 5

lms 10735 5377 4 0 0 44.2 328 324

iirdf1 119 47 2 0 0 107.1 11 7

int_fir 254 49 1 6 0 75.3 79 75

bma 929 512 0 0 3 72.3 230072 228342

dsl 7145 3055 5 16 0 38.8 3114 2883

Table 3. Results of the AccelFPGA 1.4 compiler on a Altera Stratix EP1S10 device for nine MATLAB

benchmarks.

Benchmark Resources Performance

 LUTS ATOMS
DSP
MAC

DSP
BLOCK ROMS RAMS

Frequency
(MHz)

Latency
(cycles)

Throughput
(1/cycles)

fir16tap 287 547 4 1 1 0 129.8 20 1

fir64tap 2125 2702 16 2 0 16 78.1 59 55

fft64 4439 8361 4 1 0 2 84.3 5722 4

dec_fir 570 1166 1 1 0 0 78.9 8 5

lms 12667 20447 3 3 0 0 48.9 328 324

iirdf1 103 170 3 1 0 0 103.4 11 7

int_fir 311 578 1 1 0 0 67.6 79 75

bma 905 1037 0 0 0 3 57.4 230072 228342

dsl 8514 19905 5 2 0 0 50.3 3114 2883

	Main
	ASP-DAC03
	Front Matter
	Table of Contents
	Author Index

