
Multi-level Placement for Large-Scale Mixed-Size IC Designs∗

Chin-Chih Chang†, Jason Cong and Xin Yuan
Department of Computer Science, University of California

Los Angeles, CA 90095 USA
e-mail: {cchang, cong, yuanxin}@cs.ucla.edu

Abstract— In this paper we study the large-scale mixed-size
placement problem where there is a significant size variation be-
tween big and small placeable objects (the ratio can be as large as
10,000). We develop a multi-level optimization algorithm,MPG-
MS, for this problem which can efficiently handle both large-scale
designs and large size variations. Compared with the recently
published work [1] on large-scale mixed macro and standard cell
placement benchmarks for wirelength minimization, our method
can achieve 13% wirelength reduction on average with compara-
ble runtime.

I. INTRODUCTION

Circuit placement is an important step in VLSI physical de-
sign as it defines the interconnects which determine the over-
all performance of the final layout in deep submicron designs.
This problem has been extensively studied in the past several
decades. Historically, due to its complexity, the placement
problem has been classified into two separate problems. One is
called the gate/cell placement problem, where the designs con-
sist of a large number of small placeable objects with similar
sizes, as in the standard cell designs. The other is the so-called
module/block placement (floorplanning) problem, which con-
sists of a small number of large blocks (typically around a hun-
dred), with possibly flexible aspect ratios. For the gate/cells
placement problem, the optimization objectives include wire-
length, delay, and routability, etc. Heuristic methods, such as
min-cut-based algorithms and quadratic placement algorithms,
were developed to handle the cell placement problem with em-
phasis on handling the high complexity. For the floorplanning
problem, handling non-overlapping constraints and soft mod-
ules has been the major challenge. Several abstract floorplan
representations, such as sequence-pair [2] and TCG [3], were
developed to represent the overlap-free legal solutions which
include an optimal solution. Various searching algorithms,
such as simulated annealing, can be used to search for the op-
timal solution based on these representations.

With the advance of IC technology, especially with the reuse
of IP blocks for multi-million-gate ASICs and SOC designs,

∗This work is supported in part by Semiconductor Research Corporation
under Contract 2001-TJ-910, National Science Foundation under Grant CCR-
0096383, a Faculty Partnership Award from IBM Corporation, a grant from
Intel Corporation and a grant from Fujitsu Laboratories of America under the
California MICRO program.

†Dr. Chang is with Cadence Design Systems, Inc. 555 River Oaks Park-
way, San Jose, CA 95134 USA.

0.1

1

10

100

1000

10000

100000

1 10 100 1000 10000

#o
bj

ec
ts

 (
to

ta
l #

ob
je

ct
s=

21
0,

34
1)

area (normalized with min. area=1)

ibm18: placeable objects area distribution

Fig. 1. Area distribution of placeable objects in circuit ibm18

most of modern IC designs consist of a very large number of
standard cells mixed with many big macros, such as ROMs,
RAMs and IP blocks. For example, Figure 1 shows the area
distribution of the placeable objects of circuit ibm18 1 released
from [1]. It shows that the number of placeable objects is very
large (easily over 100,000) and the number of big objects can
be as many as several hundreds. Moreover, it shows that the
size ratio between big and small objects can be as large as
10,000. 2

The traditional standard-cell placement techniques usually
assume that the placeable objects have identical or similar
sizes, while the floorplanning techniques usually can not han-
dle the large-scale placement problem. Therefore, none of
them is capable of solving the large-scale mixed-size place-
ment problem alone. A common approach to this problem is to
use a hierarchical design flow [5, 6, 7], where the standard cells
are first partitioned into blocks using either the logical hierar-
chy or min-cut-based partitioning algorithms. Floorplanning is
then performed on the partitioned blocks, together with macros
for area and wirelength minimization. Finally, the cells in each
block are placed separately. Though this method can reduce
the problem size to the extent where the floorplanning tech-
nique can be applied, the quality of the final placement may
not be good. As pointed out in [8], pre-partitioning standard
cells to form rectangular blocks may prevent such a hierarchi-
cal method from finding an optimal or near-optimal solution in

1It was derived from ISPD-98 (IBM) circuit benchmarks [4] for mixed
macro and standard cell placement.

2We categorize placeable objects into big and small objects based on the
assumption that the size difference between large and small objects should be
greater than 20 or 30.



terms of wirelength and delay minimization.
Therefore, a new methodology was proposed in [8], which

first flattens the logical hierarchy to the extent that we are cer-
tain that the circuit elements in each module of the flattened
hierarchy should physically stay together. Then a physical hi-
erarchy is generated, which defines the global, semi-global,
and local interconnects (based on their levels in the physical
hierarchy). The physical hierarchy generation process deter-
mines the rough locations of the placeable objects in the flat-
tened hierarchy which can include standard cells, small func-
tional blocks (such as 32-bit adder, shifter, etc.), hard IP blocks
and soft IP blocks. The core of the physical hierarchy genera-
tion is to solve the large-scale mixed-size placement problem
for the flattened designs.

In this paper, we propose a multi-level placement algorithm,
called MPG-MS, for large-scale mixed-size IC designs. The
inputs include a set of placeable objects, netlist, I/O pads, the
target chip width and height, and delay information for each
placeable object. Pin locations are provided for objects with
a fixed dimension. For soft objects with flexible aspect ratios
under a fixed area, pin locations are assumed to be at the cen-
ters of the objects. 3 The outputs include a valid placement
solution of all the placeable objects, the orientations of big ob-
jects, and aspect ratios of soft objects. The optimization ob-
jectives can be wirelength minimization, delay minimization,
routability optimization, or a combination of them. We adopt
the multi-level optimization method to handle this problem.
Mixed-size placeable objects are simultaneously placed, the
locations of larger objects are gradually fixed, and overlaps be-
tween larger objects are gradually removed while the locations
of smaller objects are further refined during the multi-level op-
timization process. In this paper, we focus on wirelength min-
imization, however we think that the proposed method can be
applied to other objectives as well.

The remainder of this paper is organized as follows. Sec-
tion II reviews the previous work. Section III describes our
placement algorithm, MPG-MS. The experimental results are
shown in Section IV, followed by the conclusions and future
work in Section V.

II. PREVIOUS WORK

Early approaches to the mixed-size placement problem
use iterative improvement methods, i.e., simulated annealing-
based placement techniques [9, 10], to simultaneously place
the big and small objects. Although they give good results for
small to medium-size designs, such methods have difficulty in
scaling to very large designs due to their high complexity.

In [11], a quadratic placer was extended and combined
with a two-level clustering scheme to handle the mixed macro
and standard cell placement problem. However, the testcases
in [11] were not large enough to demonstrate the effectiveness
of this method for large-scale designs.

3Pin assignment can be performed during the placement phase. In this
paper, we will not consider pin assignment during the placement.

Recently, a placement-floorplanning-placement flow [1] was
presented to place designs with macros and a large number of
small standard cells. This flow is similar to the hierarchical
design flow as both of them use floorplanning techniques to
generate an overlap-free floorplan followed by standard cell
placement. Rather than using pure partitioning algorithms to
generate blocks for standard cells, this flow proposes to use an
initial placement result to guide block generation for standard
cells. As we pointed out in Section I, such a hierarchical ap-
proach may lead to sub-optimal solutions, which is confirmed
by the results of our method.

III. MULTI-LEVEL PLACEMENT FOR LARGE-SCALE

MIXED-SIZE DESIGNS: MPG-MS

The major challenge in placing big and small objects to-
gether is how to handle the interaction between placing big
and small objects. Without a good initial placement for big ob-
jects, the final placement may not be good, as the placement
of small objects will largely depend on the locations of the big
objects. On the other hand, placing big objects without con-
sidering small objects will not yield a favorable result, as the
interconnections between small objects can not be ignored and
they will play a somewhat important role in determining the
quality of the final layout. Therefore we shall place them si-
multaneously. However, moving a big object can greatly affect
wirelength, delay, and other objectives, and it is harder to re-
move the overlap between big objects than for small objects.

We think this problem can be nicely solved using the multi-
level optimization method which has been successfully applied
to several VLSI CAD areas, such as partitioning, cell place-
ment and routing. The multi-level optimization method is very
good at efficiently handling high complexity design problems.
It consists of a coarsening phase and a refinement phase. In
the multi-level optimization approach for the placement prob-
lem, placeable objects are clustered in the coarsening phase
and gradually declustered and refined in the refinement phase
by performing placement. The coarsening phase helps to re-
duce not only the problem size, but also the size variation be-
tween placeable objects at each level so that placement tech-
niques can be more efficiently applied in the refinement phase.
At each level in the refinement phase, the placer looks at a dif-
ferent level of abstraction of the flat design. Such abstraction
provides enough detailed information of small objects for the
placer to place big objects and small objects simultaneously.
When a good initial placement for big objects is obtained, we
shall fix their locations so that the placement of the small ob-
jects can be further optimized. When we fix the locations of
the big objects, we shall generate an overlap-free placement
for them based on the initial placement, keeping their loca-
tions as close to the initial placement as possible in order to
have a consistent placement solution. We call this process big
objects legalization. Figure 2 illustrates the proposed multi-
level mixed-size placement flow.

Our algorithm, MPG-MS, follows the simulated annealing-
based multi-level optimization framework MPG proposed



����
����
����

����
����
����

���
���
���

���
���
���

���
���
���
���

���
���
���
���

��
��
��
��

�
�
�

�
�
� ���

���
���
���

����
���
���
���
���

���
���
���

���
���
���

���
���
���
���

�
�
�

�
�
� ��

��
��
��

������
��
��
��
��

����

Level 0

Level K

C
oarsening by clustering

Coarsest level placement

U
ncoasening and refinem

ent by placem
ent and big objects legalization

fixed big object

big object

small object

cluster

big objects legalization

big objects legalization

Fig. 2. Multi-level mixed-size placement flow

in [12], which will be reviewed in the next subsection.

A. Review MPG

In MPG, the coarsening is performed by recursively cluster-
ing the placeable objects using the FirstChoice (FC) clustering
algorithm [13] to build a hierarchy of netlist and placement in-
stances from level L0 to L1, . . ., Ln. Level L0 represents the
input netlist and placement instance. Level Ln represents the
coarsest level where the number of clusters is no less than a
user-specified number, say 500. The refinement is performed
by placing the clusters at each level to a bin structure using SA
techniques. There are two key techniques that enable MPG to
handle large-scale designs: a hierarchical area density control
mechanism and the simulated annealing technique for multi-
level optimization. Due to page limitations, we will not ex-
plain them in detail. 4 In general, other placement techniques
can also be used at each level in the refinement phase.

B. Our Flow: MPG-MS

We first place the big and small objects to a bin structure5 us-
ing the multi-level optimization method. After a coarse place-
ment result is generated, (which is also an overlap-free place-
ment for big objects), a detailed placement is performed to re-
move the overlap between the small objects. The following

4Please refer to [12] on how these two techniques efficiently place a large
number of objects with different sizes.

5The bin structure can be specified by users or automatically set accord-
ing to the design size. In general, the placement bin structure should be fine
enough so that the wirelength estimated in the coarse placement stage is close
to the wirelength estimated in the detailed placement stage.

section mainly focuses on how to handle big objects in the SA-
based multi-level placement framework.

B.1 Coarsening Phase

Big objects will not be clustered at the beginning of the coars-
ening phase, but will be gradually clustered at coarser levels,
as we need to fix the locations for big objects before we reach
level L0 in the refinement phase. In order to do that, we first
classify the big objects into several groups according to their
sizes. Big objects with similar sizes can be clustered from the
same level. In that manner, we can gradually cluster big ob-
jects with other clusters, or small objects. Not allowing big
objects to be clustered at all will deteriorate the quality of the
clustering result measured by the connectivity and thus affect
the efficiency of refinement.

B.2 Refinement Phase

After we decluster the clusters in level Li+1, big objects will
appear at level Li if they are clustered in level Li+1. Big ob-
jects that are legalized are called fixed big objects. Big objects
that need to be legalized at current level are called floating big
objects. The hierarchical area density control mechanism com-
bined with SA-based moves can efficiently place objects with
different sizes. In addition to moving placeable objects from
bin to bin, changing the orientations of hard objects and the
aspect ratios of soft objects are included in SA moves. Af-
ter the SA process we get a placement for the current level
which may not be an overlap-free placement for big objects.
If the placement of big objects is valid, i.e., overlap-free, we
do nothing and move to the next level of refinement; other-



wise, we need to generate an overlap-free placement for big
objects which is as close to the original placement as possible.
Given an invalid placement of big objects, the problem is how
to move them to get an overlap-free placement under the chip
dimension constraints, while trying to minimize the placement
change (movement). This is a non-trivial problem, as the rect-
angle packing problem under the chip dimension constraints is
NP-complete [14], let alone the goal of minimizing the move-
ment. We call it the big objects legalization problem. There-
fore, we propose a heuristic flow to handle it.

First, given the initial placement, we check whether it is pos-
sible to get a valid placement for big objects under the target
chip dimension constraints. This is called feasibility check-
ing (Section B.3). The placement is called feasible if it passes
the feasibility checking. Depending on the result of feasibility
checking, we then use one of the following two schemes to le-
galize the big objects: the complete legalization scheme if the
initial placement is feasible, or the partial legalization scheme
if it is not. The complete legalization scheme (Section B.4)
generates an overlap-free placement based on a feasible ini-
tial placement. The partial legalization scheme (Section B.5)
tries to remove partial overlap and to fix part of the big ob-
jects. According to the locations of newly fixed big objects,
we again need to perform SA-based placement at the current
level to place the remaining clusters if the complete legaliza-
tion scheme is used, or to place floating big objects together
with clusters if the partial legalization scheme is used, hoping
that the SA process can remove the overlap and bring another
better initial placement for the floating big objects. Fixed big
objects can not be moved in the SA process. The wirelength-
driven SA process, combined with the hierarchy area density
control mechanism can push the overlapping movable clusters
or floating big objects away from fixed big objects while trying
to minimize the total wirelength. After SA placement is com-
pleted, we do the legalization again if any floating big objects
exist. If, after several iterations, all the big objects still can not
be legalized, we give up at this level and proceed to refinement
at the next level. If it still fails at level L0, we report failure.
Figure 3 illustrates how the big objects legalization and the SA
process are integrated.

B.3 Feasibility Checking

In order to preserve the relative locations between the big ob-
jects, sequence-pair (SP) representation [2] is used to capture
the relationship between the locations of the big objects in the
invalid placement.

First we generate an SP from the invalid placement of the
big objects by modeling each big object as a point (without
dimension) located at the center of the object in the coordinate
system. We then rotate the coordinate system clockwise 45
degrees. After we sort the big objects according to their x and
y coordinates in the rotated system in non-decrease order, Γ+

is set to the order list according to the x coordinates and Γ− is
set to the order list according to the y coordinates. An example
is shown in Figure 4.

Level Li

Y N

SA-based placement

Level Li-1

complete legalization partial legalization

delcustering

feasibility checking

is it feasible?

is big objects placement valid? N

Y

Fig. 3. Interaction between big objects legalization and SA-based placement

a

c

e

d

b

ff

c

e
a d

b

(a) (b)

Fig. 4. An example of deriving an SP from a given placement. (a)A given

placement of big objects. (b)In the rotated coordinate system, each object is

modeled as a point located at the center of the object. The SP (Γ+, Γ−) =

(ecadfb, fcbead).

According to the derived SP, we can build the horizontal-
constraint graph GH and vertical-constraint graph GV . The
vertex-weight w(v) of vertex v in GH (GV ) is set to the width
(height) of the corresponding object. No weight is associated
with the edges. If the longest path in GH (GV ) is not longer
than the width (height) of the chip W (H), this SP is con-
sidered to be feasible and the complete legalization scheme is
used to generate an overlap-free placement; otherwise it is in-
feasible and the partial legalization scheme is used. 6

B.4 Complete Legalization Scheme

After we determine that an SP is feasible, we are sure that at
least the packing solution can guarantee an overlap-free place-
ment. However, we also need to move big objects as little
as possible from their original locations in order to minimize

6Note that the SP derived by our algorithm may not be the best SP that can
lead to a feasible placement. We can swap adjacent elements in SP to reduce
the longest path while trying to maintain the relative relationship between ob-
jects’ locations. A couple of heuristic methods were introduced in [15] trying
to transform an infeasible SP to a feasible SP. We can use them. However such
heuristics still can not guarantee success.



the extra movement due to the overlap removal and thus make
the big objects placement result as consistent with the initial
placement of the current level as possible.7 We use a heuris-
tic method, called longest path compaction, for this problem.
It adjusts the distance between non-overlapping big objects in
order to push the overlapping big objects away. First we add
weight to the edges in GH (GV ) in the following way: for
an edge ei→j connecting object (vertex) i and j, if there is
no overlap between them, the edge weight w(e) is set to the
horizontal (vertical) distance between object i and j in the
initial placement; otherwise it is set to zero. We then com-
pute the longest path in the modified GH (GV ). If there ex-
ists a path p = (v1, . . . , vn) in GH (GV ) whose length ex-
ceeds the width (height) of the chip W (H), we “compact” the
path by reducing the positive edge weight. For example, in
GH , for the longest path p, where length(p) =

∑
v∈p w(v) +∑

e∈p w(e) > W , we compute the value of scale factor k,
where k = (W − ∑

v∈p w(v))/
∑

e∈p w(e). Because passing
the feasibility check can guarantee that W − ∑

v∈p w(v) ≥ 0,
k is a number between 0 and 1, i.e., 0 ≤ k < 1. We then
reduce the edge weight w(e) to k · w(e), i.e., proportionally
scale down the distance between the non-overlapping objects.
After compacting one path, other paths’ lengths may change.
Therefore we need to re-compute the longest path and compact
it until the length of the longest path does not exceed the chip
dimension. As each time when we compact a path, the positive
weights of edges in this path decrease, other paths’ lengths will
not increase and thus the process will converge after, at most,
m iterations, where m is the number of paths whose lengths
exceed the chip dimension before the process of longest path
compaction starts. After the compaction process, we can get
an overlap-free placement for the big objects.

B.5 Partial Legalization Scheme

When the SP is infeasible, we have to partially fix the locations
for some non-overlapping big objects using heuristic methods.
For a fixed big object, if it overlaps with other floating big ob-
jects, we first identify them and then push them aside to remove
the overlap. For a floating big object, we identify a group of
floating big objects which overlap with it and pack them to re-
move the overlap. We then fix the big objects that do not over-
lap with others and re-perform the SA-based placement at the
current level. Big objects that have been fixed are not moved
in the SA process. The 2nd-round SA process tends to move
the overlapping objects away from the fixed objects. We then
perform legalization again on the SA placement result. If after
several iterations, all the big objects still can not be legalized,
we give up at this level and proceed to refinement at the next
level. If it still fails at level L0, we report failure.

7In fact, the problem can be formulated into a nonlinear programming
(NLP) problem where the constraints are the requirement that no two big ob-
jects overlap spatially and the objective is to minimize the sum of extra move-
ment due to overlap removal. However, it is very expensive to solve such NLP.

TABLE I BENCHMARK CHARACTERISTICS

circuit #cells #MAs #pads #nets
∑

Am Ab
m Ab

m : As
m : As

c

ibm01 12260 246 246 14111 67.13% 6.37% 8416:252:1
ibm02 19071 271 259 19584 76.89% 11.36% 30042:240:1
ibm03 22563 290 283 27401 70.75% 10.76% 33088:240:1
ibm04 26925 295 287 31970 59.82% 9.16% 26593:240:1
ibm05 28146 0 1201 28446 0.00% 0.00% -
ibm06 32154 178 166 34826 72.90% 13.64% 36347:175:1
ibm07 45348 291 287 48117 52.56% 4.75% 17578:240:1
ibm08 50722 301 286 50513 67.35% 12.11% 50880:240:1
ibm09 52857 253 285 60902 52.42% 5.42% 29707:240:1
ibm10 67899 786 744 75196 81.37% 4.80% 71299:252:1
ibm11 69779 373 406 81454 49.76% 4.48% 29707:240:1
ibm12 69788 651 637 77240 73.00% 6.43% 74256:252:1
ibm13 83285 424 490 99666 47.64% 4.22% 33088:240:1
ibm14 146474 614 517 152772 26.72% 1.99% 17860:144:1
ibm15 160794 393 383 186608 43.34% 11.00% 125562:240:1
ibm16 182522 458 504 190048 48.71% 1.89% 31093:252:1
ibm17 183992 760 743 189581 23.78% 0.94% 12441:252:1
ibm18 210056 285 272 201920 11.96% 0.96% 10152:243:1

IV. EXPERIMENTAL RESULTS

We implemented MPG-MS in C++/STL and tested it on a
Sun Blade 1000 workstation running at 750MHz frequency.
The testcases, downloaded from [16] in the GSRC Bookshelf
format, are large-scale, mixed macro and standard cell place-
ment benchmarks, except for circuit ibm05. The macros are
all hard blocks with fixed aspect ratios and pin locations. The
locations of I/O pads are given and not moved during place-
ment. The circuits’ characteristics are listed in Table I which
consists of the number of standard cells (#cells), the number
of macros (#MAs), the number of I/O pads (#pads), the num-
ber of nets (#nets), the total macro area vs. the total area of
standard cells and macros in percentage (tot. Am), the area
of the biggest macro vs. the total area of standard cells and
macros in percentage (Ab

m), and the ratio between the area
of the biggest macro, the smallest macro and the smallest cell
(Ab

m : As
m : As

c). We compared our placement results of wire-
length (WL) and runtime (CPU) with those reported in [1] 8

in Table II. We also shown the total number of levels in the
refinement phase for each circuit in the column titled “#LVs”,
the legalization schemes used for big objects legalization in the
form Ci|P i

j , where Ci refers to performing the complete legal-
ization scheme at level Li, P i

j stands for running j iterations of
the partial legalization scheme followed by a complete legal-
ization scheme at level Li. Figure 5 shows the final placement
generated by our method for circuit ibm02.

These results show that our method MPG-MS can consis-
tently out-perform the flow proposed in [1] with an average
wirelength reduction of 13%, which demonstrates the effi-
ciency of our method in handling such large-scale mixed size
placement problem.

V. CONCLUSIONS AND FUTURE WORK

In this paper, we present a method to handle the large-scale,
mixed-size placement problem for fixed die-size IC designs. It

8Their runtimes were measured on a 1GHz PC/Intel system running Linux.



TABLE II WIRELENGTH AND RUNTIME COMPARISON WITH [1]

circuit [1] Flow MPG-MS

WL CPU WL WL CPU #LVs legalization
(min) improve (min) scheme

ibm01 3.96e6 18 3.01e6 24% 18 4 C3, C2

ibm02 8.37e6 31 7.42e6 11% 32 4 C3, P 2
2

ibm03 1.22e7 42 1.12e7 8% 32 4 C3, C2

ibm04 1.35e7 47 1.05e7 22% 42 4 C3, P 2
2

ibm05 1.15e7 8 1.09e7 5% 36 4 -
ibm06 1.03e7 56 9.21e6 10% 45 5 C4, C3, C2

ibm07 1.58e7 58 1.37e7 13% 68 5 C4, C2

ibm08 2.12e7 94 1.64e7 22% 82 5 C4, P 2
2

ibm09 1.96e7 66 1.86e7 5% 84 5 C4, C3, C2

ibm10 6.07e7 229 4.36e7 28% 172 5 C4, C2

ibm11 2.85e7 106 2.65e7 7% 112 5 C4, C3, C2

ibm12 5.17e7 675 4.43e7 14% 153 6 C5, C4, P 2
10

ibm13 3.94e7 151 3.77e7 4% 151 5 C4, C2

ibm14 5.62e7 286 4.35e7 23% 276 6 C5, C4, C3, C2

ibm15 7.05e7 237 6.55e7 7% 385 6 C5, C4, C3, C2

ibm16 n/a n/a 7.24e7 - 436 6 C5, C4, C3, C2

ibm17 9.24e7 503 7.85e7 15% 606 6 C5, C4, C3, C2

ibm18 5.49e7 318 5.07e7 8% 437 6 C5, C2

avg. 13%

is based on a multi-level optimization approach. Mixed-size
placeable objects are simultaneously placed to obtain a good
initial placement for big objects, then the big objects are grad-
ually fixed and any overlap between the big objects is gradually
removed, while small object placement is further refined dur-
ing the multi-level optimization process. By integrating big ob-
jects placement and small objects placement into a single flow
with consistent objectives, we can better optimize the designs
compared with the hierarchical design flow where floorplan-
ning is performed for the partitioned blocks followed by the
standard cell placement. Experimental results on large-scale
mixed-size placement benchmarks show that our method can
out-perform the hierarchical flow by 13% on average in terms
of total wirelength. Though we show the result for wirelength
minimization using our proposed method, we believe that other
objectives can be optimized in a similar way. Therefore we
plan to incorporate other objectives, such as delay optimiza-
tion, into the optimization process when placing large-scale
mixed-size IC designs.

REFERENCES

[1] S. N. Adya and I. L. Markov, “Consistent placement of macro-
block using floorplanning and standard-cell placement,” in Proc.
Int. Symp. on Physical Design, pp. 12–17, 2002.

[2] H. Murata, K. Fujiyoshi, S. Nakatake, and Y. Kajitani, “VLSI
module placement based on rectangle-packing by the sequence-
pair,” IEEE Trans. on Computer-Aided Design of Integrated Cir-
cuits and Systems, vol. 15, no. 12, pp. 1518–1524, 1996.

[3] J.-M. Lin and Y.-W. Chang, “TCG: a transitive closure graph-
based representation for non-slicing floorplan,” in Proc. Design
Automation Conf, pp. 764–769, 2001.

[4] http://nexus6.cs.ucla.edu/˜cheese/ispd98.html.

Fig. 5. The final placement of circuit ibm02 (Blocks in light color are macros,

blocks in dark color are standard-cells).

[5] J. Apte and G. Kedem, “Heuristic algorithms for combined stan-
dard cell and macro block layouts,” in Advanced Research in
VLSI: Proc. of the Sixth MIT Conference, pp. 367–385, 1990.

[6] M. Upton, K. Samii, and S. Sugiyama, “Integrated placement
for mixed macro cell and standard cell designs,” in Proc. Design
Automation Conf, pp. 32–35, 1990.

[7] A. Shanbhag, S. Danda, and N. Sherwani, “Floorplanning for
mixed macro block and standard cell designs,” in Proc. the forth
Great Lakes Symp. on VLSI, pp. 26–29, 1994.

[8] J. Cong, “An interconnect-centric design flow for nanometer
technologies,” Proceedings of the IEEE, vol. 89, pp. 505–527,
April 2001.

[9] C. Sechen and A. Sangiovanni-Vincentelli, “The Timberwolf
placement and routing package,” IEEE Trans. on Computer-
Aided Design of Integrated Circuits and Systems, vol. 20, no. 2,
pp. 510–522, 1985.

[10] W. J. Sun and C. Sechen, “Efficient and effective placement for
very large circuits,” in Proc. Int. Conf. on Computer Aided De-
sign, pp. 336–339, 1990.

[11] H. Yu, X. Hong, and Y. Cai, “MMP: a novel placement algo-
rithm for combined macro block and standard cell layout de-
sign,” in Proc. Asia and South Pacific Design Automation Conf.,
pp. 271–276, 2000.

[12] C.-C. Chang, J. Cong, D. Pan, and X. Yuan, “Physical hierarchy
generation with routing congestion control,” in Proc. Int. Symp.
on Physical Design, pp. 36–41, 2002.

[13] G. Karypis and V. Kumar, “Multilevel k-way hypergraph parti-
tioning,” in Proc. Design Automation Conf, pp. 343–348, 1998.

[14] B. S. Baker, E. G. Coffman, and R. L. Rivest, “Orthogonal
packings in two dimensions,” SIAM J. Compute., vol. 9, no. 4,
pp. 846–855, 1980.

[15] S. Nag and K. Chaudhary, “Post-placement residual-overlap re-
moval with minimal movement,” in Proc. Design, Automation
and Test in Europe Conference, pp. 581–586, 1999.

[16] http://vlsicad.eecs.umich.edu/BK/ISPD02bench.


	Main
	ASP-DAC03
	Front Matter
	Table of Contents
	Author Index




