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Abstract— This paper presents a heuristic algorithm for dis-
joint decomposition of a Boolean function based on its ROBDD
representation. Two distinct features make the algorithm feasible
for large functions. First, for an n-variable function, it checks only
O(n2) candidates for decomposition out of O(2n) possible ones. A
special strategy for selecting candidates makes it likely that all
other decompositions are encoded in the selected ones. Second,
the decompositions for the approved candidates are computed
using a novel IntervalCut algorithm. This algorithm does not
require re-ordering of ROBDD. The combination of both tech-
niques allows us to decompose the functions of size beyond that
possible with the exact algorithms. The experimental results on
582 benchmark functions show that the presented heuristic finds
95% of all decompositions on average. For 526 of those functions,
it finds 100% of the decompositions.

I. INTRODUCTION

The disjoint decomposition of a Boolean function is a rep-
resentation of type f (X) = h(g(Y );Z) with Y and Z being sets
of variables partitioning the set X . Disjoint decomposition has
many applications in computer science and discrete mathemat-
ics, including logic synthesis [1, Chapter 13], combinatorial
optimization problems over graphs and networks [2], reliabil-
ity theory [3] and game theory [4].

This wide range of applications makes it important to have
efficient algorithms for finding all, or at least some, decompo-
sitions for a given structure. Fast decomposition algorithms are
known for binary relations and graphs [5, 6, 7]. For Boolean
functions, however, the existing methods either involve the so-
lution of an NP-complete problem (as in [8]) or have exponen-
tial running time [9, 10, 11, 12]. More recent ROBDD-based
decomposition algorithms, including [13, 14, 15], show much
better average-time performance.

This paper presents a heuristic algorithm targeting to find
all disjoint decompositions of an n-variable Boolean function
represented by a ROBDD. The heuristic is based on two prop-
erties: (1) all decompositions of a Boolean function (which
can be O(2n)) can be uniquely described by so called strong
decompositions (which are only O(n)); (2) there exist a best
variable ordering for a ROBDD in which the variables Y from

any strong decomposition f (X) = h(g(Y );Z) are adjacent.
If we had such a best ordering, we could examine all its

linear intervals to find which Y results in a decomposition
f (X) = h(g(Y );Z). However, computing best orderings is in-
feasible for large functions. The algorithm presented in this pa-
per is heuristic because it starts from a “good” ordering which
is not necessarily keeping the variables Y adjacent. The exper-
imental results show that if sifting ordering algorithm [16] is
used to get a “good” initial order, then our heuristic finds 95%
of all decompositions on average.

II. PREVIOUS WORK

The first major investigation on the subject was carried out
by Ashenhurst [17]. He studied simple disjoint decomposi-
tion f (X) = h(g(Y );Z) for Boolean functions f ;g;h : Bn ! B,
where B = f0;1g. Ashenhurst’s fundamental contribution is a
theorem which states that any Boolean function has a unique
disjoint tree-like decomposition such that all possible simple
disjoint decompositions of f are exhibited.

Curtis [18] and Roth and Karp [19] extended Ashenhurst
theory to the decomposition of type f (X) = h(g(Y );Z) with
g;h being multiple-valued functions of type g BjY j ! M and
h M � BjZj ! B, where M = f0;1; :::;m � 1g. The func-
tion g can be encoded by k = dlog2 me Boolean functions
g1;g2; : : : ;gk, giving a decomposition of the form f (X) =
h(g1(Y ); : : : ;gk(Y );Z), often referred to as Roth-Karp decom-
position. Unfortunately Ashenhurst’s main theorem does not
extend directly to multiple-valued functions (for a counterex-
ample see chapter 4 of [1]). A consequence of this is that there
is no unique disjoint tree-like Roth-Karp decomposition. Von
Stengel [20] has defined a class of multiple-valued functions
for which Ashenhurst’s main theorem holds.

Early algorithms for decomposition used decomposition
charts [17], [18]. The decomposition chart for f (Y;Z) is a
two-dimensional table where the columns represent all combi-
nations of the variables from the set Y and the rows represent
all combinations of the variables from the set Z. The set Y is
a bound set if and only if the chart has column multiplicity at
most two, i.e. there are at most two distinct columns in the
chart [17].



In a short time, decomposition charts were abandoned in fa-
vor of cube representation [21]. The task of computing col-
umn multiplicity on charts was replaced by the task of com-
puting compatible classes for a set of cubes. Two assignments
x1;x2 2 BjY j are said to be compatible with respect to the ref-
erence function f (Y;Z) if, for all y 2 BjZj such that f (x1;y)
and f (x2;y) are defined, f (x1;y) = f (x2;y) [21]. The set Y is
a bound set if and only if BjY j can be partitioned into k � 2
mutually compatible classes [21]. If f (X) is completely spec-
ified, then compatibility is an equivalence relation and k is the
number of equivalence classes. It is easy to see the one-to-
one mapping between a column in a decomposition chart and
a compatible class.

Due to the exponential size of decomposition charts and
cube representations, early decomposition algorithms were
rarely applied to large practical circuits. Instead, algebraic
methods were used [22]. ROBDDs [23] made possible de-
veloping new algorithms for decomposition, feasible for much
larger functions than previously possible.

In a ROBDD, the column multiplicity can be easily com-
puted by moving the variables Y to the upper part of the graph
and checking the number of children below the boundary line,
usually called cut line. The decomposition f (X) = h(g(Y );Z)
exists if and only if there are only two children below the cut
line [24].

This approach has been adopted by a number of BDD-based
decomposition algorithms [24, 25, 26, 27]. In [28], a strategy
telling which variables are more likely to be in a bound set
is used to improve this. Stanion and Sechen [29] used cut to
find quasi-algebraic decomposition of the form f (X) = g(Y )�
h(Z), where ”�” is any binary Boolean operation and jY [Zj=
k for some k � 0. This type decomposition is often referred to
as bi-decomposition [30, 31].

BDD-based decomposition algorithms following cut-
strategy proved to be orders of magnitude faster than those
based on decomposition charts and cube representations. How-
ever, they require reordering of variables of BDD to move the
variables on the top or to check bi-decompositions for parti-
tionings which are not consistent with the variable order. As an
alternative, a number of methods use the fact that BDDs them-
selves are a decomposed representation of the function and ex-
ploit the structure of BDDs, rather than cut, to find disjoint de-
compositions. Karplus [32] extended the classical concept of
dominator on graphs [33] to 0,1-dominators on BDDs. A node
v is a 1-dominator (0-dominator) if every path from the root to
one (zero) terminal node contains v. If v is a 1-dominator, then
the function represented by the BDD possesses a conjunctive
(AND) decomposition. If v is a 0-dominator, then the function
can be decomposed disjunctively (OR). This idea was extended
by Yang et al [34] to XOR-type decompositions and to more
general type of dominators. Minato and De Micheli [14] pre-
sented an algorithm which computes disjoint decompositions
by generating irreducible sum-of-product for the function from
its BDD and applying factorization. In [35], Sasao presented
a method to reduce the search space for decompositions us-
ing BDDs and look-up tables. The algorithm of Bertacco and

Damiani [13] makes a single traversal of the BDD to identify
the decomposition of the co-factors and then combine them
to obtain the decomposition for the entire function. The al-
gorithm is impressively fast; however, as Sasao has observed
in [36], it fails to compute some of the disjoint decompositions.
This problem was corrected by Matsunaga [15], who added the
missing cases in [13] allowing to treat the OR/XOR functions
correctly. The algorithm [15] appears to be the fastest of exist-
ing exact algorithms for finding all disjoint decompositions.

A strategy using a test pattern generator working on net lists
to find bound sets was presented by Sasao [37]. This method
works well to detect bound sets containing only few variables
or all variables except a few.

III. NEW HEURISTIC ALGORITHM

The new heuristic algorithm is based on the following two
properties.

Property 1 All disjoint decompositions of an n-variable
Boolean function can be uniquely described by a certain subset
of strong decompositions of size O(n).

Property 2 There exist a best variable ordering for a ROBDD
for f in which the variables Y from any strong decomposition
f (X) = h(g(Y );Z) are adjacent.

Property 1 follows from the results of [20]1. We define
strong decomposition and describe the results of [20] in Sec-
tion A. Property 2 follows from the main theorem of [39].

The presented algorithm examines all linear intervals of
variables from a given ordering of a ROBDD and, for each in-
terval Y , checks whether it is a bound set. In this paper we use
ROBDDs without complemented edges. The procedure Inter-
valCut described in Section B, is used to perform the checking
as well as to compute the functions g and h in the resulting de-
composition f (X) = h(g(Y );Z).

A. Properties of the disjoint decomposition

This section describes the properties of the disjoint decom-
position from [20], implying Property 1. The formulation of
the definitions and theorems is adjusted to the notation of this
paper.

Definition 1 A bound set Y of f (X), Y � X, is strong if any
other bound set of f (X) is either a subset of Y , a superset of Y ,
or disjoint to Y .

The partial order induced by set theoretical inclusion be-
tween pairs of strong bound sets of f defines a tree.

Definition 2 The decomposition tree T ( f ) of f (X) is a tree
whose nodes represent all strong bound sets of f (X), related
by inclusion. Any node has two labels:
(a) a type, which is either “prime” or “full”,
(b) an associated function.

1A brief translation of the main results of [20] to English is given in [38].
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Fig. 1. Example of a decomposition tree. The digits inside the boxes
represent the indices of the variables associated with the bound set.

The following Theorem shows how decompositions of a
function can be derived from its decomposition tree and char-
acterizes the functions associated with the nodes. It also states
that the decomposition tree is unique for a given function (up
to isotopy/isomorphy). Remind that two Boolean functions
are isotopic if they are identical up to complementation of
variables or function values. Two binary operations � and
� are isomorphic if there is a bijection φ : B ! B such that
φ(a�b) = φ(a)�φ(b).

Theorem 1 Let T ( f ) be the decomposition tree of a Boolean
function f (X) with support set X. Let Y1; : : : ;Yk be the children
of the root X. Then f (X) has a decomposition of type

f (X) = h(g1(Y1);g2(Y2); : : : ;gk(Yk))

for functions gi : BjYij ! B (1� i� k) and h : Bk ! B where
(a) h is non-decomposable if X is labeled “prime”,
(b) h is an associative and commutative Boolean operation if
X is labeled “full”,
(c) h is unique up to isotopy in (a) and up to isomorphy in (b).

Example 1 An example of a decomposition tree is shown
in Figure 1. Abbreviations “P” and “F” stand for labels
“prime”, and “full”, respectively. Letters a;b;c;d;e;g;h de-
note the functions associated with the nodes, whereas � and �
denote operations. In accordance with the tree, the complete
disjoint decomposition of the function is

f (x1; : : : ;x6) = (c(a(x1);b(x2))�d(x3)� e(x4))�g(x5)�h(x6)

with � and � being associative and commutative Boolean op-
erations. a;b;c;d;e;g;h are non-decomposable Boolean func-
tions. In this case all those functions except c are unary
Boolean functions (identity or complement).

Theorem 1 shows that the decompositions associated with
strong bound sets uniquely represent all disjoint decomposi-
tions of a function. It was proved in [40] that the number of
strong bound sets of an n-variable Boolean function is O(n),
while the number of all bound sets is O(2n).

IntervalCut(G;a;b)
input: ROBDD G of f (X), two cuts cut(a) and cut(b), a < b, a;b 2
f0; : : : ;ng.
output: ”not a bound set” if the set of variables Y between cut(a) and
cut(b) is not a bound set of f (X); functions g and h if Y is a bound
set resulting in f (X) = h(g(Y );Z).

for all v 2 cut set(a)
if (jcut set(bv)j> 2)

return(”not a bound set”);
for all v1;v2; : : : ;vk 2 cut set(a)

if (gvi 6= gvi+1) /* up to complementation */
return(”not a bound set”);

h = substitute each subgraph gv, 8v 2 cut set(a), by a node;
g = gv;
return(g;h);

Fig. 2. Pseudo code of the IntervalCut procedure.

B. IntervalCut procedure for finding bound sets

Let V be a set of nodes of a ROBDD G of an n-variable
function f (X). Every non-terminal node v 2 V has an asso-
ciated variable index, index(v) 2 f1; : : : ;ng. The index of the
root node is 1. In order to have a unified notation in the proof
of the main result, we assume that the terminal nodes also have
an index, which is n+1.

Suppose that all nodes with index � i are in the upper part
of the graph and all nodes with index > i are in the lower part
of the graph, for some i 2 f1; : : : ;ng. The boundary line be-
tween the upper and lower parts of the graph is called cut(i).
If the number of nodes with index > i which are children of
the nodes above the cut(i) is two, then the set of variables
Y = fx1; : : : ;xig is a bound set [25].

One possibility to check whether a set of variables Y is a
bound set is to move the variables Y to the top of the ROBDD
and then check the number of children below cut(jY j), as in
[25, 26]. However, re-ordering is computationally expensive.
Instead, we have developed a procedure, called Interval Cut
which checks whether a given linear interval of variables of
a ROBDD is a bound set without reordering. To describe the
procedure, we first introduce some definitions.

Suppose the variables Y lie between two cuts, cut(a) and
cut(b), such that a< b, a;b2 f0; : : : ;ng. Let cut set(a) denote
a set of nodes v 2 G with indices a < index(v) � b which are
children of the nodes above the cut(a) of G. Let Gv stand for
a ROBDD rooted at some v 2 cut set(a). Then, cut set(bv)
is the set of nodes u 2 Gv with indices b < index(u) � n+ 1
which are children of the nodes of Gv above the cut(b). If
jcut set(bv)j= 2, then gv is a Boolean function represented by
the subgraph rooted at v whose terminal nodes are obtained
by replacing the two nodes of cut set(bv). The resulting gv is
unique up to complementation.

Using this notation, we can describe the pseudo code of the
algorithm IntervalCut(G;a;b) as shown in Figure 2. Next, we
prove that it computes the decompositions correctly.
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Fig. 3. Example of a four-variable function with a bound set fx2;x3g.

Theorem 2 Algorithm IntervalCut(G;a;b) computes the de-
composition f (X) = h(g(Y );Z).

Proof: Let Y be the variables between cut(a) and cut(b), Z1

be the variables above cut(a) and Z2 be the variables below
cut(b). We have Z1[Z2 = Z and Y [Z = X .

Let kv(Z1) be a function which is a sum of all the paths lead-
ing to a node v 2 cut set(a). Then f can be co-factored with
respect to kv as

f (X) =
X

8v2cut set(a)

kv(Z1) � f jkv(Y;Z2) (1)

If jcut set(bv)j = 2, then Y is a bound set for f jkv so it can be
decomposed as

f jkv (Y;Z2) = hv(gv(Y );Z2) (2)

for some hv, gv. Furthermore, if for all v 2 cut set(a) the func-
tions gv are equal up to complementation, then we can denote
gv by g and write (2) as

f jkv(Y;Z2) = hv(g(Y );Z2) (3)

From (1) and (3) we can conclude that f can be represented as

f (X) = h(g(Y );Z)

with h =
P

8v2cut set(a) kv �hv.

2

Let max(jgvj) be the size of the largest subgraph represent-
ing gv, for some v2 cut set(a). Since substitution of a ROBDD
by a node is a constant-time operation, the complexity of the
pseudo code in Figure 2 is O(jcut set(a)j �max(jgvj)).

Example 2 Figure 3 shows the Karnaugh map and the
ROBDD for a four-variable function. The two nodes labeled
by x2 belong to cut(a). The functions rooted at these nodes
have the the same structure down to cut(b). For each of these
two functions, there are two nodes below cut(b) with parents
above cut(b). These two facts are true if and only if fx2;x3g is
a bound set.

IV. EXPERIMENTAL RESULTS

To make a thorough evaluation of the presented heuristic,
we have implemented an exact decomposition algorithm2 from
[38] and applied both, exact and heuristic versions, to iwls93
benchmark set. For all single outputs, for which the exact al-
gorithm did not time out3, 582 in total, we have computed the
total number of strong bound sets found by each algorithm. In
the first set of experiments, we used sifting ordering algorithm
[16] to get a good initial order for ROBDDs. The heuristic al-
gorithm has succeeded to find 95% of all the decompositions
on average. For 526 of those 582 single-output functions, it
found 100% of the decompositions. In the second set of exper-
iments, we switched the sifting off, and build ROBDDs using
the breadth first traversal order from the benchmark’s circuit
description. For 191 functions out of 582 the result got worse
(by 57% on average). Nevertheless, the heuristic still found all
the decompositions for 365 functions.

We have also applied the presented heuristic to the bench-
marks reported in [14], [13] and [15]. The results are summa-
rized in Table I. Column 4 shows how many non-trivial strong
bound sets are found for each benchmark by our algorithm.
Every output is handled as a separate function. The number
given in Column 4 is the total sum of bound sets for all the
outputs. Columns 5-8 show runtime comparison. Our experi-
ments were run on Sun Ultra 60 operating with two 360 MHz
CPU and with 1024 MB RAM main storage. The algorithm
[14] uses a SUN Ultra 30, [13] uses a PC equipped with 150
MHz Pentium and 96 MB RAM main storage and [15] uses a
PC with Pentium-II 233Mhz processor.

V. CONCLUSION

This paper presents a heuristic algorithm for finding dis-
joint decompositions of Boolean functions. Benchmark ex-
periments demonstrate the effectiveness of the described tech-
nique. This algorithm can be adopted for ROBDDs with com-
plemented edges with only slight modifications.

Our on-going work includes extension of the presented al-
gorithm to Roth-Karp decomposition [19]. We are also inves-
tigating a possibility of combining IntervalCut with decom-
position algorithms exploiting the structure of BDDs, like [13]
and [15].
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