
A Simulated Annealing Approach with Sequence-Pair Encoding Using a Penalty
Function for the Placement Problem with Boundary Constraints

Satoshi TAYU
School of Information Science, Japan Advanced Institute of Science and Technology

1-1 Asahidai, Tatsunokuchi, Ishikawa, Japan

Abstract— The module placement is one of the most important
problem in the VLSI design. A practical VLSI placement prob-
lem often includes some constraints. In this paper, we propose
a penalty function approach for the efficient simulated annealing
search on the solution space of constrained problems. We ap-
ply the penalty function approach to the placement problem with
boundary constraints. Experimental results show that our pro-
posed method can accomplish more effective simulated annealing
search than the conventional method proposed in [3] for two mod-
ules sets, an MCNC benchmark ami49 and a randomly generated
module set.

I. INTRODUCTION

The module placement problem has been investigated in
connection with the optimization problem of VLSI physical
design and it is one of the most important subproblems. This
problem is to place given modules on the plane without over-
laps and its objective is to minimize the area of the minimum
rectangular bounding box. There are several approaches to the
problem and they have made a tremendous progress in VLSI
technology. However, as the number of modules in recent
VLSI systems becomes larger, it becomes harder to obtain a
placement with small area. In order to solve this problem effec-
tively, the stochastic methods such as the simulated annealing
approaches and genetic algorithms come to be employed. Sim-
ulated annealing approaches, using one of encoding schemes
such as bounded slice-line grid (BSG) [5], sequence-pair [4],
and ordered tree (O-tree) [7], are widely applied to the module
placement problem.

A sequence-pair is an ordered pair of permutations of mod-
ules and used as an encoding scheme in the simulated an-
nealing approach to a placement problem. In a simulated an-
nealing approach, we consider a solution space consisting of
placements obtained from a sequence-pair by some decoding
scheme and search on the solution space by traversing neigh-
boring solutions. In the simulated annealing approach we use
the moves, choosing scheme of neighborhoods, proposed in
[1, 4].

In the simulated annealing approach, if infinite computation
time is allowed and the transition probability matrix satisfies
some conditions, we can reach an optimum with asymptotic
probability one [2] while, in practical implementation with fi-

nite computation time, we often fall into some local optimum
or other solutions. In addition, the practical VLSI design prob-
lem often includes some constraints and those constraints may
avoid us reaching better solutions. Hence, we need to find an
effective way to escape from worse local optimums with high
probability in limited computation time implementation.

In this paper, we propose a penalty function approach to the
problem with some constraints and we apply it to the place-
ment problem with boundary constraints. As seen in the ex-
perimental results, we can find that our proposed method gen-
erates better solutions than the method proposed in [3], which
also uses the simulated annealing search, though the computa-
tion time of one iteration stage, choosing a neighbor solution
and generating and evaluating its placement, of our method
takes O(n logn) computation time and that of the conventional
method in [3] takes O(n2) computation time.

II. THE SIMULATED ANNEALING WITH THE SEQUENCE

PAIR ENCODING

A. The Sequence-Pair Encoding

A module mi (1 ≤ i ≤ n) is a rectangle with its width wi
and height hi and it must be located in the xy-plane such
that its bounding line segments have the vertical or horizon-
tal direction. A variable ri represents whether the rotation
is applied to module mi (ri = 1) or not (ri = 0) (see Figs. 1
(a) and (b)). A module mi is said to be placed if x- and
y-coordinates and ri are given, where (xi,yi) corresponds to
the coordinates of the left bottom corner of m i as shown in
Fig. 1. We call �r = (r1,r2, . . . ,rn) ∈ {0,1}n a rotation vec-
tor of modules. In order to represent the horizontal and ver-
tical widths of placed modules, we use two functions ‘hor’
and ‘ver’ defined as hor(mi) = wi and ver(mi) = hi if ri = 0
(Fig. 1 (a)) and hor(mi) = hi and ver(mi) = wi if ri = 1 (Fig. 1
(b)). Two placed modules mi and m j are said to overlap each
other if the following four inequalities hold: x i < x j +hor(m j),
x j < xi + hor(mi), yi < y j + ver(m j), and y j < yi + ver(mi). A
sequence of tuples P = ((x1,y1,r1),(x2,y2,r2), . . . ,(xn,yn,rn))
is called a placement (of a module set M = {m1,m2, . . . ,mn})
if no two modules overlap. We let A(P) denote the area of
the minimum rectangular bounding box including all modules,

ve
rt

ic
al

horizontal
x

y

(xi,yi)

hi

wi

ve
rt

ic
al

horizontal
x

y

(xi,yi)
hi

wi

(a) ri = 0 (b) ri = 1

Fig. 1. An example of a placement.

i.e., A(P) = V (P)H(P) for

V (P) = max
1≤i≤n

(xi + hor(mi))− min
1≤i≤n

xi and

H(P) = max
1≤i≤n

(yi + ver(mi))− min
1≤i≤n

yi.

A placement P is said to be optimal if no other placement P ′
satisfies A(P′)< A(P). The objective of the placement problem
is to compute a placement P with small A(P).

A sequence-pair 〈Γ+,Γ−〉 is an ordered pair of permuta-
tions Γ+ and Γ− of n modules. The sequence-pair encoding
scheme is used to represent some left-right and below-above
restrictions between modules in the placement. Let f+(mi) and
f−(mi) be the positions of mi appearing in Γ+ and Γ−, respec-
tively. For example, if Γ+ = (m2,m3,m4,m1) then f+(m1) = 4,
f+(m2) = 1, f+(m3) = 2, and f+(m4) = 3. 〈Γ+,Γ−〉 prescribes
the following restrictions R1 and R2 to the placement: For two
modules mi and m j,

R1 if f+(mi) < f+(m j) and f−(mi) < f−(m j) (resp. f+(mi) >
f+(m j) and f−(mi) > f−(m j)), then xi + hor(mi) ≤ x j
(resp. x j +hor(m j)≤ xi), i.e., mi is at the left (resp. right)
of m j, and

R2 if f+(mi) > f+(m j) and f−(mi) < f−(m j) (resp. f+(mi) <
f+(m j) and f−(mi) > f−(m j)), then yi + ver(mi) ≤ y j
(resp. y j + ver(m j) ≤ yi), i.e, mi is below (resp. above)
m j.

Note that mi and m j have exactly one of R1 and R2 relation-
ships and those relationships are transitive.

S = 〈Γ+,Γ−,�r 〉, a sequence-pair together with a rotation
vector, is useful to represent some restrictions of a placement
and we use it as a code. We now define a mapping P from
such codes S to placements. The coordinates (x j,y j) of the left
bottom corner of module m j can be computed by the following
equations:

x j =

max{xi + hor(mi)| f+(mi) < f+(m j),
f−(mi) < f−(m j)}

if at least one such i exists and
0 if otherwise, and

y j =

max{yi + ver(mi)| f+(mi) > f+(m j),
f−(mi) < f−(m j)}

if at least one such i exists and
0 if otherwise.

By definition, P (S) is one of the smallest area placements sat-
isfying the restrictions prescribed by S. Using some binary
tree structure, such a placement P (S) can be obtained from S
in O(n logn) computation time[6]. It is known that there exists
a solution S such that P (S) is optimal [4].

B. The Neighborhood Structure

For convenience, we often regard S as a placement, i.e., a
solution, instead of P (S). For some different codes S and S ′,
P (S) = P (S′). In this case, we regard that S and S ′ are differ-
ent solutions. In the simulated annealing, we search the solu-
tion space consisting of such placements S’s. A neighborhood
structure of the solution space can be represented by a set of
operations to compute a neighborhood S ′ from a solution S. In
this paper, we consider a solution space whose neighborhood
structure is provided by the following three operations:

IN+ (−): (insert) choose a module mi and a position f in Γ+,
put mi to f and the other modules between f+(mi) and f
are shifted by 1 toward f+(mi) (see Figs. 2 (a) and (b)).

FX: (full-exchange) choose two modules mi and m j and then
exchange mi and m j in both Γ+ and Γ−.

RT: (rotate) choose one modules mi and rotate it, i.e., ri :=
1− ri.

()

()

f

mi

1, 2, ,

,, ,,,,,

, , ,,,,, ()

()

f

mi

, , ,,,,,

,, ,,,,,

(a) IN+ for f+(mi) < f (b) IN+ for f+(mi) > f

Fig. 2. Operations IN± and FX.

In other words, in our simulated annealing approach, a neigh-
borhood is obtained from a current solution S by applying one
of above operation to S, where each operation is chosen with
probability 1/3, here. The neighborhood structure with such
probabilities corresponds to “the transition probability matrix”
in [2].

C. The Simulated Annealing

Let S be the solution space with a neighborhood structre on
which we search by the simulated annealing for minimizing
the cost C(S) of a solution S ∈ S. Note that, in the area min-
imization problem mentioned above, C(S) = A(S). A non-
optimal solution S is said to be locally optimal if we can-
not reach better solution from S by traversing neighboring
solutions without visiting any worse solution S ′, i.e., S′ with

INPUT: a module set, temperature schedule T , and finish
temperature Te ≥ 0. (the initial solution S0 is sometimes
given in an input.)

OUTPUT: A solution S.

begin
construct an initial solution S randomly.
set i := 0, S := S0, and T := T0.
while T > Te do

repeat t times do
choose a neighborhood S′ of S
choose p with 0 < p < 1 randomly.

if p ≤ exp

(
−C(S′)−C(S)

T

)
(†)

S := S′.

end if
end repeate
i := i+1, T := Ti.

end while

end

Fig. 3. Simulated Annealing Algorithm.

C(S′) > C(S). For a locally optimal solution S, the depth D(S)
of S is the maximum value such that we cannot reach better so-
lution from S by traversing only neighboring solutions S ′ with
C(S′) < D(S)+C(S). The maximum depth of a locally optimal
solution S is called the depth of S and denoted by d(S).

Let X(Ti) be the random variable representing the cost, the
value of the objective function C(S) of the current solution S,
at each Ti in the algorithm and let Copt be the minimum cost
of a solution. Then, a simulated annealing search described
in Fig. 3 with a temperature schedule T0,T1, . . . on a solution
space S guarantees to reach an optimal solution with asymp-
totic probability one, i.e., limi→∞ X(Ti) = Copt, if the follow-
ings five conditions are satisfied [2]:

(a) the solution space S is finite and irreducible,

(b) there exists an equilibrium distribution for the transi-
tion probability matrix,

(c) Ti ≥ Ti+1 and Ti > 0 for all i,

(d) lim
i→∞

Ti = 0 (and Te = 0), and

(e)
∞

∑
k=0

exp

(−d(S)
Tk

)
= ∞.

Note that, if C(S′)≤C(S), the inequality (†) in Fig. 3 is always
true.

In a practical implementation, we have to simulate the al-
gorithm in finite computation time. In this paper, we set
Ti = r�i/t	T0 for some integer t, real number r = 1−ε for some
positive ε
 1, and Te > 0 as many other researchers do in the
area minimization.

III. BOUNDARY CONSTRAINT AND ITS PENALTY

FUNCTION

A. Sequence Pair coding for Boundary Constraints

In the placement problem with boundary constraints, some
modules are required to placed along some specified bound-
aries. The module set of the problem is divided into five sub-
sets F , L, R, B, and T . A module f ∈ F is said to be free
and it has no boundary constraint. A module in L (resp., R,
B, T) is said to be left (resp., right, bottom, top) and it must
be placed along the left (resp. right, bottom, top) boundary.
In the sequence pair coding of a solution satisfying the above
boundary constraints, for l ∈ L and x �= l, either f+(l) < f+(x)
or f−(l) < f−(x) holds. For l ∈ L, let the V-value of l be the
number of modules x violating l, i.e., x has the restriction to be
at the left of l, and denoted by

vio(l) = #{x| f+(x) < f+(l) and f−(x) < f−(l)}.

Similarly, for r ∈ R, b ∈ B, and t ∈ T , we define their V-value
by

vio(r) = #{x| f+(x) > f+(r) and f−(x) > f−(r)},
vio(b) = #{x| f+(x) > f+(b) and f−(x) < f−(b)}, and

vio(t) = #{x| f+(x) < f+(t) and f−(x) > f−(t)},

respectively. A solution S is said to be feasible if every con-
strainted module m satisfies vio(m) = 0. If S is feasible, we can
obtain a feasible placement having the same area with P (S) by
relocating modules of R∪T in P (S).

B. The Conventional Method

A transformation from an arbitrary sequence-pair to a feasi-
ble one, called SQ Transformer, is proposed in [3]:

SQ Transformer

Step 1 (LB-procedure): In the sequence Γ+, place all mod-
ules in L to the left of the leftmost modules b ∈ B in Γ +,
e.g.,

(. . . , l1,∗,b1,∗, l2,∗,b2,b3, l3, . . .) →
(. . . , l1,∗, l2, l3,b1,∗,∗,b2,b3, . . .),

where li ∈ L and bi ∈ B.

Step 2 (TR-procedure): In the sequence Γ+, place all mod-
ules in R to the right of the rightmost module t ∈ T .

Step 3 (T-procedure): For all t ∈ T (from the right to the
left in Γ+), find all modules x (from the left to the right in
Γ+) which appear at the left of t in Γ+, if x appears at the
left of t in Γ− then x is placed at the right of t in Γ−.

Steps 4-6 (B,L,R-procedures): B-,L-, and R-procedures
are defined similarly to the T-procedure.

Step 7 : Output the final sequence-pair.

Steps 1 and 2 take O(n) computation time and Steps 3-6 take
O(n2) computation time [3], where n is the number of mod-
ules. Thus, the total computation time of the method is O(n 2).
We let SQ(S) be the feasible solution obtained from S by ap-
plying the SQ transformer. In the simulated annealing in [3],
a solution S is evaluated by the area of SQ(S) at each step, i.e.,
the cost function of S is given by C(SQ(S)).

C. Proposed Method

C.1 Some Conditions for the Penalty Function

We first describe our strategy to obtain a feasible solution by
simulated annealing search using a penalty function on the so-
lution space including infeasible solutions. The extended ob-
jective function C used in our simulated annealing includes the
penalty function pen multiplied by a sufficient large coefficient
c, i.e.,

C(S) = C0(S)+ c pen(S), (1)

where C0(S) denotes the original objective function of the
problem which is A(S) in area minimization problem. The
value c should be determined according to the temperature
schedule and the instance.

It is desirable that, if C(S) is relatively small and S is
infeasible, then S may have a neighboring solution S ′ with
C(S′) < C(S), where we assume that the simulated annealing
search will reach a solution with relatively small value. Also,
the reachability in the sub-solution space consisting of only
feasible solutions should be guaranteed. For satisfying those
properties, we will consider a penalty function pen and the
neighborhood structure satisfying the following conditions:

Condition 1: The penalty function is a mapping from solu-
tions to non-negative integers i.e., pen : S → N, and satis-
fies that, for all S ∈ S, pen(S) = 0 iff S is feasible.

Condition 2: For each infeasible solution S, there exists a
neighboring solution S ′ such that pen(S′) < pen(S).

Condition 3: There exists at least one code S whose place-
ment is optimal and C(S) < C(S′) for every non-optimal
solution S′ if c is sufficiently large.

Condition 4: For arbitrary feasible solutions S and S ′, it is
reachable from S to S ′ with traversing only feasible solu-
tions.

Since S is finite, Conditions 1 and 2 guarantee the existence of
a path (S0,S1, . . . ,Sk) from an arbitrary infeasible solution S0
to some feasible one Sk such that traversing only neighboring
solutions on S satisfying pen(Si) < pen(Si+1). In a practical
implementation, we may need this for only solutions S k having
relatively small C(Sk), where we could not describe the term
relatively small explicitly. Also, we claim that

Claim 1 In the experiment, c should be set to satisfy that, for
a solution S having relatively small cost, C(S)−C(S ′) ≤ c for
every neighboring solution S ′ of S.

The best value of c may depend on the neighborhood structure
and the temperature schedule.

C.2 Penalty Function

We now define a penalty function pen(S) of a solution S of the
problem. The penalty function of a solution which we use in
this paper is defined by

pen(S) = ∑
m∈L∪R∪B∪T

vio(m).

A module m ∈ L ∪ R ∪ B∪ T is called a violated module if
vio(m) > 0. pen(S) can be calculated in O(n logn) compu-
tation time by using a binary tree structure similar to red-black
tree but has little different property and, in order to enumer-
ate the number of violations, a new inserted module is always
added to the tree as a leaf. We omit the details here but we
give the outline of the calculation. The insertion of modules to
the binary tree is done by left to right order appearing in Γ +.
The modules are sorted in the tree according to the order of the
position in Γ−. At every insertion, each module m in the tree
has four values, dL(m), dR(m), dB(m), and dT (m), where, for
every X ∈ {L,R,B,T}, dX(m) denotes the number of descen-
dants which are included in X . When a module is inserted to
the tree, the number of violations between m and already in-
serted modules is enumerated. dX ’s are updated in an insertion
of a module and are recalculated in the reconstruction of the
tree.

For the objective function given in (1), Conditions 1 and 3
hold, clearly. Condition 2 is supported by Theorem 1 if neigh-
boring relationships provided by IN± and FX operations are
included in the neighborhood structure.

Theorem 1 For an arbitrary solution S with pen(S) > 0, there
exists a neighboring solution S ′ through IN± or FX operations
such that pen(S′) < pen(S).

Proof. We only show in the case that S = 〈Γ+,Γ−,�r 〉 has at
least one violated module in L∪T . We can similarly show it
in case that a violated module exists in R∪B. Let l1 ∈ L∪T be
the leftmost violated module in Γ+. Without loss of generality,
we assume l1 ∈ L. Let x be the rightmost module in Γ+ such
that any module appearing between x and l1 in Γ+ does not
appear at the left of l1 in Γ−. Then,

Γ+ = (. . . ,x, . . . ,y, . . . , l1, . . .),
Γ− = (. . . ,x, . . . , l1, . . . ,y, . . .).

Therefore, we have the following:

Proposition 1 Every module y between x and l1 in Γ+ appears
after l1 in Γ−.

Let y be an arbitrary module between x and l1 in Γ+. Since
l1 ∈ L is the leftmost violated module in Γ+, y �∈ L.

If x �∈ T , let S′ = 〈Γ′
+,Γ−,�r 〉 be the solution obtained

by inserting l1 immediately before x in Γ+, i.e., Γ ′
+ :=

(. . . , l1,x, . . . ,y, . . .). Since x �∈ T , and y �∈ L, V-values of x and
y do not increase and we have the theorem.

If x ∈ T , let S′ be the solution obtained by the full-exchange
operation of l1 and x. For the full-exchange operation, V-values
of other modules do not increase. Also, the V-value of l 1 be-
comes smaller. From Proposition 1, the V-value of x does not
increase. Therefore, the total sum of V-values decreases, i.e.,

pen(S′) < pen(S).

We next show that Condition 4 holds under our neigh-
borhood structure. Note that the rotation vector of a solu-
tion is nothing to do with the feasibility and we need not
to consider the rotation vector. For X ∈ {L,R,B,T,F}, let
X = {mX

1 ,mX
2 , . . . ,mX

|X|}, ΦX be a sequence (mX
1 ,mX

2 , . . . ,mX
|X|),

and Φr
X be the reverse of ΦX . From the following, the neigh-

borhood structure satisfies Condition 4:

Theorem 2 Let S be an arbitrary feasible solution and
S′ = 〈Γ′

+,Γ′−,�r 〉 with Γ′
+ = (ΦL,ΦT ,ΦF ,ΦR,ΦB) and Γ ′− =

(Φr
L,ΦB,ΦF ,Φr

R,ΦT). Then, there exists a path (S1,S2, · · · ,Sk)
with S1 = S and S′ = Sk such that every Si is feasible, and Si
and Si+1 are neighborhood in S for i with 1 ≤ i ≤ k−1.

Proof. We apply IN+ operations to all modules in L ∪ T
according to the order appearing in Γ + so that every module in
L∪T is placed at the left of every module in F ∪R∪B without
traversing any infeasible solution. See the following example,
where li ∈ L, ti ∈ T , and α i �∈ L∪T :

(α1,α2, l1,α3,α4,t1,α5, l2, . . .)
⇓

(l1,α1,α2,α3,α4,t1,α5, l2, . . .)
⇓

(l1, t1,α1,α2,α3,α4,α5, l2, . . .)
⇓

(l1, t1, l2,α1,α2,α3,α4,α5, . . .)
...

We next apply IN+ operation to all modules in R∪B, we can
obtain a sequence so that every module in R∪B is placed at
the right of every module in F ∪T ∪L. Applying IN− oper-
ations to the current sequence-pair by the similar fashion, we
can obtain a sequence-pair with

Γ+ =
(

L∪T , F , R∪B
)

and

Γ− =
(

L∪B , F , R∪T
)

,

where, for a partition M1,M2, . . . ,Mm of M,(
M1 , M2 , . . . , Mm

)

denotes a sequence such that, for all pair of m∈Mi and m′ ∈Mj
with i < j, m appears before m′ in it. More applications of IN±
operations to it, we can obtain a sequence-pair with

Γ+ =
(

L , T , F , R , B
)

and

Γ− =
(

L , B , F , T , R
)

.

Then, applying some FX operations to it, we can obtain a
sequence-pair with

Γ+ =
(

ΦL,ΦT , F ,ΦB,ΦR

)
and

Γ− =
(

Φr
L,ΦB, F ,Φr

T ,ΦR

)
.

Lastly, by applying IN± operations to the modules of F (and
RT operations to some modules), the desired solution S 0 is ob-
tained. Since infeasible solutions are not generated in each
transformation, we have the theorem.
It should be noted that, since we start with a randomly gener-

ated solution (sequence pair with a rotation vector) and it may
be infeasible solution, the probability with the final placement
being feasible mainly depends on the temperature schedule (in-
cluding the length of the schedule) and the value c. Of cause, it
also depends on the problem instance, i.e., the module set and
constrained modules. Clearly, if we use a temperature sched-
ule with small length, we can obtain a feasible solution with
probability almost 0, where the length of a temperature sched-
ule T0,T1, · · · with Te is max{k|Tk+1 ≤ Te}. So, c should be set
according to the temperature schedule and the instance.

IV. EXPERIMENTAL RESULTS

In this section, we give the experimental results of the sim-
ulated annealing searchs on S under conventional and our pro-
posed methods under the same temperature schedule. We ap-
ply the simulated annealing approach to BenchMark ami49
and a randomly generated module sets M100, where a mod-
ule mi in M100 is generated satisfying that 10 ≤ wi,hi ≤ 100,
max{hi/wi,wi/hi} ≤ 3. The number of each boundary con-
strained modules is set to the same value, i.e., |L| = |R| =
|T | = |B|. For ami49, we examine two cases |L| = 4 and 6
and, for M100, |L| = 6 and 9, where we choose them randomly
but, in case of ami49, we avoid choosing largest two modules
as boundary constrained ones. The neighborhood structure is
composed by the three operations RT, FX, and IN±, and each
operation is chosen with same probability. We apply simulated
annealing approach 100 times to ami49 and M 100 with param-
eters T0 = 105, Te = 10, r = 0.98, t = 10n, and c = AM/10 for
ami49 and T0 = 105, Te = 1, r = 0.98 t = 10n, and c = AM/100
for M100, where n is the number of modules. The value c
should be set according to the temperature schedule and the
instance, while, in our experiment, c is normalized by only
AM .

TABLE I
EXPERIMENTAL RESULTS FOR AMI49.

|L| 4 6 0
conv. prop. conv. prop. —

avg. 1.0479 1.0442 1.0582 1.0529 1.0351
best 1.0376 1.0332 1.0467 1.0398 1.0248

worst 1.0587 1.0600 1.0785 1.0791 1.0509
run time 31 18 35 18 16

We apply our method 100 times to ami49 and M100. We
show the average ratio A(S)/AM and average runtime (sec)
for ami49 in Table I for each case, where the conventional
method is shown by “conv” and our proposed method by
“prop.” |L| = 0 implies the experimental result of the place-
ments without boundary constraints. The best placement for
|L| = 6 is shown in Fig. 4. In the experimental result, we can

L

L

T

B B

L

R

T

R

B

T

L

TL

B

R

B

R

R

B

T

L

T

R

Fig. 4. The best placement of ami49 with |L| = 6.

TABLE II
EXPERIMENTAL RESULTS FOR M100.

|L| 6 9 0
conv. prop. conv. prop. —

avg. 1.0479 1.0442 1.0582 1.0529 1.0362
best 1.0376 1.0332 1.0467 1.0398 1.0305

worst 1.0587 1.0600 1.0785 1.0791 1.0445
run time 176 101 214 102 85

find that our method generates better solutions than the con-
ventional method.

We show the results in Table II and the best placement for
|L| = 9 in Fig. 5. From those results, we can see that, if |L| be-
come large, our methods become more effective than the con-
ventional method.

V. CONCLUSION

In this paper, we proposed a penalty function approach for
stochastic optimization methods of a problem with some con-
straints. Since the penalty function is just in the objective func-
tion, this approach may be available for optimization problems
with many kinds of codes and stochastic methods. However,
the theoretical analyses for the penalty function approach are
remained in the future work. We applied the penalty function
approach to the placement problem with boundary constraints
and constructed an efficient searching scheme by simulated an-
nealing search using sequence pair encoding.

REFERENCES

[1] K. Fujiyoshi, T. Ohomura, and K. Ijiri, “Solution space
by sequence-pair suitable for simulated annealing search,”
technical report, IEICE, 2000. (in Japanese).

L

L

R

B

T

L

R

R

B

T

L

R

T

B

L

T

B

R

T

R

R

B

T

L

T

L

B

L

B

T

R

L

R

B B

T

Fig. 5. The best placement of M100 with |L| = 9.

[2] B. Hajek, “Cooling schedules for optimal annealing,”
Mathematics of Operations Research, vol. 13, no. 2,
pp. 311–329, 5 1988.

[3] J. Lai, M.-S. Lin, T.-C. Wang, and L.-C. Wang, “Module
placement with boundary constraints using the sequence-
pair representation,” Proc. Asia and South Pacific Design
Automation Conference, pp. 515–520, Feb. 2001.

[4] H. Murata, K. Fujiyoshi, S. Nakatake, and Y. Kajitani,
“VLSI module placement based on rectangle-packing by
the sequence-pair,” IEEE Trans. Computer-Aided Design,
vol. 15, no. 12, pp. 1518–1524, Dec. 1996.

[5] S. Nakatake, H. Murata, K. Fujiyoshi, and Y. Kajitani,
“Module packing based on the bsg-structure and ic lay-
out application,” IEEE Trans. Computer-Aided Design,
vol. 17, no. 6, pp. 519–530, Jun. 1998.

[6] T. Takahashi, “An algorithm for finding a maximum-
weight decreasing sequence in a permutation, motivated
by rectangle packing problem,” technical report, IEICE,
1996. (in Japanese).

[7] T. Takahaashi, “A new encoding scheme for rectangle pak-
ing problem,” Proc. Asia and South Pacific Design Au-
tomation Conference, pp. 175–178, Dec. 2000.

	Main
	ASP-DAC03
	Front Matter
	Table of Contents
	Author Index

