
Enhanced Symbolic Simulation for Efficient Verification of
Embedded Array Systems

Tao Feng
�

, Li-C. Wang
�

, Kwang-Ting Cheng
�

, Manish Pandey†, Magdy S. Abadir††
�

Department of ECE, UC-Santa Barbara † Verplex Systems, Inc.
†† ASP High Performance Design, Motorola, Inc.

Abstract— In the past, Symbolic Trajectory Evaluation (STE)
was shown to be effective for verifying individual array blocks.
However, when applying STE to verify multiple array blocks to-
gether as a single system, the run-time OBDD sizes would of-
ten blow up. In this paper, we propose using a ”dual-rail” sym-
bolic simulation scheme to facilitate the application of STE proof
methodology for verifying array systems. The proposed scheme
implicitly partitions a given design into control domain and data-
path domain, and symbolic simulation is carried out on both do-
mains. With this scheme, the run-time OBDD sizes during the
symbolic simulation for each domain can be limited. We demon-
strate the effectiveness of our approach by verifying the Memory
Management Unit (MMU) in Motorola high-performance micro-
processors. The verification of MMU as a whole was not possible
before because of the OBDD size blow-up problem when an ordi-
nary symbolic simulator was used in the STE proof process.

I. INTRODUCTION

Embedded memories or arrays are important components in dig-
ital ICs for most high-performance applications. The speed of these
on-chip memory components is critical to the overall performance of
the chip. They are often custom-designed at the transistor level for
performance optimization. A typical array system contains multiple
array blocks, and interactions among these blocks can be complex and
hard to verify.

Formal techniques such as STE assertion-based symbolic simula-
tion have been shown to be effective for verifying arrays in terms of
both functional verification and structural equivalence. In the STE
proof methodology, symbolic simulation is used as the underlying
engine [1] which utilizes Ordered Boolean Decision Diagrams (OB-
DDs) [2] to represent ternary logic functions.

Past SET-based techniques could usually be applied for verifying
individual array blocks [3, 4, 5]. With special symbolic encoding tech-
niques, it can also be efficient for verifying arrays which are content
addressable in nature [6]. Nevertheless, when verifying an operation
that involves interactions among multiple array blocks, the OBDD
sizes could often blow up. To overcome the problem, our earlier
work incorporates an ATPG-style decision procedure into the sym-
bolic simulation framework [7]. In that approach, the symbolic sim-
ulation process is partitioned into separate and simpler sub-processes
by ATPG assigning constant values to a set of selected control signal
lines. And, during the symbolic simulation of each sub-process the
OBDD sizes can be minimized with symbolic encoding.

With the same objective of applying the STE method at the sys-
tem level, in this paper, we propose a different approach to avoid the
OBDD size blow-up problem. Our current approach is different from
the previous approach [7] in terms of three aspects: (1) Instead of
explicit partitioning a design into control and datapath, our current

approach adopts a partition scheme implicitly in the symbolic simula-
tion process. (2) Instead of using a decision procedure such as ATPG
to handle the control part [7], we use symbolic simulation on both the
control and the datapath. (3) Instead of utilizing symbolic encoding
to minimize OBDD sizes on the datapath, we adopt a simpler node
collapsing method that gives the same efficiency.

We call our current approach the dual-rail symbolic simulation
scheme because essentially symbolic simulation is carried out on con-
trol and datapath separately. With this new method, the OBDD sizes
in the symbolic simulation can be limited. Our goal is to demonstrate
that this new strategy can also verify multiple array blocks together
as a single system, as opposed to verify individual blocks separately
in a system. Moreover, we argue that our method is more general and
more efficient than the approach proposed before in [7].

II. COMPARISON TO PRIOR WORK

STE has been used to verify memory arrays such as on-chip caches
and register files. In [3], authors used the Voss STE [8] system to ver-
ify a multi-ported register file unit and a data tag unit in Motorola
PowerPC TM microprocessors. In [6], authors introduced the us-
age of special symbolic encoding schemes to minimize the OBDD
size complexity of STE verification for content addressable memo-
ries (CAMs). Two CAMs, a Block Address Translation (BAT) unit
and a Branch Target Address Cache (BTAC) unit, were verified with
the new schemes. For all these circuits, the verification can be done
at the switch level, so that the verification was performed on the ac-
tual designs. In [4], various validation methods, including STE were
compared based upon design error injection and simulation. It was
shown that although STE approach was able to verify array blocks,
the quality of verification could be highly dependent on the asser-
tions supplied to the STE process. Therefore, to ensure high qual-
ity, automatic generation of assertions [9] was proposed. In a recent
work [5], STE was employed as an automatic structural equivalence
checking methodology (between RTL and schematics) for Motorola
high-performance microprocessor arrays.

All of the previous work utilizes STE to target individual blocks of
an array system. Due to OBDD size complexity, STE was not applied
at the system level to verify multiple array blocks as a whole. For
verifying an individual array block, block input constraints imposed
by the outputs of other blocks were extracted manually. In many veri-
fication cases, including both equivalence checking and (block-level)
functional verification, these input constraints can greatly affect the
resulting quality. To ensure complete verification, it is imperative to
verify multiple array blocks together as an unified system.

In an earlier work [7], we proposed to combine an ATPG-style de-
cision procedure with the OBDD-based symbolic simulator for array
system validation. The central ideas included: 1) partitioning a given
design into control and datapath domains, and 2) applying the ATPG

procedure to assign constant values on the controls, and then symbolic
simulation to handle the datapath based upon the constant-assigned
control values. In essence, to verify that a design satisfies a given
assertion, the assertion is divided by ATPG-assigned constant values
into a sequence of simpler sub-assertions. These sub-assertions are
then to be checked by symbolic simulation independently. With this
combined strategy, blow-up in OBDD sizes can be avoided and STE-
based assertion verification can be applied to a larger system [7].

The idea of using multiple engines (such as combining SAT solver
and OBDD-based symbolic simulation) was not new. For example,
Wilson et. al., [10, 11] proposed using a combined SAT and OBDD-
based symbolic simulation approach to eliminate run-time OBDD
memory blow-up. Authors in [12] proposed using arithmetic and
Boolean ATPG solver to verify arithmetic circuits. Authors in [13]
proposed a hybrid approach that was able to verify a 64-bit multiplier
by verifying the individual adders using STE and then composing the
results to show that the adders were properly connected. Authors in
[14] used the hybrid approach to verify a radix-eight, pipelined, IEEE
double-precision floating point multiplier.

In this paper, we propose a more general solution than that in [7].
Instead of using a decision procedure and the symbolic simulation,
our approach utilizes symbolic simulation for both control and dat-
apath. Instead of static partitioning a design into control and datap-
ath, the partitioning is carried out in the symbolic simulation process.
This allows a more flexible implementation to dynamically adjust the
partition boundary. Moreover, because the assertion is checked by
the dual-rail symbolic simulation in one pass, as opposed to running
symbolic simulation multiple times for multiple sub-assertions [7],
the new approach can avoid duplicate symbolic simulation work on
the same portion of the design. Potentially, this can enhance the over-
all verification efficiency [9]. The effectiveness of our techniques will
be demonstrated through experiments on an MMU design from Mo-
torola high-performance microprocessors [15].

III. BACKGROUND

Symbolic Trajectory Evaluation (STE) [1] is a formal verifica-
tion technique that is based on ternary symbolic simulation . In
STE, specifications are given as trajectory assertions of the form An-
tecedent � � LEADTO Consequent where both Antecedent and Con-
sequent consist of trajectory formulae. Assertions specify a set of
design properties in a restricted temporal logic form. STE checks to
see if a given design satisfies a set of given assertions.

A trajectory formula can be a simple predicate such as ”nodei is
0” which specifies that the signal nodei should contain the value 0
at the present time. With conjunction, case restriction, and the next
time operator, trajectory formulae can be constructed from the simple
predicates. Moreover, there is a domain restriction operation when
allowing specification of input constraints in the antecedent and re-
stricted output results in the consequent. If V is a trajectory formula,
and D is a Boolean function, ”nodei is V when D” specifies that only
when D is true, nodei contains the value V . Such a specification usu-
ally has two semantic meanings depending on when it is placed. If it
appears in the antecedent, then for unspecified domain D

�
, the value

of nodei is the don’t care ”X.” If it appears in the consequent, then the
computed value of nodei from the symbolic simulation of the circuit
will only be checked under the domain D. The value of nodei under
the domain D

�
is ignored.

Figure 1 gives a simple circuit example. Notice that the inputs a
and b are restricted by a functional constraint. Such a constraint can
be from the surrounding logic not shown in the figure. The following
describes a valid assertion to be checked (where A � B � C � D � W � Y are

w

e

a

b

c

d

functional
constraint:
(a+b) = 1

y

Figure 1: An Illustrative Example

arbitrary 1-bit symbols). Note that we use ” � ” and ” � ” to specify the
conjunction and disjunction of formulae in the assertion, and we use
” � ” to specify logic AND in the Boolean function.�

when
�
A � 1 � B � 1 � � a � A �	�
� �

when
�
A � 1 � B � 1 � � b � B �	�
��

c � C ��� �
d � D �
� �

w � W ��� �
y � Y �

� � LEADTO�
when

�	�
W � 1 � Y � 1 ��� �

A � 1 � B � 1 ��� � e � A � B �	����
when

�
Y � 1 � W � 1 � � e � C � D �	�

The antecedent in the above assertion supplies symbolic inputs. In
the STE process, ternary symbolic simulator simulates the given in-
puts and input constraints on the circuit. The results are compared
with the consequent. Note that the consequent part checks the results
only when W � Y . When W � Y , the output e is defined as unknown
value ”X” and hence, is not checked. Also note that the domain con-
straints can be applied in both antecedent and consequent.

Conceptually, trajectory formulae specified in both antecedent
and consequent are constraints on circuit signals. These con-
straints are ternary logic functions. For two ternary functions
f1
�
x1 �	�	� xn ��� f2

�
x1 �	�	� xn � , we say that f2 satisfies (or is consistent

with) f1 if the following two conditions hold:
1. � binary values v1 �	�	� vn assigned to x1 �	�	� xn, f1

�
v1 �	�	� vn ��� 1

implies f2
�
v1 �	�	� vn ��� 1.

2. � binary values v1 �	�	� vn assigned to x1 �	�	� xn, f1
�
v1 �	�	� vn ��� 0

implies f2
�
v1 �	�	� vn ��� 0.

Note that because f1 is a ternary function, it is possible to have an
input assignment v1 �	��� vn such that f1

�
v1 �	��� vn ��� X. For those inputs,

f2
�
v1 �	�	� vn � is unrestricted, and can be one of the ”0, 1, and X.”
Depending on how delay models are defined, the notation

” � � LEADTO” in the assertion can have multiple semantics. If zero
delay model is used, ” � � LEADTO” behaves like a simple implication.
If 1 unit delay is associated with every gate, ” � � LEADTO” suggests
that the consequent is true after 2 time units.

When symbolic simulation is carried out directly on the transistor-
level models, unit delay model is necessary for capturing the behavior
of dynamic logic [5]. If simulation is done on RTL or gate-level mod-
els, zero delay can be used. In the later case, the symbolic simulator
behaves like a cycle-based simulator.

In our work, we assume that the symbolic simulator is cycle-based.
For the simplicity of discussion, first we assume that assertions for an
array unit (which may contain multiple array blocks) are given by
the user. The goal is to check that the RTL model satisfies the given
assertions. Later, with our newly proposed method, we will see that
the ”assertions” do not need to be specified in the form described
above. Instead, the golden model can be any simulatable model in
the form of another RTL or an assertion model. Hence, our work can
also reduce the burden of manual creation of assertions and hence,
improve the overall verification quality.

IV. CAM: AN ILLUSTRATION EXAMPLE

In this section, we use a simple content addressable memory
(CAM) to illustrate why an ordinary symbolic simulation can be inef-
ficient. Figure 2 depicts such a CAM example.

datain[0..d−1]

. . . .

. . . .

. . . .

. . . .

. . . .

.....

. . . .

T[0]

T[1]

T[n−1]

t

TAGs

match[0]

match[1]

match[n−1]

.....

.....

.....

DATA

d

D[0]

D[1]

D[n−1]

dataout[0..d−1]

hit

tagin[0..t−1] translatewrtrd index[0..log n]

Figure 2: A CAM: Tag size � t, No. of entries � n, and Data size � d

Three operations are defined on this CAM: read, write, and trans-
late, controlled by the three inputs rd, wrt, and translate, respectively.
When performing a read or a write, the CAM behaves like a regular
array where both rows in the TAGs and DATA arrays are accessed
or updated based upon the input address index

� �
, input tag tagin

� �
,

and input data datain
� �
. For translate operation, the CAM performs

an associative read. The inputs tagin
�
0 � � t � 1

�
are compared with n

tag entries T
�
0
� � T �

1
� � �	�	� � T �

n � 1
�
. If T

�
i
�

matches the tagin, then
match

�
i
� � 1 and the corresponding data D

�
i
�

are placed at the output
dataout

�
0 � � d � 1

�
. For all other mismatch entries j, match

�
j
� � 0. The

hit signal indicates that there is a match in the tag.
Assume that n � 4. Let ��T � ��T0 � �

�
T1 � �

�
T2 � �

�
T3 be t-bit symbolic vec-

tors. Let � �D0 � �
�
D1 � �

�
D2 � �

�
D3 be d-bit symbolic vectors. Then, the CAM

translate operation can be specified as the following assertion.�
rd � 0 ��� �

wrt � 0 ��� �
translate � 1 ��

T
�
0
� � ��T0 ���

�
T
�
1
� � ��T1 ���

�
T
�
2
� � ��T2 � �

�
T
�
3
� � ��T3 �	��

tagin � ��
T ��� �

D
�
0
� � � �

D0 �	��
D
�
1
� � � �D1 ���

�
D
�
2
� � � �D2 � �

�
D
�
3
� � � �D3 �

� � LEADTO�
when

�
nomatch � � hit � 0 ���	��

when
�
matchonly0 � � hit � 1 � dataout � � �D0 �	�	��

when
�
matchonly1 � � hit � 1 � dataout � � �D1 �	�	��

when
�
matchonly2 � � hit � 1 � dataout � � �D2 �	�	��

when
�
matchonly3 � � hit � 1 � dataout � � �D3 ���

where nomatch indicates the condition that ��T � ��Ti for all i �
0 � 1 � 2 � 3. And matchonly0 indicates the condition that ��T matches
only ��T0 (and so on).

When OBDD-based symbolic simulation is used to verify the as-
sertion, the OBDD size can easily blow up at the output hit [6]. This
is because the OR function for generating the hit signal creates too
much interdependency among the symbolic tag variables used in the
assertion, and the number of tag variables is large (� t � n � t).

IV-A. CAM Encoding
To reduce the number of symbolic variables, symbolic encoding

can be applied to encode the fact that for each way, the comparison
can only have two outcomes: match and mismatch. The fundamental
idea of using symbolic encoding to reduce the number of symbolic
variables was first proposed in [6]. Assume tag � ��T � �

t0 � �	��� � tw � 1
�

where w is the tag width. In order for the way 0 tag ��T0 to mismatch
with tag, ��T0 should be consistent with one of the following tenary
vectors:

�	�
t0 � X � �	�	� � X � , � X � � t1 � X � ���	� � X � , �	�	� ,

�
X � �	�	� � X � � tw � 1 � . On

the other hand, in order for ��T0 to match with tag, ��T0 should be the
same as ��T . In other words, assuming that the input tag is given with
the symbolic vector ��T , we can encode the content of way 0 tag T

�
0
�

as the following.
T
�
0
�
�

0
�
: � �	�

when
�
m
�
0 �

�
I0 � 0 ���	� �	� t0 �	���

�	�
when

�
m0 �

�
t0 �	�

T
�
0
�
�

1
�
: � �	�

when
�
m
�
0 �

�
I0 � 1 ���	� �	� t1 �	���

�	�
when

�
m0 �

�
t1 �	�

���	�
T
�
0
�
�

w � 1
�
: � �	�

when
�
m
�
0 �

�
I0 �

w � 1 ���	� �	� tw � 1 �	���
�	�

when
�
m0 �

�
tw � 1 �	�

In addition to the symbols t0 � ���	� � tw � 1 used in ��T , notice that we
introduce a new symbolic vector I0 and a new symbolic variable m0
to encode the all possible initial states in T

�
0
�
. I0 is � logw � wide. Its

purpose is to indicate which bit has the mismatch. m0 is to indicate
if way 0 tag T

�
0
�

matches the incoming tag or not. Then, it can be
easily verified that

�
when

�
I0 w �	� , the comparison between tag and

T
�
0
�

will always result in two outcomes: match (m0) and mismatch
(m
�
0). Similar encoding can be applied to T

�
1
� � T �

2
�
, and T

�
3
�

(using
additional I1 � I2 � I3 and m1 � m2 � m3).

Why the above encoding scheme is more efficient for symbolic
simulation? One reason is that here we use less number of variables
to represent all possible states in T

�
0
�

(instead of w variables, here we
use � logw ��� 1 variables). Most importantly, observe that after sym-
bolic simulation, the OBDD on the match

�
0
�

signal contains only one
variable m0 and hence, is of the minimal size. Essentially, the above
encoding scheme implicitly ”re-start” the symbolic simulation at the
signal line match

�
0
�

by introducing a new variable m0. As a result,
the verification on the circuit before and after the match

�
0
�

signal is
separated. Hence, the complexity can be dramatically reduced.

IV-B. Split Assertion by Decision Procedure
When verifying multiple array blocks together, a CAM is usually

embedded in a bigger design and an assertion can be much more com-
plex. The symbolic encoding may not be easily applicable. This is
because in order to encode the content, we need to know, in advance,
the symbolic tag inputs given to the CAM. Moreover, we may need
to know what would be the expected outcome of the CAM in order to
avoid the potential false negative problem (explained later).

Another way to solve the OBDD size blow-up problem is to incor-
porate a decision procedure such as ATPG into the symbolic simula-
tion [7]. For example, we can partition the CAM design in such a way
that the OR gate to generate the hit is handled by an ATPG decision
procedure instead of symbolic simulation. For instance, to check a
CAM hit assertion, conceptually ATPG would set a 1 at the hit of the
assertion-synthesized circuit (the same assertion viewed as a circuit),
and inverse the objective to set hit � 0 on the circuit under check.
Then, ATPG will enumerate all decisions on the assertion circuit to
justify the goal by assigning 100 �	�	� 0, 010 �	�	� 0, 110 �	�	� 0, 0010 ���	� 0,
�	��� , 111 �	�	� 1 to the OR inputs match

�
0
� �	��� match

�
n � 1

�
. In each case,

since the match outputs are all specified as constants (i.e. the expected
outcome is known), we can use CAM encoding techniques to encode
the content of the CAM [7]. Then, symbolic simulation is called to
justify that in each case, hit � 0 is indeed impossible in the circuit
under check due to the constraints imposed by the assertion circuit.
In other words, we have proved that hit � 1 on the assertion implies
hit � 1 on the circuit under check. Conceptually, the decision pro-
cedure partitions a given assertion into a sequence of much simpler
sub-assertions to be more efficiently handled by the symbolic simu-
lation. We note that in order for an ATPG to work smoothly with
the symbolic simulation in the way described above, additional tech-
niques are needed [7].

IV-C. Problems and Motivations
Consider the verification of the MMU design in Motorola high-

performance microprocessors [15] as illustrated in Figure 3. Motorola
microprocessor MMU contains a 64-entry, two-way set-associative,
Translation Look-aside Buffers (TLB) that provide support for
demand-paged virtual memory address translation and variable-sized
block translation. MMU supports block address translation through
the use of block address translation (BAT) array containing four en-
tries. Up to 15 bits of the effective addresses are compared simulta-
neously with all four entries in the BAT during the translation. If the

address is present in the BAT, the bathit signal is 1, else it is 0. In
the architecture definition, if an effective address hits in both the TLB
and BAT array, the BAT translation takes priority.

31
Lower BAT3

Upper BAT3

Upper BAT0

Lower BAT0

...

TLB

0

63

SEGs

EA[0..31]
EA[0..3]

EA[0..19]

EA[20..31]

To Cachemmuhit

b
at

h
it

tlbhit

0

Figure 3: Block Diagram of MMU [15]

One particular MMU functionality to which we pay more atten-
tion is the address translation that involves both BAT and TLB. That
is, the effectiveness address ea misses all four entries in BAT, and
the TLB and segment register file (SEG) are responsible to produce
the physical address. This assertion is interesting because it enforces
a dependency of TLB on BAT and hence, results in a system-level
assertion. Another interesting case is to verify BAT alone, which is
similar to the CAM design example described in Figure 2.

Verification of the BAT can be done efficiently with the CAM en-
coding method described before. However, individual assertion is re-
quired, i.e. verification of read, write, and translate operations must
be separated. In other words, given a BAT assertion, depending on
what to be checked in the consequent, certain CAM encoding is used
to simplify the symbolic simulation. This prevents us from applying
the CAM encoding idea to verify all three operations together in one
run of the symbolic simulation.

Why verifying all operations together can be useful? Consider ver-
ification of a BAT RTL model against another RTL model that has
been slightly modified. What we can do is to supply symbolic inputs
to the original BAT model, symbolically simulate the model, and then
collect results at its outputs. The collected results (OBDDs) essen-
tially can serve as the consequent part to be checked on the modified
BAT model (where the same symbolic inputs are given to this model).
For this application, what we really need is an efficient way to verify
all BAT operations in a single run of the symbolic simulation (by set-
ting up all control input signals with symbolic inputs as opposed to
constant values). Since the CAM encoding schemes only encode for
translate behavior, not read and write, they cannot be applied.

Now consider the verification of an MMU assertion involving BAT,
SEG, and TLB together. The proposed CAM encoding schemes can-
not be easily applied either. When verifying BAT alone, results are
checked at bathit output. In that case, the ”re-start” of the symbolic
simulation given by the CAM encoding at match

�
i
�

signals is not a
problem because no re-converging fanout is involved. In the whole
MMU, ea is used in both BAT and TLB, and the results converge at
the final mmuhit signal. Hence, when using CAM encoding schemes
in both BAT and TLB, individually the verification is correct, but col-
lectively it is not correct because we cannot verify the fact that both
associative reads share some part of the same effective address ea. To
understand this, consider the results at bathit. With CAM encoding,
the OBDD at bathit consists of four variables m0 � m1 � m2 � m3. This
OBDD will be ORed with the result at tlbhit to produce the final re-
sult at mmuhit. Therefore, the OBDD at mmuhit contains no variable
from ea. Consequently, there is no way to check if bathit and tlbhit

are generated based upon the same ea or different eas.
In general, if a datapath contains re-converging fanouts and en-

coding methods are used to simplify the symbolic simulation on one
fanout path, then the verification may be false-negative.

CAM encoding, however, can be used effectively in a combined
ATPG and symbolic simulation strategy [7]. This is because the
ATPG decision procedure can break the re-converging fanouts by as-
signing constant values to ensure only one fanout path is activated at a
time. The drawback in the combined strategy is the need to enumerate
the selected signals to exhaust all space. As explained earlier, to jus-
tify bathit � 1, symbolic simulation has to repeat 24 � 1 � 15 times
where in each time some portion of the design is simulated repeatedly.

In summary, what we want is an approach that can take advan-
tages of the ideas employed in both CAM encoding and the combined
ATPG and symbolic simulation strategy and yet, can avoid their draw-
backs. The proposed approach should also be able to efficiently han-
dle all operations of a design in a single symbolic simulation run.

V. DUAL-RAIL SYMBOLIC SIMULATION

The fundamental idea in [7] was to separate control and datapath so
that the control part could be handled by an ATPG decision procedure
and datapath can be handled by the symbolic simulation. The funda-
mental idea here is to employ a separate symbolic simulation process
for the control part as well. Since symbolic simulation is used on both
control and datapath, the boundary of control and datapath does not
need to be fixed and can be dynamically adjusted.

In our symbolic simulation, the results of each signal i are stored
as a list of 2-tuples

�
Di

1 � V i
1 � � �	��� �

�
Di

n � V i
n � where each Di

j is called a

domain and each V i
j is called a value.

�
Di

j � V i
j � is read as ”signal i

has the value V i
j under the domain Di

j .” For all j � k,
�
Di

j � V i
j � and�

Di
k � V i

k � are mutually exclusive in terms of the functional spaces they
cover. We note that Di

j and Di
k may not be mutually exclusive though.

This differentiates our scheme from the 2-tuple scheme in [9].

(D0, V0’)

1

0

(D0, V0)

(D1, V1)

(D2, V2)

(D0 V0 D1, V1)
(D0, V0)

(D1, V1)

(D0 D1, V0 V1)

(D0, V0)

(D1, V1) (D0 V0 D1, V1)
(D0, V0)

(D0 V0’ D2, V2) (D0 D1’ V0’ + D0’ D1 V1’, 0)

Figure 4: Illustration of Domain and List Merging Rules

Initially, each input signal i will be assigned with the 2-tuple�
1 � V i � . In other words, the domain at each input is the whole func-

tional space. We note that
�
1 � V i � ��� � V i � 1 � � � � V i � 0 ��� and

�
Di � V i � �

� � DiV i � 1 ��� � Di �	� V i � � 0 ��� .
During the course of our symbolic simulation, values can be moved

into domains depending on the primitives encountered. For example,
Figure 4 illustrates some situations where this could happen. Notice
that in the case of a MUX, the value part V0 on the select line will be
moved to the domain part on the output. For tri-state buffer, a similar
operation is performed. We note that for a latch controlled by a latch
enable signal, it can be modeled similarly to a MUX where input-0 is
given as the original state 2-tuple list, and input-1 is given as the new
state 2-tuple list.

In general, during the dual-rail symbolic simulation, the computed
function for a signal line is represented by a list of 2-tuples. Hence,
when symbolically simulating a logic operation of two signals, merg-
ing rules are required to process the 2-tuple lists. In the figure, rules
for AND and inverter are illustrated.

Conceptually, the initial partition between the control (domain) and
the datapath (value) is formed by control signals to the primitives such
as MUX, tri-state, latches, etc. However, sometimes a control signal
may not appear as the control line to such a primitive. Figure 5 illus-
trates the problem.

x F(x=0)

F(x=1)

x

x=(D0, V0)

y=(D1, V1)

(D0 V0 D1, V1)

(D0 V0’ + (D0 V0)’ D1 V1’, 0)
F

Figure 5: Input Signal Treated as a MUX select

In a real design, it is unrealistic to expect that all controls are con-
nected to the control lines of some well-defined primitives. Hence,
it is necessary to have a pre-processing step to recognize some im-
portant control signals. Theoretically, any signal (x) whose positive
(x) and negative (

�
x) forms are used in the computation of a single-

output function F can be treated as a control signal for F. Figure 5
illustrates the situation. In this case, x � �

D0 � V 0 � is first converted
into x � � � D0V 0 � 1 � � D0

�	�
V 0 ��� 0 � � before any logic operation is per-

formed with other signals. This is illustrated in the figure by an AND
with another signal y. Notice that at the output of the AND gate, the
value V0 appears only in the domain part of the 2-tuples.

In the proposed 2-tuple scheme, the definition between control and
datapath is not static. For example, suppose � � Di

1 � V i
1 � �

�
Di

2 � V i
2 ��� are

obtained for a signal i. The list can be converted into a single 2-tuple
as

�
Di

1 � Di
2 � Di

1V i
1 � Di

2V i
2 � because the 2-tuple

�
Di

1 � V i
1 � and the 2-

tuple
�
Di

2 � V i
2 � are mutually exclusive. Moreover, if Di

1 � Di
2 � 1, then

it can further be reduced to
�
1 � Di

1V i
1 � Di

2V i
2 � . In other words, we can

move domains into values in the 2-tuple representation. The ability to
manipulate a 2-tuple list by moving back and forth the domains and
the values in the 2-tuples implies that the boundary between control
and datapath in our dual-rail symbolic simulation scheme is not static.
This differentiates our approach from the static partitioning method
used in the combined ATPG and symbolic simulation strategy pro-
posed in [7]. Our approach allows more flexibility to dynamically
adjust this boundary during run time.

V-A. Node Collapsing

Figure 6: Original OBDD and The Equality Function

Recall that the CAM encoding schemes are efficient because they
abstract the behavior of a CAM by introducing new variables (mi)
at each match

�
i
�
. In our approach, the simulator introduces a new

variable when an equality function (A � B) of two symbolic input
vectors (A, B) is identified during the course of symbolic simulation.

For example, suppose at the beginning of symbolic simulation,
three symbolic vectors of equal lengths are defined, denoted as
T0 � T1 � T2. Then, during the course of the simulation, the simulator
will check if the computed results of a signal contain one of the equal-
ity functions T0 � T1, T0 � T2, and T1 � T2 as a sub-function. Take
T0 � T1 as an example. The equality function T0 � T1 is essentially the
output result from a word-level comparator primitive COMP

�
T0 � T1 � .

Since the comparator primitive may not be well defined in a real de-
sign and also T0 and T1 may have been combined with other control

symbols before entering the comparator, the simulator needs to con-
stantly monitor the computed results to identify that an equality func-
tion has been computed.

In our implementation, we use various heuristics to minimize the
need for constantly monitoring computed results. However, when it
does happen, Figure 6 and 7 illustrate the operations that the simulator
performs. In Figure 6, the left-hand side shows an OBDD correspond-
ing to the simulated result for an internal signal. The right-hand side
is the OBDD corresponding to the equality function such as T0 � T1
to be compared with. In Figure 7, the left-hand side shows the signal
OBDD by re-ordering the variables in such a way that variables in T0
and T1 appear at the bottom of the OBDD. Then, since the simula-
tor utilizes a Reduced OBDD strategy where each unique function is
stored only once, a simple pointer check can determine if the OBDD
of ”T0 � T1” is contained as a sub-graph in the left-hand side OBDD
or not. In this case, this is true and hence, the left-hand side OBDD
can be simplified by introducing a new variable (the shaded node) to
replace the entire ”T0 � T1” sub-graph. The resulting OBDD is shown
on the right-hand side of the figure.

Figure 7: Identify Containment of the Equality Function by Re-Ordering

In our symbolic simulation, new variables are introduced to replace
the OBDD sub-graphs that represent equality functions of pairs of
symbolic vectors. For CAM, this achieves the same abstraction ef-
fect as the CAM encoding schemes do. However, since the original
equality functions are kept and linked to the new variables, no infor-
mation is lost. Hence, if necessary such a variable can be expanded
back to its corresponding equality function later on. This avoids the
false-negative problem described earlier.

V-B. Consistency Checking
At the end of symbolic simulation, results from the model un-

der check are compared to the results from the golden model (can
be an RTL or an assertion). Suppose that results for signal i
in the golden model are � � Di

1 � V i
1 � � �	�	�

�
Di

n � V i
n ��� . Suppose that re-

sults for the corresponding signal j in the model being checked are
� � D j

1 � V j
1 � � �	�	� �

�
D j

m � V j
m ��� . Then, we first check if

�
Di

1 � �	�	� � Di
n �

�
�
D j

1 � �	�	� � D j
m � . If this is not true, then the check fails. Otherwise,

we further check, for each domain Di
k, � D j

l � D j
l � Di

k � φ, whether or

not
�
D j

l � V j
l � is consistent with

�
Di

k � V i
k � .

VI. VERIFICATION OF THE MMU

In this section, we discuss experimental results on the Motorola
MMU design. In each experiment, we compare two methods: the or-
dinary symbolic simulator (SS) and our dual-rail symbolic simulator
(SS2). For the ordinary simulator, we use a Motorola in-house tool
that was modified from Voss [8]. For each simulator, we discuss the
case with manually optimized initial variable ordering and the case
without. In the former case, we denote the two methods as ”SS-w”
and ”SS2-w.” In the later case, we denote the two methods as ”SS-
wout” and ”SS2-wout.” In addition, we also consider the case of using
CAM encoding schemes and denote it as ”SS-encode.”

All our experiments were run on a Pentium 4 1.5G machine run-
ning Linux Mandrake 2.4.8-26mdk with 512M memory. For all ex-
periments, symbolic variables were assigned to all inputs and no con-
stant value was used (unless otherwise specified). Hence, all opera-
tions were intended to be verified during a single run of the symbolic
simulation.

SS-wout SS-w SS-encode* SS2-wout SS2-w
time (sec) abort 1038.2 0.3 6 2
max OBDD nodes too big 2399140 � 500 537 254
*only consider translate operation .

TABLE I: EXPERIMENTAL RESULTS ON BAT

Table I shows comparison results on the BAT. For ”SS-wout,” if no
manually-optimized initial variable ordering was specified, the sym-
bolic simulation could not handle the case within a reasonable time.
We note that for comparing two symbolic vectors, the best ordering is
to interleave the variables from the two vectors. This idea was used
in the manual optimization of the initial variable ordering.

The maximum number of OBDD nodes computed for a signal dur-
ing symbolic simulation (max OBDD nodes) is also shown as a com-
plexity measurement. We note that in both simulators, dynamic or-
dering was implemented. In SS2, the OBDDs contain variables intro-
duced by node collapsing of equality functions as explained before.

In the case of ”SS-encode,” since the CAM encoding method could
not handle all operations simultaneously, only translate operation (as-
sociative read in CAM) was simulated. As expected, for this opera-
tion, the ”SS-encode” performed very well.

It can be observed that the performance of ”SS2” is less dependent
on the initial ordering given, and is not too far from the method ”SS-
encode.” On the other hand, the performance of ”SS” highly depends
on the initial ordering given. With a good initial ordering it could
finish the run. Without a good initial ordering, it could not finish the
run. In the later case, the OBDD size exceeded 20M.

SS-wout SS-w SS2-wout SS2-w
time (sec) abort 2.2 2 0.01
max OBDD nodes too big 374 170 103

TABLE II: EXPERIMENTAL RESULTS ON TLB

Table II shows results on TLB which is a 2-way array, each with
64 entries. Tags are 35-bit wide in this 2-way associative organiza-
tion. The effect of a good initial ordering on the ordinary symbolic
simulation ”SS” can clearly be observed. Without a good initial order-
ing, ”SS-wout” could not finish the run. With a good initial ordering,
”SS-wout” could finish the run very quickly.

Time (sec) Max OBDD nodes
SS2-wout (all functionality) 9.1 842
SS/ATPG(1 assertion only)** 8.3 not reported
*SS aborts in this case
**The assertion considers only for bathit � 0, tlbhit � 1

TABLE III: EXPERIMENTAL RESULTS ON MMU

Table III shows our final results on the MMU. With all inputs be-
ing given symbolic variables, the ordinary symbolic simulation could
not handle the run even after a significant amount of manual effort
were spent to optimize variable ordering. In the table, we also copy
the ”SS/ATPG” (the combined symbolic simulation and ATPG strat-
egy) result from [7] where the MMU assertion considered only the
case by assigning bathit � 0 � tlbhit � 1. As explained before, to jus-
tify bathit � 1 the ATPG decision procedure would enumerate all 15
cases on the match

�
0
� � match

�
1
� � match

�
2
� � match

�
3
�

signals shown in
the CAM example (Figure 2). Hence, it would take a much longer
time for ”SS/ATPG” to complete the same work as that was com-
pleted by the ”SS2-wout” in just 9.1 seconds.

VII. CONCLUSION

In this paper, we present a novel dual-rail symbolic simulation ap-
proach for efficient system-level verification of embedded memories.
Our approach utilizes a 2-tuple simulation scheme to enable partition-
ing between the control and the datapath. Unlike the combined ATPG
and symbolic simulation approach proposed earlier [7], the partition-
ing in our scheme does not have to be static. This gives more flexi-
bility in our implementation for optimizing performance. During the
course of simulation, our approach introduces new variables to repre-
sent equality functions on pairs of symbolic input vectors. Essentially,
our simulator can achieve the same efficiency as the CAM encoding
for verifying individual CAMs, and does not have the false-negative
problem for verifying other array designs in general. The effective-
ness of our proposed techniques is demonstrated through experiments
on the MMU design in Motorola high-performance microprocessors.
For the MMU, our approach is able to simulate all operations in a sin-
gle symbolic simulation run with symbolic variables supplied to all
input signals. This feature helps to minimize the manual effort of cre-
ating individual assertion for each operation during the verification.

REFERENCES

[1] C.-J.H. Seger and R.E. Bryant. Formal verification by symbolic evalu-
ation of partially-ordered trajectories. Formal Methods in Systems De-
sign, 6:147–189, Mars 1995.

[2] R.E. Bryant. Symbolic Boolean Manipulation with Ordered Binary-
Decision Diagrams. ACM Computing Surveys, 24(3):293–318, Sep 92.

[3] M. Pandey, R. Raimi, D. Beatty, and R.E. Bryant. Formal verification of
powerpctm arrays using symbolic trajectory evaluation. In 33rd DAC,
Las Vegas, NV, 1996.

[4] Li-C. Wang and M.S. Abadir. Experience in Validation of PowerPC Mi-
croprocessor Embedded Arrays. Journal of Electronic Testing: Theory
and Applications (JETTA), 15:191–205, 1999.

[5] Narayanan Krishnamurthy et. al. Validating PowerPC Microprocessor
Custom Memories. In IEEE Design and Test of Computers, Oct-Dec
2000, pages 61–76.

[6] M. Pandey, R. Raimi, R.E. Bryant, and M.S. Abadir. Formal verification
of content addressable memories using symbolic trajectory evaluation.
In 34th DAC, Las Vegas, NV, 1997.

[7] G. Parthasarathy, M. K. Iyer, T. Feng, Li-C. Wang, Kwang-Ting Cheng,
and Magdy S. Abadir. Combining ATPG and Symbolic Simulation for
Efficient Validation of Array Systems. in Proc. International Test Con-
ference, Baltimore, Oct 2002

[8] C.-J.H. Seger. Voss — a formal hardware verification system user’s
guide. Technical Report 93-45, Department of Computer Science, Uni-
versity of British Columbia, November 1993.

[9] Li-C. Wang, Magdy S. Abadir, and N. Krishnamurthy. Automatic Gen-
eration of Assertions for Formal Verification of PowerPC Microproces-
sor Arrays Using Symbolic Trajectory Simulation. In 35th ACM Design
Automation Conference, 1998.

[10] Chris Wilson, David L. Dill, and Randal E. Bryant. Symbolic Simula-
tion with Approximate Values, In Proc. of the Third International Con-
ference on Formal Methods in Computer-Aided Design, Nov 2000

[11] Chris Wilson and David L. Dill. Reliable Verification using Symbolic
Simulation with Scalar Values, 37th DAC, June 2000

[12] C.-Y. Huang and K.-T. Cheng. Assertion Checking by Combined Word-
level ATPG and Modular Arithmetic Constraint-Solving Techniques. In
37th ACM/IEEE Design Automation Conference (DAC), June 2000.

[13] S. Hazelhurst and C.-J.H. Seger. A Simple Theorem Prover Based on
Symbolic Trajectory Evaluation and BDD’s. IEEE Trans. on Computer-
Aided Design of Integrated Circuits and Systems, 14(4):413–422, 1995.

[14] M. Aagaard and C.-J.H. Seger. The formal verification of a pipelined
double-precision IEEE floating-point multiplier. In ACM/IEEE Int. Con-
ference on Computer-Aided Design, pages 7–10, November 1995.

[15] PowerPCTM Microprocessor Family: The Programming Environments,
Motorola Inc., 1994.

	Main
	ASP-DAC03
	Front Matter
	Table of Contents
	Author Index

