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Abstract - This paper presents a full System-on-Chip (SoC) 
design flow from system specification to RT-level. A new 
approach to obtain a full path to implementation for SoC 
design is proposed. This approach combines architecture 
design space exploration using the VCC design environment 
and system synthesis using the ROSES design flow, allowing a 
true and complete system level design flow. The experiment 
with a VDSL application shows a significant reduction of 
design time. 
 
 

I. Introduction 
 

The design of embedded systems-on-chip is a complex 
process, involving different steps at different abstraction 
levels. Design steps can be grouped into two major tasks: 
architecture design space exploration, for 
hardware/software partitioning and selection of 
architectural platform and components, and architecture 
design. The overall design process must consider strict 
requirements, regarding time to market, system 
performance, power consumption, and production cost. The 
reuse of IP components from several vendors is necessary 
for reducing design time, but their integration into a system 
also presents various challenges. Most architectural 
platforms include programmable processors, so that 
software design in multiprocessor environments becomes a 
major issue.  

A complete design flow for SoCs is then necessary to 
cover this design complexity. This refinement process 
requires multiple competences and tools because of the 
complexity and diversity of the current applications. 

Current and previous works try to reduce the gap between 
different design steps and to master the integration of very 
diverse components, including hardware and software parts. 
For a full path to implementation, earlier approaches as 
COSYMA [16] and Vulcan [17] had a very restricted 
success. VCC [2] and Artemis [1] are two approaches that 
deal with the architecture design space exploration step. 
ROSES [21] and CoWare [6] give a solution for the 
architecture design step.  

Existing approaches deal only with a specific part of the 
SoC design flow. A full system level flow is quite complex, 
and to our knowledge very few work cover both system-
architecture exploration and system-architecture design. 

This paper presents a novel approach that implements a 

full path including SoC architecture exploration and system 
design, considering hardware/software architectural 
solutions along the whole design path. This approach 
combines the Cadence Virtual Component Co-design 
(VCC) and the ROSES design environments in a consistent 
way. It bridges the gap between easy design space 
exploration supported by VCC and low-level system design 
supported by ROSES, allowing a true hardware/software 
co-design. 

This paper is structured as follows. The next section 
presents an ideal system level design flow and reviews 
related work. Sections III and IV introduce the basic design 
methodologies, architectural models, and benefits of the 
VCC and ROSES environments, respectively. The solution 
for bridging the gap between VCC and ROSES is detailed in 
Section V. In section VI, the application of this full path to 
implementation to the design of a VDSL framing is 
presented and results are analyzed. Section VII summarizes 
and concludes the paper. 
  

 

II. A Full System Level Design Flow  
 
A. System level design flow architecture 
 

A full design flow, as shown in Fig.1, starts from a 
system-level specification and reaches an RTL architecture, 
from which the synthesis of hardware and software 
components can be performed with conventional design 
tools. The first step of the design flow is a contract between 
the end-customer and system designer dealing with an 
informal model of the application. System designers then 
build a formal SoC specification – a behavioral or 
functional model – that the end-customer can validate. Next, 
they fix the system architecture, typically reusing IP 
components such as processors and memories, and decide 
about the mapping of function to architecture for the 
application functionality, by assigning behavioral 
components to architectural ones. This step generally uses 
an executable specification model that allows designers to 
go through a performance analysis loop. In order to obtain 
an executable specification model at this stage, system 
designers build a simulation model using software profiles 
for parts of the application and abstract models for the 
hardware components. 
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Fig. 1. System-level design flow for SoCs 
 

System architecture exploration fixes the specification of 
the hardware components (e.g. selection of existing 
processors or specific hardware), the partitioning of 
functional tasks into hardware and software components, 
and the global structure of the on-chip communication 
network. This step produces an abstract architecture, which 
does not contain all details of the interfaces between 
components and is used as a golden architecture model that 
guides the next step: SoC architecture design.  

SoC designers need to interconnect the hardware and 
software components while respecting the performance 
constraints described in the golden architecture model. This 
step results in an RTL architecture (also called a micro-
architecture), involving the generation of all hardware and 
software interface details at a pin-and-cycle-accurate level. 
In parallel, hardware and software designers can implement 
those components in conformance with the golden 
architecture model.  
 
B. Related Work 
 

Many academic and industrial works provide tools for 
SoC design automation that covers many but not all design 
steps presented before.  

There are very few tools on the market that allow a real 
design space exploration at the macro-architecture level, 
allowing an easy performance estimation of different 
architectural choices and hardware/software partitioning. 

[20] proposes a framework for object oriented hardware 
specification, verification, and synthesis an object oriented 
language ‘e’ with a powerful run-time environment that 
enables designer to perform the verification task. COSY 
[10] proposes a hardware/software communication 
refinement process that starts with an extended Khan 
Process Network model for system specification. SystemC 
[11][19] is a library based on C++ classes for describing 
hardware/software systems at multiple levels of abstraction 
and provides mechanisms for system simulation. SpecC 
[15] proposes a methodology based on an extended C 
language, but architecture exploration requires manual 
recoding. Artemis [1] is a modeling and simulation 
environment aimed to explore the design space of 

heterogeneous embedded-systems architectures at multiple 
abstraction levels. VCC [4] performs architectural design 
exploration, offering fast performance estimations for 
different macro-architectures and hardware/software 
partitionings. But this macro-architecture can be hardly 
synthesized, because available hardware and software 
models are far from real components. 

There are also very few tools that allow a complete and 
automated generation of pin-and-cycle-accurate hardware 
and software interfaces between arbitrary IP components, 
starting from a macro-architecture. Common approaches to 
IP integration either suppose that IP components follow 
some bus or core standard and can be thus directly 
connected, and/or require a manual generation of interface 
details, and/or consider only hardware interfaces.  CoWare 
[9][18] can be used for hardware/software integration and 
simulation, but still many architecture details must be 
implemented manually.   

It can be concluded that there is no single design 
environment that completely covers the ideal design flow 
depicted in Fig.1. In order to build a complete design flow, 
this paper introduces an adequate combination of the VCC 
and ROSES environments.  
 
 

III. Architecture Exploration Using VCC 
 

The VCC design environment is aimed at architectural 
design space exploration [3]. This is achieved by exploring 
hardware/software partitioning alternatives to reach optimal 
design performance within the given constraints. Once a 
suitable architecture is found, vendor libraries may be 
searched to find virtual component models that meet model 
specifications.  

The methodology, as shown in Fig.2, starts with a 
functional specification and simulation of the system as a 
network of behaviors, with no implication of an eventual 
architecture implementation. An architecture platform 
composed of IP components (CPUs, IPs, memories, 
buses...etc), is then captured. Besides components 
corresponding to real IP in the final SoC, an RTOS or 
scheduler must be attached to each processor. This is a 
relaxed architecture, for which only the basic topology is 
defined, with no detailed information on ports and signals. 

Behavior components are then mapped to the architectural 
ones, thereby defining a hardware/software partition. Each 
communication wire in the behavior diagram may be 
mapped to a communication pattern, which details how 
communication is implemented between behavioral 
components. 

For performance simulation purposes, each architecture 
component must have a performance model, which is 
described by means of component services, such as a 
scheduler, for an RTOS, and bus and interrupt requests, for a 
processor, and read and write transactions, for a memory.   

Mapping is a continuous refinement process, whereby 
new design decisions are taken, for instance to consider bus 
traffic, behavior delay, and memory accesses, and the  
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Fig. 2. The VCC design flow 
 

resulting performance is analyzed. Communication 
patterns may be refined to consider protocols, shared 
memories for communication, interrupt mechanisms, 
concrete data types, and bus and memory addressing. DMA 
and cache components can also be included. Mapping 
diagrams and communication patterns may be easily 
modified, so as to explore alternative architectural solutions. 
 
 

IV. Architecture Design Using ROSES 
 
ROSES [21] is a design methodology with a 

corresponding set of tools, aimed at bridging the gap 
between heterogeneous system specification and system-
on-chip implementation. The ROSES synthesis process, as 
shown in Fig.3, starts by capturing an abstract architecture 
composed of virtual modules (VM), corresponding to 
processing and memory IPs, connected by a communication 
network, also encapsulated within a VM. The ROSES 
virtual architecture model, illustrated in Fig.3.(a), clearly 
separates behavior and structure from communication. This 
allows separate and concurrent implementation paths for 
components and for communication. Virtual modules that 
correspond to processors may be hierarchically 
decomposed into sub-modules containing software tasks 
assigned to this processor. This architecture is described in 
SystemC.  

Wrappers are then automatically generated as point-to-
point adapters between the VM and the communication 
network. They are assembled as combinations of basic 
components contained in an extensible library. Wrappers 
may have hardware and software parts [8][12]. 

The hardware parts are adapters to be physically 
synthesized, and ROSES specifies their HDL descriptions 
for the further synthesis process. They may be considered 
as communication co-processors (CC, in Fig.3.(b)) that 
operate concurrently with other processing functions. 
Software wrappers include drivers to the hardware and a 
dedicated OS including only the functionality needed for 
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Fig. 3. ROSES design flow 
 
the application. 
The synthesis process is guided by design decisions to be 
previously taken, for instance resulting from a design 
exploration tool, including protocols, processor types, 
memory and bus addresses, interrupt levels, and port and 
net data types. 
 

V. Combining VCC and ROSES 
 
A.   Application Domain 
 

VCC is a powerful design space exploration environment 
offering useful facilities to easily look for different 
architecture and hardware/software partitionings in order to 
find optimal design performance.  

The architecture resulting from the VCC design flow 
imperatively contains IP components corresponding to 
processing functions – processors and hardware IP’s – and 
to the communication network - buses, bridges [4]. The 
architecture must also contain schedulers or RTOS attached 
to each processor. It eventually also contains other 
components that have been included to implement 
communication patterns, such as shared memories, DMA 
controllers, cache memories, and interrupt buses. 

A data bus may have been included to implement a point-
to-point connection between two components. In this case, 
the corresponding performance model will consider only 
delays incurred by tokens traversing the path. If the 
communication path is shared, the bus will also model 
impact of contention and arbitration. An interrupt bus may 
have been included to implement an interrupt-based 
communication, but this must be considered as a modeling 
abstraction, and in the final implementation it will be 
physically merged to a chosen data bus.  



Unfortunately, VCC does not yet provide a clear path to 
implementation allowing low-level system synthesis.  
Design have to be fine-tuned manually until reaching low 
level system specifications. 

Designers must implement hardware and software 
primitives, selecting CPUs and ASICs, specifying HW/SW 
communication, allocating addresses to send data between 
architecture instances and between software and 
architecture instances, co-verifying hardware and software 
parts,...etc [5]. This tedious manual effort obliges us to seek 
other more effective solutions than the VCC link to 
implementation. 

On the other hand, ROSES provides a clear path to 
implementation, starting from an abstract architecture and 
reaching an RT-level HDL description for hardware parts 
and a detailed C implementation for the software parts, and 
a set of tools automating the design refinement process. 

The ROSES initial architecture contains virtual modules 
(VM) that correspond to all processing and memory IPs of 
the final SoC. The whole communication structure, 
including one or more buses, bridges, etc. must be modeled 
as a single communication network, considered as a black-
box VM. IPs must have point-to-point connections to the 
communication network. The architecture must not contain 
bus bridges or any other IPs related to protocol conversion 
or component adaptation, since this functionality will be 
automatically synthesized within the wrappers.  

Unfortunately, ROSES does not yet provide an 
architecture design space exploration allowing HW/SW 
partitioning and system performance evaluation. 

As we can see, VCC and ROSES have complementary 
goals and cover different design abstraction levels, shown in 
Fig.1. A reasonable approach is to combine the VCC model 
with the ROSES virtual architecture model, making it 
possible to go into design space exploration process and, 
once the optimal configuration found, to automatically 
generate a virtual architecture structure in order to launch 
the automatic refinement process. 

It is necessary that the final architecture in the VCC 
design flow exactly matches the abstraction level expected 
at the input of the ROSES synthesis process, which must be 
guided by particular design decisions, several of them 
related to communication refinement such as protocols, 
attached to ports and/or nets, and port and net data types. 

Examples of design decisions related to communication 
refinement that can be optionally taken in VCC are: choice 
of bus types, widths, and arbitration mechanisms; choice of 
protocols; choice of scheduling policies for software tasks; 
inclusion of shared memories to implement communication; 
definition of bus and memory addressing; and choice of data 
types.  
 
B.   VCC to ROSES Link 
 

A tool prototype has been developed to ensure an 
automatic link between VCC and ROSES. It extracts 
information about the system structure in VCC, identifies 
the system components and assembles them in a ROSES 

compliant manner. 
Many steps are necessary to achieve the VCC-ROSES 

link: the tool initially analyses the mapping view in order to 
get the hardware/software partitioning decisions. In other 
words, it extracts the assignment between behavior and 
architecture components. During the next step, the tool 
extracts behavior information. It analyses the behavior 
blocks and gets the communication network structure, the 
port parameters and the path to the source codes of each 
block. 

Architecture analysis works in the same way as the 
behavior analysis, but the difference is that the blocks 
represent architecture components and do not make 
reference to source codes. Since the communication 
network in the architecture model is considered as a 
modelling abstraction, the ROSES communication network 
will be determined by the behavior and the mapping 
decisions:  

1- If a net connects two behavior blocks mapped to the 
same architecture component, the connection is quite 
straightforward and, as shown in Fig.4.(b)(1), a net is 
created between the two ports involved in the connection. 

2- If the connection is to be made between two behavior 
blocks mapped to different architecture components, a 
hierarchical port with internal and external sides have to be 
added to each architecture module and three connections 
are established: the first connection, shown in Fig.4.(b)(2), 
is between the two architecture blocks via the external sides 
of the hierarchical ports. The two other connections are 
between each behavior block and the architecture module 
via the internal side of the hierarchical port.  

 Finally, the virtual architecture model of ROSES is 
completed with design parameters from the VCC model 
(e.g. task priorities).  
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Fig. 4. The translation method 
 

VI. Case Study :  
framing/deframing unit in a xDSL modem 

 
This section demonstrates the application of the VCC-

ROSES full path to implementation using a VDSL 
application as design example. 
 
A. The VDSL Modem Architecture Specification 
 

The design presented in this section was taken from the 
implementation of a VDSL modem using discrete 
components. Fig.5 shows the block diagram for this prototype 
implementation. The part that was redesigned as a 
multiprocessor SoC includes two ARM7 processors and part 
of the data path, the TX_Framer, which is described at the RT-
level and used as a black-box hardware IP. 

The same partition of processors/tasks as suggested by the 
design team of the VDSL-modem prototype is adopted 
[7][14]. 

 
Fig. 5. The redesigned part of the VDSL modem 
 
B. The VCC Model of The VDSL framing 
 

The VCC model, as shown in Fig.6, includes three main 
diagrams. The first one is the behavior diagram describing 
the VDSL framing from a functional point of view. The 
second one is the architecture diagram, which includes the 
architecture components represented by two processors and 
an ASIC representing the black-box IP component. And 
finally the mapping diagram corresponds to the proposed 
hardware/software partitioning. 

 

 

 
Fig. 6. The VCC model of the VDSL framing 
 
C. The Resulting ROSES Virtual Architecture Model 
 

From the architectural components and mapping decisions 
in VCC, a ROSES virtual architecture model has been 
generated, using the translation process explained in Section 
V. The generated model is based on point-to-point 
connections to match the current synthesis capabilities of 
ROSES. Fig.7 shows the overall virtual architecture after 
the partitioning. This is made of three modules, two 
software are that will be implemented on two ARM7s and 
the hardware module.  

The communication synthesis has been performed by the 
application of two different tools. The Application Specific 
Operating System Generator (ASOG) tool [13] has been 
applied to the VM1 and VM2 virtual modules, 
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Fig. 7. The virtual architecture model 



corresponding to the ARM7 processors, to synthesize the 
software communication within each module and to 
generate their dedicated OS. The Application Specific 
Architecture Generator (ASAG) tool [8], in turn, 
synthesized the hardware communication channels between 
the three modules (the ARM7 processors and the IP block). 
The refined VM2 module is shown on Fig.8. This includes 
an ARM7 module and a sophisticated interface to manage 
multipoint communication.  

 
Fig. 8. The VM2 module refined with ASAG 
 
D. Results and Evaluation 
 

The design of a full VDSL modem requires more than one 
hundred man-years and the manual design of the presented 
subset was estimated as more than five man-years effort. 
Previous work [22] has shown that using ROSES brings this 
time down to six months for implementing a given 
architectural solution. The design space exploration for the 
hardware/software partitioning decision takes a very 
important part of the design time. When using VCC, the 
time to explore the design space of a specific application 
can be considerably reduced. It took only 4 weeks to explore 
a large variety of solutions. Combining VCC and ROSES, 
we were able to synthesize 10 solutions in one week. 

The experimentation results show that our combined 
approach provides an important design time gain, from 6 
months down to one month, simultaneously allowing the 
exploration of more solutions, by enabling faster generation 
and evaluation of architectural solutions and providing a 
complete path from design space exploration to clock-cycle 
accurate synthesis.  

 
VII. Summary and Conclusions 

 
This paper presented a new approch to obtain a full path 

to implementation for application-specific multiprocessor 
system-on-chip architectures. This approach is based on the 
combination of suites of tools that cover the two major 
aspects of the design of such system: the Cadence VCC 
environment supports an easy architecture design space 
exploration, while ROSES is able to synthesize a complete 

hardware/software solution, including all details of the 
communication between heterogeneous components as well 
as dedicated OS. This approach enabled us to circumvent 
the difficulty to obtain a complete design flow from system 
specification to RTL synthesis. The experiment with a 
VDSL application has validated this approach. Results show 
that it provides a significant design time reduction and 
allows a larger architecture design space exploration. 
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