
Energy-Aware Mapping for Tile-based NoC Architectures
Under Performance Constraints ∗

Jingcao Hu Radu Marculescu
Department of Electrical and Computer Engineering

Carnegie Mellon University

Pittsburgh, PA 15213-3890, USA

e-mail: {jingcao, radum}@ece.cmu.edu

Abstract — In this paper, we present an algorithm which au-
tomatically maps the IPs/cores onto a generic regular Network
on Chip (NoC) architecture such that the total communication
energy is minimized. At the same time, the performance of the
mapped system is guaranteed to satisfy the specified constraints
through bandwidth reservation. As the main contribution, we
first formulate the problem of energy-aware mapping, in a topo-
logical sense, and then propose an efficient branch-and-bound al-
gorithm to solve it. Experimental results show that the proposed
algorithm is very fast and robust, and significant energy savings
can be achieved. For instance, for a complex video/audio SoC de-
sign, on average, 60.4% energy savings have been observed com-
pared to an ad-hoc implementation.

I. INTRODUCTION

With the advance of the semiconductor technology, the enor-
mous number of transistors available on a single chip allows
designers to integrate dozens of IP blocks together with large
amounts of embedded memory. These IPs can be CPU or DSP
cores, video stream processors, high-bandwidth I/O, etc[1].
The richness of the computational resources places tremen-
dous demands on the communication resources as well. Ad-
ditionally, the shrinking feature size in the deep-sub-micron
(DSM) era is continuously pushing interconnection delay and
power consumption as the dominant factors in the optimization
of modern systems. Another consequence of the DSM effects
is the difficulty in optimizing the interconnection because of
the ensued worsening effects such as crosstalk, etc.

To mitigate these problems, Dally and Towles [2] have re-
cently proposed a regular tile-based architecture where com-
munication can be efficiently realized using an on-chip net-
work (Fig. 1)1. As shown in the left part of Fig. 1, the
chip is divided into regular tiles where each tile can be a
general-purpose processor, a DSP, a memory subsystem, etc.
A router is embedded within each tile with the objective of
connecting it to its neighboring tiles. Thus, instead of routing
design-specific global wires, the inter-tile communication can

∗Research supported by NSF CCR-00-93104 and DARPA/Marco Gigas-
cale Research Center (GSRC), and SRC 2001-HJ-898.

1This implementation is slightly different from the example implementa-
tion given in [2], where a torus topology is adopted.

(2,0) (2,3)(2,2)(2,1)

(3,0) (3,3)(3,2)(3,1)

(0,0) (0,3)(0,2)(0,1)

(1,0) (1,3)(1,2)(1,1)

Tile

Network
Logic

Tile-based Architecture Communication Task Graph

Mapping

ASIC1

CPU1

DSP1

DSP2

DSP3

ASIC2

Fig. 1. Tile-based architecture and the mapping problem

be achieved by routing packets via these embedded routers.
Three key concepts come together to make this tile-based

architecture very promising: structured network wiring, mod-
ularity and standard interfaces. More precisely, since the net-
work wires are structured and wired beforehand, their elec-
trical parameters can be very well controlled and optimized.
In turn, these controlled electrical parameters make possible
to use aggressively signaling circuits which reduce power dis-
sipation and propagation delay significantly. Modularity and
standard network interfaces facilitate re-usability and inter-
operability of the modules. Moreover, since the network plat-
form can be designed in advance and later used for many appli-
cations, it makes sense to highly optimize this platform as its
development cost can be amortized across many applications.

To exploit this regular tile-based architecture, the design
flow needs the following three steps: First, the application
needs to be divided into a graph of concurrent tasks. Sec-
ond, using a set of available IPs, the application tasks are as-
signed and scheduled. Finally, the designer needs to decide
to which tile each selected IP should be mapped such that the
metrics of interest are optimized. More precisely, given the as-
signed/scheduled task graph which has been generated from
previous two steps, this last phase determines the topologi-
cal placement of these IPs onto different tiles. For instance,
referring to Fig. 1, this step determines onto which tile (e.g.
(3,0), (2,1), (1,3) etc.) each IP (e.g. ASIC2, DSP3, CPU1,
etc.) should be placed.

The first two steps described above are not new to the CAD
community, as they have been addressed in the area of hard-
ware/software co-design and IP-reuse [3]. However, the map-
ping phase (that is, the topological placement of the IPs onto
the on-chip tiles) represents a new problem, especially in the
context of the regular tile-based architecture, as it significantly



impacts the energy and performance metrics of the system. In
this paper, we address this very issue. To this end, we first
formulate the mapping problem and show the impact of differ-
ent mappings on the communication energy consumption of a
given system. An efficient branch-and-bound algorithm is then
proposed to solve this problem under tight performance con-
straints. Experimental results show that significant energy sav-
ings can be achieved, while guaranteeing the specified system
performance. Compared to a simulated annealing algorithm,
our algorithm is orders of magnitude faster, while the energy
consumption of the solution is almost the same (less than 10%
difference).

The paper is organized as follows: Section II briefly intro-
duces the related work. The platform of the targeted system
and its associated power model are described in Section III.
Sections IV and V illustrate the energy-aware mapping algo-
rithm. Experimental results are shown in Section VI. Finally,
Section VII summarizes our contribution and outlines some di-
rections for future work.

II. RELATED WORK

In their paper [2], Dally et al. suggest using the on-chip
interconnection networks instead of ad-hoc global wiring to
structure the top-level wires on a chip and facilitate modular
design. In [4], Hemani et al. present a honeycomb structure
in which each processing core (resource) is located on a reg-
ular hexagonal node connected to three switches while these
switches are directly linked to their next nearest neighbors. In
[5], Kumar et al. describe a physical NoC architecture im-
plemented by a direct layout of a 2D mesh of switches and
resources.

Although different in topology and some other aspects, all
the above papers essentially advocate the advantages of using
NoCs and regularity as effective means to design high perfor-
mance SoCs. While these papers mostly focus on the concept
of regular NoC architecture (discussing the overall advantages
and challenges), to the best of our knowledge, our work is the
first to address the mapping problem for tile-based architecture
and provide an efficient way to solve it.

III. PLATFORM DESCRIPTION

In this section, we describe the regular tile-based architec-
ture and the power model associated to the communication net-
work.

A. The Architecture

The chip under consideration in this paper is composed of
n× n tiles which are inter-connected by a 2D mesh network2.
Fig. 2 shows an abstract view of a tile in this architecture.

As shown in Fig. 2, each tile is composed of a process-
ing core and a router. The router embedded onto each tile

2We use the 2D mesh network simply because it naturally fits the tile-based
architecture. However, our algorithm can be extended for other topologies.

Crossbar
Switch

Processing
Core Router

bufferWest
Input

West
Output

buffer East
Input

East
Output

bu
ff

er


N
or

th


In
p

ut


N
o

rt
h

O
u

tp
u

t

bu
ff

er


S
ou

th


In
p

ut
 S

o
u

th


O
u

tp
u

t

buffe
 r

Proc.

Input Proc.

Ou tput

One
tile

Fig. 2. The typical structure of a tile

is connected to the four neighboring tiles and its local pro-
cessing core via channels. Each channel consists of two one-
directional point-to-point links between two routers or a router
and a local processing core.

Compared to typical macro-networks, an on-chip network
is by far more resource limited. To minimize the implemen-
tation cost, the on-chip network should be implemented with
very little area overhead. This is especially important for
those architectures composed of tiles with fine-level granu-
larity. Thus, instead of having huge memories (e.g. SRAM
or DRAM) as buffer space for those routers/switches in the
macro-network, it’s more reasonable to use registers as buffers
for on-chip routers3. For the architecture in Fig. 2, a 5 × 5
crossbar switch is used as the switching fabric because of its
nice cost/performance trade-offs for switches with small num-
ber of ports.

To be able to direct the information appropriately, a tile-
based architecture requires a method of routing the data pack-
ets through the network. There are quite a few routing algo-
rithms proposed so far. In general, they can be divided into
two categories: static routing and adaptive routing [6]. For
the tile-based architecture, we believe that the static routing is
more suitable than the adaptive routing because:

1. Compared to static routers, implementing adaptive
routers requires by far more resources because of their
complexity.

2. Since in adaptive routing packets may arrive out of or-
der, huge buffering space is needed to reorder them. This,
together with the protocol overhead, leads to prohibitive
cost overhead, extra delay and jitter.

Based on the above considerations, static XY routing is as-
sumed for the on-chip network. In a few words, for 2D mesh
networks, XY routing first routes packets along the X-axis.
Once it reaches the column wherein lies the destination tile,
the packet is then routed along the Y-axis. Obviously, XY rout-
ing is a minimal path routing algorithm and is free of deadlock
and livelock [6].

3As we will see later, this leads to a much simpler power model compared
to its macro-network peer.



B. The Energy Model

In [7], Ye et al. propose a new model for evaluating the
power consumption of switch fabrics in network routers. To
this end, the bit energy (Ebit) metric is defined as the en-
ergy consumed when one bit of data is transported through the
router. Ebit can be calculated by the following equation:

Ebit = ESbit
+ EBbit

+ EWbit
(1)

where ESbit
, EBbit

and EWbit
represent the energy consumed

by switch, buffering and interconnection wires, respectively.
(Note that the authors in [7] assume the buffers are imple-
mented in SRAM or DRAM.)

Although the above power model is targeted for network
routers where the entire chip is occupied by just one router, it
can be adapted to the tile-based architecture with the following
modifications:
• First, in [7], EBbit

becomes dominant when congestion
happens since accessing and refreshing the memory are very
expensive in terms of power consumption. This is no longer
true for on-chip networks where the buffers are implemented
using regular registers.
• Second, in [7], EWbit

is the energy consumed on the wires
inside the switch fabric. For the on-chip network, the energy
consumed on the links between tiles should also be included;
in the following this is denoted by ELbit

. Thus, the average
energy consumed in sending one bit of data from a tile to its
neighboring tile can be calculated as:

Ebit = ESbit
+ EBbit

+ EWbit
+ ELbit

(2)
Since the link between each pair of nodes is typically in

the order of mm, the energy consumed by buffering and inter-
nal wires is negligible4 compared to ELbit

(EBbit
+ EWbit

�
ELbit

). Thus, Eq. (2) reduces to:

Ebit = ESbit
+ ELbit

(3)
Consequently, the average energy consumption of sending

one bit of data from tile ti to tile tj can be calculated as:

E
ti,tj

bit = nhops × ESbit
+ (nhops − 1) × ELbit

(4)

where nhops is the number of routers the bit passes on its way
along a path.

Eq. (4) gives the energy model for the regular tile-based
NoC architecture. Without loss of generality, in what follows,
we focus on 2D mesh network. Note that, for the 2D mesh
network with XY routing, Eq. (4) shows that the average en-
ergy consumption of sending one bit of data from tile ti to tile
tj is determined by the Manhattan distance between these two
tiles.

IV. THE PROBLEM OF ENERGY-AWARE MAPPING

A. Problem Formulation

Simply stated, our objective is to figure out, after the de-
signer has selected a set of IPs and assigned/scheduled the

4We implemented a 4 × 4 crossbar switch and then evaluated its power
consumption with Synopsys design compiler for a 0.18µm technology. The
results show that EBbit

= 0.075pJ , which is indeed negligible compared to
ELbit

(typically in the order of pJ).

tasks onto these IPs, how to map these IPs onto different tiles
such that the total communication energy consumption is min-
imized, while guaranteeing the performance of the system. To
formulate this problem in a more formal way, we need to first
introduce the following two new concepts:

Definition 1 An Application Characterization Graph (APCG)
G = G(C,A) is a directed graph, where each vertex ci repre-
sents one selected IP/core, and each directed arc ai,j represents
the communication from ci to cj . The following quantities are
associated with each ai,j as arc properties:

• v(ai,j): arc volume from vertex ci to cj , which stands for
the communication volume (bits) from ci to cj .

• b(ai,j): arc bandwidth requirement from vertex ci to cj ,
which stands for the minimum bandwidth (bits/sec.) that
should be allocated by the communication network.

Definition 2 An Architecture Characterization Graph (ARCG)
G′ = G(T, P ) is a directed graph, where each vertex ti repre-
sents one tile in the architecture, and each directed arc pi,j rep-
resents the routing path from ti to tj

5. The following quantities
are associated with each pi,j as arc properties:

• e(pi,j): arc cost from vertex ti to tj , which represents the
average energy consumption (joule) of sending one bit of
data from tile ti to tj , i. e., E

ti,tj

bit .

• L(pi,j): the set of links that make up the path pi,j .

Using the above graph representations, the problem of min-
imizing the communication energy consumption under perfor-
mance constraints can be formulated as:

Given an APCG and an ARCG that satisfy

size(APCG) ≤ size(ARCG) (5)

find a mapping function map() from APCG to ARCG
which minimizes:

min{Energy =
∑

∀ai,j

v(ai,j) × e(pmap(ci),map(cj))} (6)

such that:

∀ci ∈ C, map(ci) ∈ T (7)

∀ci 6= cj ∈ C, map(ci) 6= map(cj) (8)

∀ link lk, B(lk) ≥
∑

∀ai,j

b(ai,j) × f(lk, pmap(ci),map(cj)) (9)

where B(lk) is the bandwidth of link lk, and:

f(lk, pm,n) =

{

0 : lk 6∈ L(pm,n)
1 : lk ∈ L(pm,n)

Conditions (7) and (8) mean that each IP should be mapped
to exactly one tile and no tile can host more than one IP. Eq. (9)
guarantees that the load of any link will not exceed its band-
width.

5For 2D mesh network with static routing, this suggests a complete con-
nected graph with exactly one arc from each vertex to any other vertex.



B. Significance of the Problem

To prove that the mapping heavily affects the communica-
tion energy consumption, we carried out the following exper-
iment. A series of task graphs are generated using TGFF [8].
Then the output graph is randomly assigned to a given num-
ber of IPs, with the computational times and communication
volumes randomly generated according to the specified distri-
bution. Our tool is then used to pre-process and annotate these
task graphs and build the Communication Task Graphs (CTG),
which characterizes the partitioning, task assignment, schedul-
ing, communication patterns, task execution time, of the appli-
cation. Also, the bandwidth requirements between any com-
municating IP pairs are calculated.

The number of IPs used in the experiment ranges from 3×3
to 13 × 13. For each benchmark, we randomly generate 3000
mapping configurations and the corresponding energy con-
sumption values are calculated. In parallel, an optimizer using
simulated annealing (SA) was also developed with the goal of
finding a legal mapping which consumes the least amount of
communication energy. The resulting energy ratios are plotted
in Fig. 3.

0 50 100 150 200
1

1.5

2

2.5

3

3.5

4

4.5

E
ne

rg
y 

co
ns

um
pt

io
n 

ra
tio

Number of tiles

Random_min/SA_sol
Random_med/SA_sol

Fig. 3. The impact of mapping on energy consumption

The dashed line in Fig. 3 shows the energy consumption
ratio of the best solution among the 3000 random mappings
(Random min) to the solution found by the simulated anneal-
ing (SA sol). The solid line shows the ratio of the median
solution among the 3000 random mappings (Random med) to
SA sol.

As we can see, although the simulated annealing optimizer
does not necessarily find the optimal solution, it still saves
around 50% energy compared to the median solution for the
system with 3 × 3 tiles. Moreover, the savings increase as the
system size scales up. For systems with 13 × 13 tiles, the sav-
ings can be as high as 75%. Another observation is that the
best solution among the 3000 random mappings is far from
satisfactory, even with a system as small as 3 × 3 tiles.

Unfortunately, the mapping problem is an instance of con-
strained quadratic assignment problem which is known to be
NP-hard [9]. The search space of the problem increases fac-
torially with the system size. Even for a system with 4 × 4
tiles, there can be 16! mappings which are already impossible
to enumerate, not to mention systems with 10×10 tiles that are
anticipated in five years or less [5]. In the following section, we

propose an efficient branch-and-bound algorithm which can be
used to find nearly optimal solutions in reasonable run times.

V. THE ALGORITHM OF ENERGY-AWARE MAPPING

A. The Data Structure

Our approach is based on a branch-and-bound algorithm.
The algorithm is used to efficiently walk through the search
tree which represents the whole searching space. Fig. 4 shows
an example of the searching tree for mapping an application
with 4 IPs onto a 2 × 2 tile architecture. To keep the figure
simple, we do not show all the nodes.

xxxx

031x

Internal
Node

Root
Node

0xxx 1xxx 2xxx

01xx 02xx 03xx

032x

21xx 23xx

230x 231x

3xxx

20xx

0321 2301 23100312
Leaf
Node

Fig. 4. An example search tree

In Fig. 4, each node belongs to one of the three categories:
root node, internal node, and leaf node. The root node cor-
responds to the state where no IP has been mapped. Each in-
ternal node represents a partial mapping which is tagged by a
label. Each number in the label represents which tile the cor-
responding IP is mapped to. For example, the node with the
label “23xx” represents a partial mapping where IP0 and IP1

are mapped to Tile2 and Tile3 respectively, while IP2 and
IP3 are still unmapped. Each leaf node represents a complete
mapping of the IPs to the tiles.

To explain how our algorithm works, the following terms
need to be defined:

Definition 3 The cost of a node is the energy consumed by
the communication among those IPs that have already been
mapped.

For instance, the cost of the node labeled “23xx” can be
calculated as v(a0,1) × e(p2,3) + v(a1,0) × e(p3,2).

We can infer from definition 3 that any child node’s cost is
no less than its parent node’s cost. This property will later be
used in the algorithm to trim away unqualified sub-trees.

Definition 4 Let M be the set of vertices in the APCG that
have already been mapped. A node is called a legal node if
and only if, for any link lk, it satisfies the following condition:

B(lk) ≥
∑

∀ai,j ,cicj∈M

b(ai,j) × f(lk, pmap(ci),map(cj)) (10)

Eq. (10) guarantees that all the bandwidth requirements be-
tween the currently mapped IPs are satisfied. Also, if a node is
illegal, then all of its descendant nodes are illegal.

Definition 5 The Upper Bound Cost (UBC) of a node is de-
fined as a value that is no less than the minimum cost of its
legal, descendant leaf nodes.



Definition 6 The Lower Bound Cost (LBC) of a node is defined
to be the lowest cost that its descendant leaf nodes can possibly
achieve.

Differently stated, this means that if a node has the LBC
equal to x, then each of its descendant leaf nodes has at least a
cost of x.

B. The Branch-and-Bound Algorithm

Given the above definitions, finding the optimal mapping is
equivalent to finding the legal leaf node which has the least
cost6. To achieve this, our algorithm searches the optimal so-
lution by alternating the following two steps:

Branch: In this step, an unexpanded node is selected from
the tree, the next unmapped IP is enumeratively assigned to the
set of remaining unoccupied tiles and then the corresponding
new child nodes are generated.

Bound: Each of the newly generated child nodes are in-
spected to see if it is possible to generate the best leaf nodes
later. A node can be trimmed away without further expansion
if either its cost or its LBC is higher than the lowest UBC that
has been found during the searching (since it is guaranteed that
other nodes will eventually lead to a better solution).

Obviously, the calculation of the UBC and LBC signifi-
cantly impacts the speed of the algorithm. Primarily, we want
to have tight UBC and LBC for each node so that more non-
promising nodes can be detected and trimmed away early on
during the search. Unfortunately, calculating a tight UBC or
LBC usually demands more computational time. Next, we de-
scribe our method for computing UBC and LBC, which offers
a satisfactory trade-off between the average time for processing
one node and the number of nodes that need to be processed.
• UBC calculation

By definition 5, the cost of any legal descendant leaf node
can be used as the UBC of that node. Since we want to se-
lect the legal descendant leaf node with the smallest cost, we
choose the descendant leaf node using a greedy method for
mapping the remaining unmapped IPs to the unoccupied tiles.
For each step in the greedy mapping procedure, the next un-
mapped IP ck with the highest communication demand is se-
lected and its ideal topological location (x, y) on the chip is
calculated as:

x =

∑

∀ci∈M
(v(ak,i) + v(ai,k)) × cx

i
∑

∀ci∈M
(v(ak,i) + v(ai,k))

(11)

y =

∑

∀ci∈M
(v(ak,i) + v(ai,k)) × c

y
i

∑

∀ci∈M
(v(ak,i) + v(ai,k))

(12)

where cx
i and c

y
i represent the row id and column id of the

tile that ci is mapped onto, respectively, and M is the set of
mapped IPs which is updated at each step. ck is then mapped to
an unoccupied tile whose topological location has the smallest
Manhattan distance to (x, y).

6The performance constraints are guaranteed to be satisfied by the legality
of the node.

This step is repeated until all IPs have been mapped. This
leads to a complete mapping and thus identifies a single de-
scendant leaf node. If this leaf node is illegal, then the UBC
of the node under inspection is set to be infinitely large; other-
wise, it is set to be the cost of that descendant leaf node.
• LBC calculation

The LBC cost of a node n can be decomposed into three
components, as shown in Eq. (13):

LBC = Cm,m + Cu,u + Cm,u (13)
Cm,m is the cost of the intercommunication among mapped

IPs. Since the location of these IPs is known, Cm,m can be
calculated exactly. Cu,u is the cost of the intercommunica-
tion among unmapped IPs. Eq. (14) is used to calculate Cu,u,
where M̄ stands for the set of unmapped IPs and Ō stands for
the set of tiles that have not been occupied yet.

Cu,u =
1

2
×

∑

∀ci∈M̄

∑

∀cj∈M̄

v(ai,j) × min
∀tmtn∈Ō

e(pm,n) (14)

The last item Cm,u stands for the cost of the intercommu-
nication between the mapped IPs and the unmapped IPs. Let
M, M̄ and Ō be the sets of mapped IPs, unmapped IPs and
unoccupied tiles, respectively. Cm,u can be derived by:

Cm,u =
∑

∀ci∈M

∑

∀cj∈M̄

v(ai,j) × min
∀tk∈Ō

e(pmap(ci),k)

+
∑

∀ci∈M̄

∑

∀cj∈M

v(ai,j) × min
∀tk∈Ō

e(pk,map(cj)) (15)

C. Speed-up Techniques

In order to speed up the searching process, it is critical to
trim away as many non-promising nodes as possible, as early
as possible during the search process. We propose the follow-
ing techniques for this purpose.
• IP ordering: We can sort the IPs according to their com-
munication demand7 so that the IPs with higher demand will
be mapped earlier. Since the positions of the IPs with higher
demand generally have a larger impact on the overall commu-
nication energy consumption than those of IPs with lower de-
mand, fixing their positions earlier helps exposing those non-
promising internal nodes at earlier times in the searching; this
reduces the number of nodes to be expanded. As most appli-
cations have non-uniform traffic patterns, this heuristic is quite
useful in practice.
• Priority queue (PQ): A priority queue is used to sort those
nodes that are waiting to be branched based on their cost. The
lower the cost of the node, the higher the priority the node
has for branching. Intuitively, expanding a node with lower
cost will more likely decrease the minimum UBC so that more
non-promising nodes may be detected.
• Symmetry Exploitation: To further speed up our algorithm,
the symmetry property of the architecture is exploited. Consid-
ering the system with 16 tiles and nodes of depth 1 in the search
tree as an example, we only need to investigate those nodes

7For IP ci, this is calculated as
∑

∀j 6=i
{v(ai,j) + v(aj,i)}



which map the first IP to the tiles denoted by (0, 0), (0, 1) and
(1, 1) (see Fig. 1), as the other nodes are just mirrors of these
nodes.

D. The Pseudo code

Fig. 5 gives the pseudo code of our algorithm which also
shows how the above speed-up techniques are employed.

Sort the IPs by communication demand
root node = new node(NULL)
min UBC = +∞, best mapping cost = +∞

PQ.Insert(root node)
while(!PQ.Empty()) {

cur node = PQ.Next()
for each unoccupied tile ti {

generate child node nnew

if(nnew’s mirror node exists in the PQ)
continue

if(nnew.LBC>min UBC) continue
if(nnew.isLeafNode) {

if(nnew.cost < best mapping cost) {
best mapping cost = nnew.cost
best mapping = nnew }}

else {
if(nnew.UBC<min UBC) min UBC = nnew.UBC
PQ.insert(nnew) }}

}

Fig. 5. The pseudo code of the algorithm

Obviously, the code shown in Fig. 5 will always find the op-
timal solution. However, as the system size scales up, the run
time of this algorithm will also increase drastically. Thus, the
following heuristic needs to be used to trade-off the solution
quality with run time.

The length of the PQ is monitored during the process. When
it reaches a threshold value, strict criteria are applied to select
the child nodes for insertion into the queue. Suppose we are
currently expanding node n. If n is the node in the PQ which
has the minimal UBC, then all of its child nodes will be evalu-
ated by the code in Fig. 5 for insertion into the PQ. Otherwise,
only the child with the lowest cost among its siblings and the
child generated by the greedy mapping will be evaluated for
insertion.

VI. EXPERIMENTAL RESULTS

A. Evaluation Experiments

We first compare the run-time and quality of the solution
generated by our algorithm to a simulated annealing optimizer
(SA)8. Four categories of benchmarks are generated by the
technique described in subsection IV.B. Categories I, II, III and
IV contain 10 applications with 9, 16, 25 and 36 IPs, respec-
tively. These need to be mapped onto architectures with the
same number of tiles.

8To make the comparison fair, SA was optimized by carefully selecting
parameters such as number of moves per temperature, cooling schedule, etc.

1 2 3 4 5 6 7 8 9
0

50

100

Benchmark

S
pe

ed
 u

p

1 2 3 4 5 6 7 8 9
0

0.5

1

1.5

Benchmark

E
ne

rg
y 

ra
tio

Fig. 6. Comparison between SA and our algorithm for category III
benchmarks

Fig. 6 shows the comparison between our algorithm and
simulated annealing for the benchmarks in category III. The
left figure gives the speed up ratios of our algorithm over the
simulated annealing algorithm. The right figure shows the en-
ergy ratios of the solutions provided by our algorithm to that
generated using simulated annealing. Note that although we
have 10 benchmarks for category III, we only show the results
for 9 benchmarks here since neither of them can find a mapping
solution which meets the specified performance constraints for
one of the benchmarks.

As it can be seen, our algorithm runs much faster (72 times
on average) over SA with very competitive solutions (the dif-
ference of the communication energy consumption between
the solutions generated by these two algorithms are within 6%,
on average).

0 20 40
0

0.5

1

Energy ratio vs. system size

System size(number of tiles)

E
ne

rg
y 

ra
tio

(o
ur

 a
lg

/S
A

)

0 20 40
0

50

100

Speedup ratio vs. system size

System size(number of tiles)

S
pe

ed
up

 r
at

io
(o

ur
 a

lg
/S

A
)

Fig. 7. Comparison between SA and our algorithm with system size scales up

Fig. 7 shows how our algorithm performs compared to SA as
the system size scales up. For benchmark applications using 36
tiles, our algorithm runs 127 times faster than SA, on average.
Meanwhile, the solutions produced by our algorithm remain
very competitive compared to those generated by SA. On aver-
age, the energy consumption of the solution generated by our
algorithm is only 3%, 6% and 10% for category II, III and IV,
respectively. For category I, our algorithm can even find better
solutions than SA because it can in general walk through the
whole search tree due to the small size of the problem.

B. A Video/Audio Application

To evaluate the potential of our algorithm for real applica-
tions, we applied this algorithm to a generic MultiMedia Sys-
tem (MMS). MMS is an integrated video/audio system which
includes an h263 video encoder, an h263 video decoder, an
mp3 audio encoder and an mp3 audio decoder. We partitioned
the application into 40 distinct tasks and then these tasks were



assigned and scheduled onto 25 selected IPs [10]. These IPs
range from DSPs, generic processors, embedded DRAMs to
customized ASICs. Real video and audio clips are then used
as inputs to derive the communication patterns among these
IPs. Fig. 8 shows the derived CTG of this system based on the
simulation result.

MEASIC1

QDSP2

FilterDSP6

FFTDSP5

FPDSP4

FS0MEM1

FPDSP3

VLEASIC2

DCTDSP1

MCCPU1

IDCT

IQ

ADD

FS1 FS2

Iterative Encoding1CPU2 Iterative Encoding2

Bit reservoir1ASIC3 Bit reservoir 2

PsychoAccoustic Model

MDCT

38
0

1
6

11
 6

8
7

3

19 7
33848

33848

33848

16
6 9

1

16691

75205

3801

6

70617061
26924

28248

8 0

2 5


SynchronziationASIC2 Multiplexing

IDCTDSP6

IQDSP5

VLDDSP4

MCCPU2 ADD

FS4MEM2 FS5

IMDCT

DSP6

Bit reservoir 1

DSP5

Huffman
Decoding 1DSP4

Buffering

Mem4

Huffman
Decoding 2

Bit reservoir 2

SUM

3 67 2

367 2

1 97

3672

75
5

8
4

38016

3 8 0 1
6

14
4

641

8 0 25


28265

7065

Demulplexi
ngASIC2764

SynchronziationASIC5

7065

H263
Encoder

MP3
Encoder

Mem2 Buffering

640

64
0

H263
Decoder

MP3
Decoder

Fig. 8. Communication Task Graph for MMS

Applying our algorithm to MMS, the solution is found in
less than 7 seconds CPU time. An ad-hoc implementation9 was
also developed to serve as reference. The results are shown in
Table I.

TABLE I
POWER COMPARISON BETWEEN AD-HOC SOLUTION AND OUR SOLUTION

Movie clips Ad-hoc(mW ) Our alg(mW ) Savings
box/hand 374.5 148.3 60.4%
akiyo/cup 440.5 187.3 57.5%

man/phone 327.5 120 63.4%

In Table I, each row represents the power consumption of
using two movie clips as simulation inputs, with one clip for
the video/audio encoder and the other for the video/audio de-
coder. Compared to the ad-hoc solution, we observe around
60.4% energy savings, on average, which demonstrates the ef-
fectiveness of our algorithm.

Simulated annealing is also applied to MMS, and the power
consumption of the solution and the run time are shown in Ta-
ble II together with the results of our algorithm for comparison.

TABLE II
COMPARISON BETWEEN SA AND OUR ALGORITHM USING MMS

SA Our alg. Ratio
Run Time (sec) 181.67 6.52 27.864
Power (mW ) 148.8 148.3 0.997

As shown in Table II, for this complex application, our al-
gorithm generates a better solution with significantly less run
time compared to the simulated annealing. We should point

9We randomly generated 3000 solutions, from which the one that consumes
median energy consumption was chosen as the ad-hoc implementation.

out that although for this system which has only 5×5 tiles, the
solving time of SA is affordable, the run time of SA increases
dramatically as the system size scales up. For systems with
7 × 7 tiles, the average run time of SA increases to 2.2 hours,
on average. For systems with 10×10 tiles (which will be avail-
able in the near future), our algorithm needs just a few minutes
to complete while the run time of SA becomes prohibitive (in
our experiments on systems with 10 × 10 tiles, the SA did not
finish in 40 hours of CPU time).

VII. CONCLUSION AND FUTURE WORK

In this paper, we addressed the mapping problem for regular
tile-based architectures. An efficient algorithm which automat-
ically maps the IPs to the tiles so that the total communication
energy consumption is minimized under specified performance
constraints was proposed. By using simulated annealing as ref-
erence, we have shown that we can generate high quality so-
lutions with significantly less computational time. Although
in this paper we focus on the tile-based architecture intercon-
nected by 2D mesh network with XY routing, our algorithm
can be adapted to other regular architectures with different net-
work topologies and different static routing schemes.

We plan to advance this research in several directions. Due
to the short run time of our algorithm, one possible exten-
sion is to combine the IP selection and the task partition-
ing/scheduling into our framework such that the computation
and communication energy consumption can be optimized at
the same time.

ACKNOWLEDGMENTS

The authors would like to thank Dr. John Darringer and
Dr. Youngsoo Shin of IBM T.J. Watson Research Center for
insightful comments on this work.

REFERENCES

[1] P. Guerrier, A. Greiner, “A generic architecture for on-chip packet-
switched interconnections,” Proc. DATE, pp. 250–256, March 2000.

[2] W. J. Dally, B. Towles, “Route packets, not wires: on-chip interconnec-
tion networks,” Proc. DAC, pp. 684–689, June 2001.

[3] J. Chang, M. Pedram, “Codex-dp: co-design of communicating sys-
tems using dynamic programming,” IEEE Tran. on CAD of Integrated
Circuits and Systems, vol. 19, No. 7, July 2002.

[4] A. Hemani, et al, “Network on a chip: an architecture for billion tran-
sistor era,” Proc. of the IEEE NorChip Conf., Nov. 2000.

[5] S. Kumar, et al, “A network on chip architecture and design methodol-
ogy,” Proc. Symposium on VLSI, pp. 117–124, April 2002.

[6] C. J. Glass and L. M. Ni, “The turn model for adaptive routing,” Proc.
ISCA, May 1992.

[7] T. T. Ye, L. Benini, G. De Micheli, “Analysis of power consumption on
switch fabrics in network routers,” Proc. DAC, June 2002.

[8] R. P. Dick, D. L. Rhodes, W. Wolf, “TGFF: task graphs for free,” Proc.
Intl. Workshop on Hardware/Software Codesign, March 1998.

[9] M. R. Garey, D. S. Johnson, “Computers and intractability: a guide to
the theory of NP-completeness,” Freeman, 1979.

[10] http://www.mentor.com/inventra/cores/catalog/index.html


	Main
	ASP-DAC03
	Front Matter
	Table of Contents
	Author Index




