
Combining Architecture Exploration and a Path to
Implementation to Build a Complete SoC Design Flow from

System Specification to RTL

Abstract - This paper presents a full System-on-Chip (SoC)
design flow from system specification to RT-level. A new
approach to obtain a full path to implementation for SoC
design is proposed. This approach combines architecture
design space exploration using the VCC design environment
and system synthesis using the ROSES design flow, allowing a
true and complete system level design flow. The experiment
with a VDSL application shows a significant reduction of
design time.

I. Introduction

The design of embedded systems-on-chip is a complex
process, involving different steps at different abstraction
levels. Design steps can be grouped into two major tasks:
architecture design space exploration, for
hardware/software partitioning and selection of
architectural platform and components, and architecture
design. The overall design process must consider strict
requirements, regarding time to market, system
performance, power consumption, and production cost. The
reuse of IP components from several vendors is necessary
for reducing design time, but their integration into a system
also presents various challenges. Most architectural
platforms include programmable processors, so that
software design in multiprocessor environments becomes a
major issue.

A complete design flow for SoCs is then necessary to
cover this design complexity. This refinement process
requires multiple competences and tools because of the
complexity and diversity of the current applications.

Current and previous works try to reduce the gap between
different design steps and to master the integration of very
diverse components, including hardware and software parts.
For a full path to implementation, earlier approaches as
COSYMA [16] and Vulcan [17] had a very restricted
success. VCC [2] and Artemis [1] are two approaches that
deal with the architecture design space exploration step.
ROSES [21] and CoWare [6] give a solution for the
architecture design step.

Existing approaches deal only with a specific part of the
SoC design flow. A full system level flow is quite complex,
and to our knowledge very few work cover both system-
architecture exploration and system-architecture design.

This paper presents a novel approach that implements a

full path including SoC architecture exploration and system
design, considering hardware/software architectural
solutions along the whole design path. This approach
combines the Cadence Virtual Component Co-design
(VCC) and the ROSES design environments in a consistent
way. It bridges the gap between easy design space
exploration supported by VCC and low-level system design
supported by ROSES, allowing a true hardware/software
co-design.

This paper is structured as follows. The next section
presents an ideal system level design flow and reviews
related work. Sections III and IV introduce the basic design
methodologies, architectural models, and benefits of the
VCC and ROSES environments, respectively. The solution
for bridging the gap between VCC and ROSES is detailed in
Section V. In section VI, the application of this full path to
implementation to the design of a VDSL framing is
presented and results are analyzed. Section VII summarizes
and concludes the paper.

II. A Full System Level Design Flow

A. System level design flow architecture

A full design flow, as shown in Fig.1, starts from a
system-level specification and reaches an RTL architecture,
from which the synthesis of hardware and software
components can be performed with conventional design
tools. The first step of the design flow is a contract between
the end-customer and system designer dealing with an
informal model of the application. System designers then
build a formal SoC specification – a behavioral or
functional model – that the end-customer can validate. Next,
they fix the system architecture, typically reusing IP
components such as processors and memories, and decide
about the mapping of function to architecture for the
application functionality, by assigning behavioral
components to architectural ones. This step generally uses
an executable specification model that allows designers to
go through a performance analysis loop. In order to obtain
an executable specification model at this stage, system
designers build a simulation model using software profiles
for parts of the application and abstract models for the
hardware components.

M.Anouar Dziri*, Firaz Samet*, Flavio Rech Wagner**, Wander O. Cesário*, Ahmed A. Jerraya*

* SLS Group, TIMA Laboratory
46 Av. Félix Viallet, 38031 Grenoble, France

{Mohamed-Anouar.Dziri,Firaz.Samet,Wander.Cesario,Ahmed.Jerraya}@imag.fr

** UFRGS
Porto Alegre, Brazil
flavio@inf.ufrgs.br

System Specification
Application + Requirement

Abstract architecture

Architecture Exploration :
HW/SW partitioning +
performance test

Architecture Design :
Components design +
HW/SW interfaces design

RTL architecture

System Specification
Application + Requirement

Abstract architecture

Architecture Exploration :
HW/SW partitioning +
performance test

Architecture Design :
Components design +
HW/SW interfaces design

RTL architecture

Fig. 1. System-level design flow for SoCs

System architecture exploration fixes the specification of
the hardware components (e.g. selection of existing
processors or specific hardware), the partitioning of
functional tasks into hardware and software components,
and the global structure of the on-chip communication
network. This step produces an abstract architecture, which
does not contain all details of the interfaces between
components and is used as a golden architecture model that
guides the next step: SoC architecture design.

SoC designers need to interconnect the hardware and
software components while respecting the performance
constraints described in the golden architecture model. This
step results in an RTL architecture (also called a micro-
architecture), involving the generation of all hardware and
software interface details at a pin-and-cycle-accurate level.
In parallel, hardware and software designers can implement
those components in conformance with the golden
architecture model.

B. Related Work

Many academic and industrial works provide tools for
SoC design automation that covers many but not all design
steps presented before.

There are very few tools on the market that allow a real
design space exploration at the macro-architecture level,
allowing an easy performance estimation of different
architectural choices and hardware/software partitioning.

[20] proposes a framework for object oriented hardware
specification, verification, and synthesis an object oriented
language ‘e’ with a powerful run-time environment that
enables designer to perform the verification task. COSY
[10] proposes a hardware/software communication
refinement process that starts with an extended Khan
Process Network model for system specification. SystemC
[11][19] is a library based on C++ classes for describing
hardware/software systems at multiple levels of abstraction
and provides mechanisms for system simulation. SpecC
[15] proposes a methodology based on an extended C
language, but architecture exploration requires manual
recoding. Artemis [1] is a modeling and simulation
environment aimed to explore the design space of

heterogeneous embedded-systems architectures at multiple
abstraction levels. VCC [4] performs architectural design
exploration, offering fast performance estimations for
different macro-architectures and hardware/software
partitionings. But this macro-architecture can be hardly
synthesized, because available hardware and software
models are far from real components.

There are also very few tools that allow a complete and
automated generation of pin-and-cycle-accurate hardware
and software interfaces between arbitrary IP components,
starting from a macro-architecture. Common approaches to
IP integration either suppose that IP components follow
some bus or core standard and can be thus directly
connected, and/or require a manual generation of interface
details, and/or consider only hardware interfaces. CoWare
[9][18] can be used for hardware/software integration and
simulation, but still many architecture details must be
implemented manually.

It can be concluded that there is no single design
environment that completely covers the ideal design flow
depicted in Fig.1. In order to build a complete design flow,
this paper introduces an adequate combination of the VCC
and ROSES environments.

III. Architecture Exploration Using VCC

The VCC design environment is aimed at architectural
design space exploration [3]. This is achieved by exploring
hardware/software partitioning alternatives to reach optimal
design performance within the given constraints. Once a
suitable architecture is found, vendor libraries may be
searched to find virtual component models that meet model
specifications.

The methodology, as shown in Fig.2, starts with a
functional specification and simulation of the system as a
network of behaviors, with no implication of an eventual
architecture implementation. An architecture platform
composed of IP components (CPUs, IPs, memories,
buses...etc), is then captured. Besides components
corresponding to real IP in the final SoC, an RTOS or
scheduler must be attached to each processor. This is a
relaxed architecture, for which only the basic topology is
defined, with no detailed information on ports and signals.

Behavior components are then mapped to the architectural
ones, thereby defining a hardware/software partition. Each
communication wire in the behavior diagram may be
mapped to a communication pattern, which details how
communication is implemented between behavioral
components.

For performance simulation purposes, each architecture
component must have a performance model, which is
described by means of component services, such as a
scheduler, for an RTOS, and bus and interrupt requests, for a
processor, and read and write transactions, for a memory.

Mapping is a continuous refinement process, whereby
new design decisions are taken, for instance to consider bus
traffic, behavior delay, and memory accesses, and the

Capture architectureCapture behavior

Behavior models Architecture models

Abstract architecture model

Run performance simulationRun functional simulation

Mapping behavior to architecture

Capture architectureCapture architectureCapture behaviorCapture behavior

Behavior models Architecture models

Abstract architecture model

Run performance simulationRun functional simulation

Mapping behavior to architectureMapping behavior to architecture

Fig. 2. The VCC design flow

resulting performance is analyzed. Communication
patterns may be refined to consider protocols, shared
memories for communication, interrupt mechanisms,
concrete data types, and bus and memory addressing. DMA
and cache components can also be included. Mapping
diagrams and communication patterns may be easily
modified, so as to explore alternative architectural solutions.

IV. Architecture Design Using ROSES

ROSES [21] is a design methodology with a

corresponding set of tools, aimed at bridging the gap
between heterogeneous system specification and system-
on-chip implementation. The ROSES synthesis process, as
shown in Fig.3, starts by capturing an abstract architecture
composed of virtual modules (VM), corresponding to
processing and memory IPs, connected by a communication
network, also encapsulated within a VM. The ROSES
virtual architecture model, illustrated in Fig.3.(a), clearly
separates behavior and structure from communication. This
allows separate and concurrent implementation paths for
components and for communication. Virtual modules that
correspond to processors may be hierarchically
decomposed into sub-modules containing software tasks
assigned to this processor. This architecture is described in
SystemC.

Wrappers are then automatically generated as point-to-
point adapters between the VM and the communication
network. They are assembled as combinations of basic
components contained in an extensible library. Wrappers
may have hardware and software parts [8][12].

The hardware parts are adapters to be physically
synthesized, and ROSES specifies their HDL descriptions
for the further synthesis process. They may be considered
as communication co-processors (CC, in Fig.3.(b)) that
operate concurrently with other processing functions.
Software wrappers include drivers to the hardware and a
dedicated OS including only the functionality needed for

MPU core 1

HW/SW
wrapper HW

wrapper

communication interconnect IP

IP core 1

CC CC

OS

...

IP core

communication interconnect IP
(blackbox)

M1

M3

: configuration
parameters

: wrapper

: module

: task

: virtual port

: virtual channel

: virtual component

M2

API

(a)

(b)

MPU core 1

HW/SW
wrapper HW

wrapper

communication interconnect IP

IP core 1

CC CC

OS

...

IP core

communication interconnect IP
(blackbox)

M1

M3

: configuration
parameters

: wrapper

: module

: task

: virtual port

: virtual channel

: virtual component

M2

API

(a)

(b)
Fig. 3. ROSES design flow

the application.
The synthesis process is guided by design decisions to be
previously taken, for instance resulting from a design
exploration tool, including protocols, processor types,
memory and bus addresses, interrupt levels, and port and
net data types.

V. Combining VCC and ROSES

A. Application Domain

VCC is a powerful design space exploration environment
offering useful facilities to easily look for different
architecture and hardware/software partitionings in order to
find optimal design performance.

The architecture resulting from the VCC design flow
imperatively contains IP components corresponding to
processing functions – processors and hardware IP’s – and
to the communication network - buses, bridges [4]. The
architecture must also contain schedulers or RTOS attached
to each processor. It eventually also contains other
components that have been included to implement
communication patterns, such as shared memories, DMA
controllers, cache memories, and interrupt buses.

A data bus may have been included to implement a point-
to-point connection between two components. In this case,
the corresponding performance model will consider only
delays incurred by tokens traversing the path. If the
communication path is shared, the bus will also model
impact of contention and arbitration. An interrupt bus may
have been included to implement an interrupt-based
communication, but this must be considered as a modeling
abstraction, and in the final implementation it will be
physically merged to a chosen data bus.

Unfortunately, VCC does not yet provide a clear path to
implementation allowing low-level system synthesis.
Design have to be fine-tuned manually until reaching low
level system specifications.

Designers must implement hardware and software
primitives, selecting CPUs and ASICs, specifying HW/SW
communication, allocating addresses to send data between
architecture instances and between software and
architecture instances, co-verifying hardware and software
parts,...etc [5]. This tedious manual effort obliges us to seek
other more effective solutions than the VCC link to
implementation.

On the other hand, ROSES provides a clear path to
implementation, starting from an abstract architecture and
reaching an RT-level HDL description for hardware parts
and a detailed C implementation for the software parts, and
a set of tools automating the design refinement process.

The ROSES initial architecture contains virtual modules
(VM) that correspond to all processing and memory IPs of
the final SoC. The whole communication structure,
including one or more buses, bridges, etc. must be modeled
as a single communication network, considered as a black-
box VM. IPs must have point-to-point connections to the
communication network. The architecture must not contain
bus bridges or any other IPs related to protocol conversion
or component adaptation, since this functionality will be
automatically synthesized within the wrappers.

Unfortunately, ROSES does not yet provide an
architecture design space exploration allowing HW/SW
partitioning and system performance evaluation.

As we can see, VCC and ROSES have complementary
goals and cover different design abstraction levels, shown in
Fig.1. A reasonable approach is to combine the VCC model
with the ROSES virtual architecture model, making it
possible to go into design space exploration process and,
once the optimal configuration found, to automatically
generate a virtual architecture structure in order to launch
the automatic refinement process.

It is necessary that the final architecture in the VCC
design flow exactly matches the abstraction level expected
at the input of the ROSES synthesis process, which must be
guided by particular design decisions, several of them
related to communication refinement such as protocols,
attached to ports and/or nets, and port and net data types.

Examples of design decisions related to communication
refinement that can be optionally taken in VCC are: choice
of bus types, widths, and arbitration mechanisms; choice of
protocols; choice of scheduling policies for software tasks;
inclusion of shared memories to implement communication;
definition of bus and memory addressing; and choice of data
types.

B. VCC to ROSES Link

A tool prototype has been developed to ensure an
automatic link between VCC and ROSES. It extracts
information about the system structure in VCC, identifies
the system components and assembles them in a ROSES

compliant manner.
Many steps are necessary to achieve the VCC-ROSES

link: the tool initially analyses the mapping view in order to
get the hardware/software partitioning decisions. In other
words, it extracts the assignment between behavior and
architecture components. During the next step, the tool
extracts behavior information. It analyses the behavior
blocks and gets the communication network structure, the
port parameters and the path to the source codes of each
block.

Architecture analysis works in the same way as the
behavior analysis, but the difference is that the blocks
represent architecture components and do not make
reference to source codes. Since the communication
network in the architecture model is considered as a
modelling abstraction, the ROSES communication network
will be determined by the behavior and the mapping
decisions:

1- If a net connects two behavior blocks mapped to the
same architecture component, the connection is quite
straightforward and, as shown in Fig.4.(b)(1), a net is
created between the two ports involved in the connection.

2- If the connection is to be made between two behavior
blocks mapped to different architecture components, a
hierarchical port with internal and external sides have to be
added to each architecture module and three connections
are established: the first connection, shown in Fig.4.(b)(2),
is between the two architecture blocks via the external sides
of the hierarchical ports. The two other connections are
between each behavior block and the architecture module
via the internal side of the hierarchical port.

 Finally, the virtual architecture model of ROSES is
completed with design parameters from the VCC model
(e.g. task priorities).

System Specification
Application + Requirement

Abstract architecture

Architecture Exploration :
HW/SW partitioning +
performance test

Architecture Design :
Components design +
HW/SW interfaces design

VC
C

R
O

SE
S

Macro architecture

RTL architecture

Link

D
ev

el
op

pe
d

to
ol

(a). Combining VCC and ROSES in a single
design flow

System Specification
Application + Requirement

Abstract architecture

Architecture Exploration :
HW/SW partitioning +
performance test

Architecture Design :
Components design +
HW/SW interfaces design

VC
C

R
O

SE
S

Macro architecture

RTL architecture

Link

D
ev

el
op

pe
d

to
ol

System Specification
Application + Requirement

Abstract architecture

Architecture Exploration :
HW/SW partitioning +
performance test

Architecture Design :
Components design +
HW/SW interfaces design

VC
C

R
O

SE
S

Macro architecture

RTL architecture

Link

D
ev

el
op

pe
d

to
ol

(a). Combining VCC and ROSES in a single
design flow

B e h a v io r_ 3

B e h a v io r_ 2

B e h a v io r_ 1

In te rru p tB u s

D a ta B u s

R T O S C P U _ 1 A S IC _ 1

T o p

C P U _ 1 A S IC _ 1

B e h a v io r_ 1

B e h a v io r_ 2

B e h a v io r_ 3

VC
C

 O
ut

pu
t

(A
bs

tra
ct

 A
rc

hi
te

ct
ur

e)
R

O
SE

S
In

pu
t

(M
ac

ro
 A

rc
hi

te
ct

ur
e)

(b) . O b je c t c o rre s p o n d a n c e

1

2

B e h a v io r_ 3

B e h a v io r_ 2

B e h a v io r_ 1 B e h a v io r_ 3

B e h a v io r_ 2

B e h a v io r_ 1

In te rru p tB u s

D a ta B u s

R T O S C P U _ 1 A S IC _ 1

In te rru p tB u s

D a ta B u s

R T O S C P U _ 1 A S IC _ 1

T o p

C P U _ 1 A S IC _ 1

B e h a v io r_ 1

B e h a v io r_ 2

B e h a v io r_ 3

VC
C

 O
ut

pu
t

(A
bs

tra
ct

 A
rc

hi
te

ct
ur

e)
R

O
SE

S
In

pu
t

(M
ac

ro
 A

rc
hi

te
ct

ur
e)

(b) . O b je c t c o rre s p o n d a n c e

1

2

Fig. 4. The translation method

VI. Case Study :
framing/deframing unit in a xDSL modem

This section demonstrates the application of the VCC-

ROSES full path to implementation using a VDSL
application as design example.

A. The VDSL Modem Architecture Specification

The design presented in this section was taken from the
implementation of a VDSL modem using discrete
components. Fig.5 shows the block diagram for this prototype
implementation. The part that was redesigned as a
multiprocessor SoC includes two ARM7 processors and part
of the data path, the TX_Framer, which is described at the RT-
level and used as a black-box hardware IP.

The same partition of processors/tasks as suggested by the
design team of the VDSL-modem prototype is adopted
[7][14].

Fig. 5. The redesigned part of the VDSL modem

B. The VCC Model of The VDSL framing

The VCC model, as shown in Fig.6, includes three main
diagrams. The first one is the behavior diagram describing
the VDSL framing from a functional point of view. The
second one is the architecture diagram, which includes the
architecture components represented by two processors and
an ASIC representing the black-box IP component. And
finally the mapping diagram corresponds to the proposed
hardware/software partitioning.

Fig. 6. The VCC model of the VDSL framing

C. The Resulting ROSES Virtual Architecture Model

From the architectural components and mapping decisions
in VCC, a ROSES virtual architecture model has been
generated, using the translation process explained in Section
V. The generated model is based on point-to-point
connections to match the current synthesis capabilities of
ROSES. Fig.7 shows the overall virtual architecture after
the partitioning. This is made of three modules, two
software are that will be implemented on two ARM7s and
the hardware module.

The communication synthesis has been performed by the
application of two different tools. The Application Specific
Operating System Generator (ASOG) tool [13] has been
applied to the VM1 and VM2 virtual modules,

M1 M2

T5

T7

T8

T6

T9

T4

T3

T1

VM1

T2

pipe

pipe

poll

signal

pipe

signal

pipe

pipe

pipe
.
.
.

pipe

pipe

pipe

pipe

shm

gshm

signal

signal

SAP

pipe

.

.

.

.

.

.

dir

dir

dir

dir

M3

VM3VM2

.

.

.

.

.

.

dir

dir

dir

dir

pipe

M1 M2

T5

T7

T8

T6

T9

T4

T3

T1

VM1

T2

pipe

pipe

poll

signal

pipe

signal

pipe

pipe

pipe
.
.
.

pipe

pipe

pipe

pipe

shm

gshm

signal

signal

SAP

pipe

.

.

.

.

.

.

dir

dir

dir

dir

M3

VM3VM2

.

.

.

.

.

.

dir

dir

dir

dir

pipe

Fig. 7. The virtual architecture model

corresponding to the ARM7 processors, to synthesize the
software communication within each module and to
generate their dedicated OS. The Application Specific
Architecture Generator (ASAG) tool [8], in turn,
synthesized the hardware communication channels between
the three modules (the ARM7 processors and the IP block).
The refined VM2 module is shown on Fig.8. This includes
an ARM7 module and a sophisticated interface to manage
multipoint communication.

Fig. 8. The VM2 module refined with ASAG

D. Results and Evaluation

The design of a full VDSL modem requires more than one
hundred man-years and the manual design of the presented
subset was estimated as more than five man-years effort.
Previous work [22] has shown that using ROSES brings this
time down to six months for implementing a given
architectural solution. The design space exploration for the
hardware/software partitioning decision takes a very
important part of the design time. When using VCC, the
time to explore the design space of a specific application
can be considerably reduced. It took only 4 weeks to explore
a large variety of solutions. Combining VCC and ROSES,
we were able to synthesize 10 solutions in one week.

The experimentation results show that our combined
approach provides an important design time gain, from 6
months down to one month, simultaneously allowing the
exploration of more solutions, by enabling faster generation
and evaluation of architectural solutions and providing a
complete path from design space exploration to clock-cycle
accurate synthesis.

VII. Summary and Conclusions

This paper presented a new approch to obtain a full path

to implementation for application-specific multiprocessor
system-on-chip architectures. This approach is based on the
combination of suites of tools that cover the two major
aspects of the design of such system: the Cadence VCC
environment supports an easy architecture design space
exploration, while ROSES is able to synthesize a complete

hardware/software solution, including all details of the
communication between heterogeneous components as well
as dedicated OS. This approach enabled us to circumvent
the difficulty to obtain a complete design flow from system
specification to RTL synthesis. The experiment with a
VDSL application has validated this approach. Results show
that it provides a significant design time reduction and
allows a larger architecture design space exploration.

Acknowledgements

This work is sponsored by Medea+ project INCA A106.
The authors would like to thank Christophe Del-Toso,
Benoît Clément, Doha Benjelloun, Fabien Castanier and
Silvia Brini from STMicroelectronics who helped in
achieving this work.

References

[1] A.D. Pimentel, et al. “Exploring embedded-systems architectures with
Artemis,” IEEE Computer, Vol. 34, pp. 57-63, 2001.
[2] Cadence, http://www.cadence.com/products/vcc.html
[3] “Cadence Virtual Component Co-design Modeling guide,”
[4] “Cadence Virtual Component Co-design Architecture Evaluation Guide,”
[5] “Cadence Virtual Component Co-design Link to Implementation,” Cadence
Design Systems, Inc., March 2001.
[6] CoWare N2C, http://www.coware.com
[7] D.J.G. Mestdagh, M.R. Isaksson, P. Odling, “zipper VDSL: a solution for
robust duplex communication over telephone lines,” IEEE Communication
magazine, pp. 90-96, May 2000.
[8] D. Lyonnard, S. Yoo, A. Baghdadi, A.A. Jerraya, “Automatic generation of
application specific architectures for heterogeneous multiprocessor system-on-
chip,” Proceedings DAC 2001, June 2001, Las Vegas, USA.
[9] I. Bolsens, et al. “Hardware/software co-design of digital telecommunication
systems,” Proceedings of IEEE, Vol. 85, No. 3, pp. 391-418, 1997.
[10] J-Y. Brunel et al. "COSY communication IP’s," DAC 2000, Los Angeles,
California, USA.
[11] J. Gerlach, W. Rosenstiel, "System Level Design Using the SystemC
Modeling Platform," In: R. Merker, W. Schwarz (Eds.), "System Design
Automation -Fundamentals, Principles, Methods, Examples", VDI Verlag
Düsseldorf, 2000.
[12] L. Gauthier, S. Yoo, A.A. Jerraya, “Automatic generation and targeting of
application specific operating systems and embedded systems software,” 5th
International Workshop on Software and Compilers for Embedded Systems
(SCOPES 2001), St. Goar, Germany, March 2001.
[13] L. Gauthier, S. Yoo, A.A. Jerraya, “Application specific operating systems
generation and targeting for embedded SoCs,” the 10th Workshop on Synthesis
and System Integration of MIxed Technologies(SASIMI’01), October2001.
[14] M.D. Nava, G.S. Okvist, “The zipper prototype : a complete and flexible
VDSL multi-carrier solution,” ST Journal special issue xDSL, September 2001.
[15] M. Fujita, H. Nakamura, “The standard SpecC language,” ISSS ’01,
October 2001, Montréal, Québec, Canada.
[16] R. Ernst, J. Henkel, Th. Benner, “Hardware software cosynthesis for
microcontrollers,” IEEE Design and Test of computers, December 1993.
[17] R.K. Gupta, “Co-synthesis of hardware and software for digital embedded
systems,” PhD Thesis, standford, December 1993.
[18] S. Vercauteren, B. Lin, H. De Man, “Constructing application-specific
heterogeneous embedded architectures from custom HW/SW applications,” 33rd
DAC 1996, June 1996, Las Vegas, USA.
[19] SystemC, http://www.systemc.org
[20] T. Kuhn, et al. “A framework for object oriented hardware specification,
verification, and synthesis,” DAC 2001, June 2001, Las Vegas, USA.
[21] W. Cesàrio, et al. “Component-based design approach for multicore SoCs,”
Proceedings DAC 2002, June 2002, New Orleans, USA.
[22] W. Cesàrio, et al. “HW/SW interfaces design of a VDSL modem using
automatic refinement of a virtual architecture specification into a multiprocessor
SoC: a case study,” Proceedings DATE 2002, March 2002, Paris, France.

	Main
	ASP-DAC03
	Front Matter
	Table of Contents
	Author Index

