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Abstract–– In this paper, we present a new and effective 
approach to the extraction of on-chip inductance, in which we 
apply approximate formulae. The equations are based on the 
assumption of filaments or bars of finite width and zero 
thickness and are derived through Taylor’s expansion of the 
exact formula for mutual inductance between filaments. 
Despite the assumption of uniform current density in each of 
the bars, the model is sufficiently accurate for the 
interconnections of current and future LSIs, in which most of 
the wires are not affected by the skin and proximity effects. 
Expression of the equations in polynomial form provides a 
balance between accuracy and computational complexity. 
These equations are mapped according to the geometric 
structures for which they are most suitable in minimizing 
runtime in the calculation of inductance while remaining 
accurate to within 3%. Within the geometrical constraints, the 
wires are of arbitrary specification. 
  From a comprehensive evaluation on the ITRS -specified 
global wiring structure for 2003, the values for inductance 
extracted through the proposed approach are within 3% of the 
values obtained by commercial three-dimensional (3-D) field 
solvers. The efficiency of the proposed approach is also 
demonstrated by extraction from a real layout design that has 
300-k interconnecting segments. 
 
 

I. INTRODUCTION 
 

The effects of on-chip inductance on wiring delays have 
become increasingly significant with the increasing clock 
frequencies of VLSI circuits. The difference between the 
delay times of RC and RLC interconnects can reach more 
than 10% [1-3]. The extraction of the parasitic inductance is 
becoming increasingly important for accurate timing 
calculation. 

The idea of partial inductance [4-6] has been developed 
and applied in partial equivalent element circuit (PEEC) 
analysis. The partial inductance is used because determining 
the current-return path in the complicated wiring of a 
modern VLSI is difficult. 

To calculate the inductances of LSI interconnects, 
three-dimensional (3-D) field solvers [7-8] are widely used. 
These approaches are capable of capturing both the skin and 
proximity effects, which appear as increases in clock 
frequency. These tools are effective for the very accurate 
calculation of inductance values for individual wires but are 
in general too CPU-intensive to be applied as parasitic 
extraction tools for the thousands of wires in an actual 

process. 
The analytical formulae have been proposed as a faster 

way of calculating the inductance [9-11]. In these 
approaches, the self-inductance formula provides an 
approximation of the inductance in which the geometric 
mean distance (GMD) of the rectangular cross-section is 
taken into account. The mutual inductance formula is the 
exact or approximate equation for the inductance between 
two filaments –– the cross-sections of the wires are ignored. 
The authors have previously reported [12] that even the 
inductance between wires that are inclined relative to each 
other can be calculated by using the analytical formula. 
However, the equations for mutual inductance between 
filaments become inaccurate when the wires are very wide 
or short, since the infinitely long filament with zero 
cross-sectional area is no longer a good approximation. 

Grover has proposed a table look-up model for the 
calculation of mutual inductance [9]. The wires are treated 
as having rectangular cross-sections, and the GMD is used to 
take this into account. There are exact formulae for the 
different cross-sectional rectangles [13], but they are still too 
complicated and large amounts of computational time are 
required to extract the inductance values. 

Recently, numerous reports on forms of analysis for and 
results of evaluation of wiring inductance have been 
published. In most of these papers, long straight wires have 
been assumed; this is not a general representation of the 
wires of practical layouts. A method that fully applies 
analytical formula to interconnects in general has not been 
presented yet. In this paper, we focus on mutual inductance, 
because the computational costs for self- and mutual 
inductances are O(n) and O(n2) respectively, where n is the 
number of segments. The purpose of this paper is to present 
a formu la-based approach that is efficient with arbitrary 
VLSI interconnect structures. These equations can be used 
in floorplan processes, or even in parasitic extraction for 
delay calculation. 

The remainder of this paper is organized as follows. In 
Section II, we review the inductance formula and the idea of 
GMD. In Section III, we present new approximate equations 
for use in calculating inductance values for VLSI 
interconnects. In Section IV, we evaluate the accuracy and 
applicable ranges of these equations and give an example of 
their application to a real physical layout. Finally, we 
conclude the paper in Section V.  
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II. GENERAL FORMULAE 
 

In this section, we review several formulae for inductance 
and GMD that are used in calculating the mutual inductance 
between two conductors [9]. 
 
A. Mutual Inductance Formula 
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Fig. 1.  (a) Two straight parallel filaments of equal length. (b) Parallel 
filaments of unequal length. 

 
 
 

The exact formula for the calculation of mutual 
inductance for the para llel filaments of equal length shown 
in Fig. 1(a) is  
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where l is the length of each wire and r is the vertical 
distance between the wires in the plane. The formula for 
filaments of different length, as shown in Fig. 1(b), is 
expressed as a combination of four variants of (1):  
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Here, dM expresses the mutual inductance equation for 
filaments, where d is the horizontal distance between the 
wires in the plane. 
 
B. Geometric Mean Distance 
 

The equation for mutual inductance between filaments is  
simple as long as the length is much greater than the 
distance (l >> r): 
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The mutual inductance for wires of finite cross-sectional 
area is  
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where S1 and S2 are the cross-sectional areas of the 
respective conductors. Here, GMD, lnR  is the average 
distance of the natural logarithm. Once GMD has been 
obtained, the equation (4), which is a modification of the 

approximate equation (3) to include consideration of the 
rectangular cross-section, can be obtained. 

Mutual inductance is the average of the mutual 
inductances between filaments when the cross-section of 
each of the conductors is divided into infinitely many 
filaments. Let the indices of the filaments in the rectangular 
sections of the two conductors be i and j respectively; the 
mutual inductance is then expressed as  
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The equation (3) considered GMD is accurate as long as the 
condition l >> r is met. Otherwise, the error becomes too 
great, for the method to be used as a replacement for 3-D 
extractors. In the next section, we investigate when the 
equations become accurate and inaccurate. We also give 
more accurate equations that are valid for structures to 
which the filament assumption is not applicable. 
 
 

III. PROPOSED EQUATIONS 
 

We present new approximate equations for calculating 
mutual inductances between VLSI interconnects to different 
degrees of accuracy and complexity. These equations are 
intended to cover geometrical ranges where the filament 
assumption becomes inaccurate. 

In recent CMOS technology, the following 
approximations and relations hold:  
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where wmin is the minimum width of wiring, smin is the 
minimum spacing, t is the wiring thickness, and hmin is the 
dielectric height between the metal layers. 

The inductance formula for filaments is accurate when the 
distance between filaments is great enough to make their 
cross-sectional areas negligible. In other words, the 
worst-case accuracy condition for the filament equation (1) 
is the case where the wiring is broad and separated by the 
minimum spacing. Of course, as wiring becomes shorter, the 
accuracy of the approximation l  >> r used to obtained 
equation (3) is also lost. 

The authors have elsewhere reported [12] that the exact 
formula for filaments is practical (providing results that have 
an error within 10%) under this  condition: the wiring width 
is up to about 10 times its minimum value. The calculation 
becomes at least 60 times faster than with a 3-D solver. In  
other cases, the error is too large to use this approach as part 
of the parasitic extraction tool. To make full use of the 
efficiency of the analytical equations, we present a way to 
use combinations of the approximate equations for mutual 
inductance. The exact formula for a rectangular cross section 
is long and complicated, and thus requires huge amounts of 
computational resources. Since the skin and proximity 
effects are not significant, we assume uniform distributions 
of the current over the cross-sections of the wires. 
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Fig. 2.  Cross-sectional view of thin wires. 
 
 
 

Fig. 2 shows the wire cross-sections for the thin thickness 
approximation.  The function of the distance between the 
filaments is g(r) and the function f(R) of the average related 
to the distance between the cross sections of thin thickness 
approximation is expressed as  
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where wl and wm are the widths of wires l and m, 
respectively, px and py are the x- and y-direction distances 
between the centers of the respective cross-sections; the ijα  

are then ,
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In the following subsections, we present a set of 
approximate equations for calculating mutual inductance 
without the shortcomings of the filament equations. 
 
A. Approximate Form for Filaments 
 

Polynomial equations can be truncated to provide simple 
but approximate equations with different degrees of accuracy. 
These can be derived from the Taylor-series expansion of the 
exact equation (1) for inductance between filaments. 
For l > r, 
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and for l ≤  r, 
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The second-, third-, and fourth-term approximations of (9) 
are  
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Both (11) and (12) are well known as simple inductance 

equations. The greater the ratio  l/r, the more accurate the 
equations. The relationship between the accuracy and 
computational cost of each equation will be described in a 
later section. 

In the same way, taking the first and second terms of (10) 
yields 
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B. New Formulae for the Finite-Width and Zero-Thickness 

Assumption 
 

New approximate equations are now presented for wires 
with finite width but zero thickness. The finite width is 
achieved by lining up filaments side by side. Averaging the 
mutual inductances between all filaments in the respective 
conductors provides an approximate equation. For wires of 
finite width, (11) to (15) are replaced by the following 
equations. 
For l > r, 
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and for l ≤  r, 
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The variables concerned with distance, R1 to R5, can be 
obtained by solving (8) for the zero-thickness assumption. 
Here, lnR1 is the average of the natural logarithm of distance 

and is obtained by substituting ( ) 22
12ln ypxx +−  for g(r) 

of (8). 
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The average distance, R2 is  
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If 0=yp , 
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The average of distance squared, R3
2 is  
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The average of inverse distance, 1/R4 is  
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If 0=yp , 
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The average of the inverse distance cubed, 1/R5
3 is  
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According to our needs in terms of accuracy and speed, 

we can extract on-chip inductances effectively by using the 
most suitable formula. 
 
 

IV. ACCURACY AND EFFECTIVE RANGE 
 

In this section, we clarify the geometric range of accuracy 
for each of the equations and build a map of this accuracy. 
The map helps us to select the equation that achieves the 
required degree of accuracy. The accuracy is mainly 
evaluated through two wiring structures. One is the simple 
two-line configuration that comprehensively covers the 
wiring structures of modern LSIs, and the other is wiring of 
the form that will be found in future process technologies 
based on the specification of ITRS 2001. We use a 3-D field 

solver [8] to provide reference figures for comparison. 
 
A. Evaluation of Simplified Structures 
 

Fig. 3 shows the structure used to evaluate the accuracy of 
the equations. The result of each equation is compared to the 
DC inductance as obtained by the reference extraction tool. 
The structures are two parallel conductors of equal length. 
The number of combinations is more than 50,000. 
 
 

t=2 

l=1,2,3,5,7,10,20,30,50,70,100,  
200,300,500,700,1000, 
2000,3000,5000,7000,10000 

px=0,2,3,5,7,10,20,30,50,70,  
    100,200,300,500,700,1000 

py=0,4,8,12,20,28,40 

wl, wm=1,2,3,5,7,10, 
         20,30,50,70,100 

 
Fig. 3.  Simple structure used in accuracy comparison. 
 

Table I summarizes the proportions of geometrical 
structures of the form shown in Fig. 3 which are covered to 
within 3% and 10% error. Equation (1) covers the broadest 
range of r and l values. However, dividing structures at r/l=1 
lowers the error of the other equations, which can be 
calculated faster than (1). Equations (18) and (20), newly 
presented in the previous section, can cover more than 98% 
of the structures to within 3% error. The structures that 
cannot be covered to this accuracy by those equations are 
lines which are very wide and very close to each other; such 
a situation rarely appears in an actual design. 

Although the exact formula (1) for inductance between 
filaments covers the widest range, it does not give a good 
estimate when the wires are very wide. The equations 
(16)-(20), newly proposed in the previous section, make up 
for the shortfalls of the well-known simple or exact equation 
for inductance between filaments. 
 

TABLE I 
RATIO COVERED BY EACH EQUATION 

 
Coverage (%) Formula 

≤3% error ≤10% error 

(11) 23.7 (43.6 in l > r) 35.1 (64.6 in l > r) 

(12) 36.9 (67.9 in l > r) 45.1 (83.0 in l > r) 

(13) 43.1 (79.2 in l > r) 52.0 (90.2 in l > r) 

(14) 32.2 (70.3 in l ≤ r) 41.3 (88.0 in l ≤ r) 

(15) 36.8 (79.5 in l ≤ r) 43.5 (88.0 in l ≤ r) 

(1) 79.8 89.2 

(16) 28.3 (52.1 in l > r) 37.1 (68.3 in l > r) 

(17) 44.2 (81.5 in l > r) 48.8 (89.7 in l > r) 

(18) 52.9 (97.3 in l > r) 56.7 (99.0 in l > r) 

(19) 38.7 (84.9 in l ≤ r) 46.3 (99.0 in l ≤ r) 

(20) 46.2 (98.8in l ≤ r) 49.9 (99.9 in l ≤ r) 



Fig. 4 shows an equation selection map for (11)-(20) 
and (1), which shows the region where an accuracy of 3% 
or better is achieved, relative to the results of the 
reference extractor. Where several equations achieve this 
degree of accuracy, the simplest is chosen. This map 
provides a useful way of choosing the most efficient 
equations, in terms of computational cost, that also fall 
within the required threshold of accuracy. From the map, 
we derive the rule of thumb shown in Table II. 

 

 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
Fig. 4.  Map of the areas of coverage by optimal equations for error within 
3%. 
 
 

TABLE II 
CRITERIA FOR SELECTING THE OPTIMAL EQUATION 

 
Range Formula 

2≤r/l &  w/r≤0.3 (14)  
1≤r/l<2  &  w/r≤0.3 (15) 

0.7≤r/l<1  &  w/r≤0.3 (1) 
0.3≤r/l<0.7 &  w/r≤0.3 (13)  

0.05≤r/l<0.3 &  w/r≤0.3 (12)  
r/l<0.05 &  w/r≤0.3 (11)  

7≤r/l &  0.3<w/r (19)  
1≤r/l<7  &  0.3<w/r (20) or exact  

0.05≤r/l<1  &  0.3<w/r (18) or exact  
0.01≤r/l<0.05 &  0.3<w/r (17)  

r/l<0.01 &  0.3<w/r (16) 
 
 
 
 

Table III gives the comparative values for the cost of 
calculating each of these equations. The values are relative 
to (11) as a reference. The results are of trials on the premise 
that the start and end points, width, and height of the 
segments are already known. 
 
 
 

TABLE III 
RELATIVE T IME TO CALCULATE EACH EQUATION 

 
Equation Relative cost  

(11) 1.0 
(12) 1.2 
(13) 1.2 
(14) 0.7 
(15) 0.8 
(1) 1.4 

(16) 4.3 
(17) 7.0 
(18) 7.2 
(19) 4.5 
(20) 4.5 

Exact [13] 67.9 
 
 
 
B. Applicability to the Future Process 
 

The parameters of the global wiring structure specified for 
use from 2003 by ITRS 2001 [14] are given in Table IV. We 
use these as parameters that reflect those of future structures, 
and verify the accuracy of the selected equations for these 
parameters. The extraction frequency of the 3-D solver is set 
at 3.5 GHz.  
  Table V shows the geometries used in verification. The 
optimal equations given in Table II match the results of the 
reference extraction method to within 3% in most of the 
cases shown in Fig. 5. 
  The relations of Table II must be effective across 
generations where most of the relations of (7) apply. 
However, for still better accuracy, maps of the optimal 
equations for every process will be useful. The required 
speeds of calculation can be obtained by adjusting the limit 
on the error. 
 
 

TABLE IV 
ASSUMED GLOBAL METAL GEOMETRY 

 
Parameter Value 

Minimum width, wmin (nm) 237.5 
Metal thickness, t (nm) 498.75 
Dielectric height, hmin (nm)  451.25 

 
 

TABLE V 
PARAMETER VARIATION IN VERIFICATION 

 
Parameter Value 

l wmin×1,2,3,5,7,10,20,30,50,70,100, 
200,300,500,700,1000, 
2000,3000,5000,7000,10000 

wm, wl wmin×1,2,3,5,7,10,20,30,50,70,100 
Spacing in the 
same layer 

wmin×1,2,3,5,7,10, ,20,30,50,70,100, 
200,300,500,700,1000 

px for diff. layers 
(µm) 

0,1,2,3,5,7,10,20,30,50,70,100, 
200,300,500,700,200 

py for diff. layers  (t+hmin) ×1,2,3,5,7,10 

0.001

0.01

0.1

1

10

100

1000

0.001 0.01 0.1 1 10

r / l

w / r

(14)

(12)
(13)

(11)

(1)

(16)

(20)

(18)

Non-matched

(19)

(17)

(15)
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Fig. 5.  Distribution of error relative to results of the reference 3-D 
extractor. 
 
C. Application Example 
 

The proposed methodology based on the optimal 
equations given in Table II was implemented and applied to 
the real physical layout of 0.13-µm CMOS technology in 6 
layers. A 7-mm-square chip contains more than 3 million 
wiring segments. There are more than 10 billion mutual 
inductances between these segments. Here, we calculate the 
mutual inductances for 10, 100 and 300 thousand segments. 
The results are given in Table VI. 

More than 80% of all of the segments are short 
(<10-µm-long). There are several thousands of wide 
(>2-µm-wide) segments in the chip. For such segments, a 
conventional equation such as (12) is not practical because 
of the large errors it entails. The combinational use of 
proposed equations according to Table II achieved an error 
of less than about 3% in a reasonable runtime. The proposed 
method is 60 or more times as fast as the exact formula [13] 
with rectangular cross-sections. The proposed methodology 
is thus very efficient in accurately extracting the inductances 
of VLSI interconnects. 
 

TABLE VI 
RESULTS OF APPLICATION: CPU TIMES ON A SUN BLADE1000 

 
CPU time (hour:min:sec) # of segments 

Exact [13] Proposed 
10,000 01:42:22 00:01:44 

100,000 99:03:16 01:31:39 
300,000 - 15:08:17 

 
 

V. CONCLUSIONS 
 

We have proposed an efficient and reasonably accurate 
approach to the extraction of on-chip inductances, based on 
a set of approximate equations that are derived through 
Taylor’s expansion. The equations are for arbitrary wiring 
structures, which cover those seen in both current and future 
process nodes. Starting from the well-known exact equation 
for filaments, the new equations are obtained in polynomial 
forms by considering the width but ignoring the thickness of 
the wire. This allows us to select a solution that has 

sufficient accuracy by changing the numbers of terms. The 
equations support relatively wide and short wires to which 
the filament assumption does not apply. The equations have 
been mapped so that we are able to minimize runtime while 
maintaining the required degree of accuracy. 

The proposed equations have been evaluated on a 
comprehensive set of wiring structures of the form specified 
in ITRS 2001. Our approach achieves a result within 3% of 
that obtained by a commercial 3-D field solver executed at 
3.5 GHz. We applied both methods to a real physical layout 
that has 300-k interconnect segments. Our method provides 
a way of calculating parasitic inductances within practical 
runtimes. The proposed methodology is very useful as a way 
of efficiently extracting the inductances of VLSI 
interconnects. 
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