
Trace-driven Rapid Pipeline Architecture Evaluation Scheme  
for ASIP Design 

 
Jun Kyoung Kim 

Systems Modeling Simulation Lab 
Dept of EE/CS, KAIST 

373-1 Kusong-dong, Yusong-gu, Taejon 
305-701, Korea 

+82.42.869.5454 
jkkim@smslab.kaist.ac.kr 

 
Tag Gon Kim 

Systems Modeling Simulation Lab 
Dept of EE/CS, KAIST 

373-1 Kusong-dong, Yusong-gu, Taejon 
305-701, Korea 

+82.42.869.5454 
tkim@ee.kaist.ac.kr 

ABSTRACT 
This paper proposes a rapid evaluation scheme of pipeline 
architecture using phase-accurate simulation with only delay 
model and trace. With latency information for every stage, we 
can decide if an instruction in one stage can proceed to the next 
stage or if an instruction can be issued for each cycle without 
evaluating the value for registers. Branch target becomes 
available with trace generated by fast instruction set 
simulation. Fast verification time becomes possible because 
instruction set simulation is performed only once.  

I. INTRODUCTION 
 
The appearance of totally new applications accelerates the 
development of new embedded systems for them. In addition, the 
fact that the specification of such an application evolves over time 
makes programmability of embedded system more and more 
important. Therefore, the processor component should be 
developed in such a way that enables us to get both the 
performance satisfying the requirement and fast time-to-market. 
To design an optimal processor for an application is an intensive 
task because the architecture of a processor is very diverse and 
complex. 

To address this problem, a few methods that improve evaluation 
performance are proposed such as hardware emulation or compiled 
simulation. The evaluation performance using hardware emulation 
is high, but development takes very much time and is inflexible. In 
addition, we can’t make an observation on the internal state of the 
models being developed, which result in a long design time due to 
difficult debugging. With compiled simulation can we get a 
significant improvement in evaluation time by making use of a 
priori knowledge to accelerate simulation, with the highest 
efficiency achieved by employing static scheduling techniques [1]. 
We can also apply the same technique to our framework, the trace-
based token-level pipeline simulation proposed in this paper. This 
is reserved as a further work and we expect significant 
improvement on simulation performance. 

The scheme proposed in this paper is based on a language-based 
hierarchical design methodology where pipeline architecture 
design is performed after instruction set architecture is already 
developed. Our ADL(architecture description language), 
XR2(eXtensible, Reusable and Reconfigurable), which is an 
extension of READ(Reusable Architecture Description)[2] 
language, supports such characteristics as retargetable 
compiler/simulator generator. To get a high-performance pipeline 
simulator, we introduced a trace-driven token-level simulation 

technique. Pipeline architecture can be viewed as a sequence of 
stages. With issue latency and result latency information defined 
for each stage, we can decide if an instruction can proceed from 
one stage to the next stage considering various factors such as data 
dependency and control dependency without evaluating the real 
value for registers or memory addresses. In addition, if resources 
such as functional unit, data bus, register ports are defined for 
combinations of stages and instructions, we can get the utilization 
for every resource. This can be done in cycle-by-cycle manner, 
thus we can apply the cycle-based simulation also. The branch 
target would be unavailable without real values which can only be 
determined at run-time. With trace which can be acquired at 
instruction set architecture level, we can solve this problem by 
fixing the target address for all the branching instruction. In 
addition, the separating an instruction set architecture and pipeline 
architecture hierarchically makes the trace equivalent to different 
pipeline architectures. In other words, we can evaluate different 
pipeline architectures with only one trace. Trace-based 
performance evaluation has often been used for rapid cache 
simulation[3] or designing on-chip communication architecture[4].  

Chapter 2 shows the background and the overall structure of our 
framework. In chapter 3, we will explain the B-PASS formalism, a 
basic formalism on which our pipeline description, LowXR2, is 
based and syntax briefly. The simulation algorithm that enables us 
to evaluate the performance indexes in a short time will be given 
in chapter 4. We will show the effectiveness of our framework by 
exemplifying the CalmRISC processor with the proposed ADL in 
chapter 5. Finally, we will conclude this methodology and talk 
about future work in chapter 6.  

II. Background and Overall Framework 
 
A system designer is faced with the tasks of rapidly exploring and 
evaluating different architectures. Evaluating processor 
architecture requires a simulator and a compiler. Developing a 
simulator and a compiler whenever processor architecture changes 
delays the development time very much, resulting in a very long 
time-to-market. As a result, language-based design methodology 
appears in a design paradigm and architecture description language 
(ADL) is developed to drive automatic compiler/simulator toolkit 
generation. A top-down design framework is useful because 
information acquired at the high-level design can be exploited at 
the low-level design. Measuring some performance indexes as 
high-level as possible is very fast because unnecessary processing 
is not performed. Top-down design framework is well suited for 
processor design because there are many and complicated aspects 
in processor component.  



Table 1 Required information for simulation objective 
Objectives/Feature Required information  

Instruction correctness Per instruction behavior 
Addr mode correctness Per addr mode behavior 

Code size Instruction set architecture 

Total cycle count Instruction – stage - delay 
relation 

Resource usage Instruction – stage – resource 
relation 

Cycle-true snapshot Cycle-accurate model 
Area estimation Register transfer level info. 

Power estimation Register transfer level info 

High
Leve

l 
 
 

 
 
 

Low
Leve

l 

Table 1 shows the relationship between objectives of processor 
simulation and required information for them. Based on this, our 
design framework is devised according to the following grounds. 

• A design stage should be related with explicit objectives of 
modeling/simulation 

• A design stage should be as high as possible for the objectives of 
modeling/simulation : simulation speed issue 

• A design stage should not be too far from both higher/lower 
design stages : seamless design environment 

• Information exchange between design stages should be well 
defined 

Table 2 Design Stages of XR2 Framework 

Required Information Design Stage Architectur
e 

Instruction Set Architecture 

Per Instruction Behavior 

Per Addressing Mode Behavior 

HiXR2 
Instruction 

Set 
Architecture

Instruction - stage-delay 
relation 

Instruction-stage-resource 
relation 

Token-level 
LowXR2 

Cycle-accurate Model 
Cycle-

accurate 
LowXR2 

Pipeline, 
VLIW, 

Superscalar

Register Transfer Level Model MicroXR2 Micro-
Architecture

We propose a processor design framework by dividing the 
required information in Table 1 into 4 design stages as in Table 2 
and Fig.1. Three of the design stages, HiXR2, cycle-accurate 
LowXR2 and MicroXR2, are observed in many other frameworks. 
First, HiXR2 is a design stage for instruction set architecture, 
which consists of instruction set and addressing modes. This 
design stage enables us to determine what instructions and 
addressing modes are useful for a specific application. The 
processor architecture is instruction set architecture and processor 
behavior is defined on instructions and addressing modes. Cycle-
accurate LowXR2 is a design stage for cycle-accurate model that 
renders us a cycle-true behavior including all the snapshot of 
storage elements. This model helps us determine a pipeline 
architecture including data path and control path. In this case, 

processor architecture is pipeline architecture and the processor 
behavior is defined on stages or resources. A disadvantage of this 
model is a simulation speed. The last one, MicroXR2, is an 
implementation model. Generally, this is a HDL model. 

Our main concern in this paper is fast evaluation of pipeline 
processor model by introducing token-level LowXR2. The token-
level LowXR2 model is not cycle-accurate in a strict sense because 
it does not inform us of a cycle-accurate snapshot of storage 
elements. In other words, this model does not process such 
activities as evaluating register values or arithmetic operations 
defined on instructions cycle by cycle. Instead, this model 
manages an abstract pipeline model whose stages have delay 
parameters such as issue/result latency. This model gives us an 
accurate total cycle count, resource utilization, rough area and 
power estimation.  

Fig.2 shows a design flow of HiXR2 and token-level LowXR2. 

Token-level LowXR2 simulator uses traces that are free of control 
dependency to make it possible that token-level simulator does not 
process any value evaluation. The traces are generated by fast 
instruction set simulator.  

 

ApplicationSpecification

Analysis HiXR2 Model

Compiler

ISS(fast)

Compiled Code

Token-Level
LowXR2 Model

Satisfied?N

Selected
Instruction Set

Addressing Mode
Optimizing
Compiler

Token-level
Simulator

Compiled Code
(input : application)

Code trace

ISS(fast)

Satisfied?

N

Y

Cycle-accurate modeling phase

: Generation relation

: Input relation

: Interface between design stage

Fig.2 Design Framework 

Behavior

Architecture

ISA

Pipeline

Micro-
architecture

Instruction Stage Resource

HiXR2

LowXR2

MicroXR2

Architecture
Evaluation Implementation

Token-level

Cycle-accurate

Fig.1 Taxonomy for Dividing the Design Stage



III. Semantics and Syntax 
 
A. Semantics : B-PASS Formalism 
With the instruction set and addressing mode selected as a best 
solution for the target application at HiXR2, we can design the 
target processor’s pipeline architecture. Efficient design of a 
processor at this abstraction level requires formal definition of a 
processor, thus we introduced B-PASS(Basic Pipeline Architecture 
System Specification) formalism that defines a processor’s 
pipeline architecture in a mathematically correct way. B-PASS 
formalism is defined based on the HiISA, semantics for HiXR2, 
thus both formalisms are shown below. 
 

HiISA = <IS, AM, ST, RIA, RAS>, where 

• IS : A structured set for the instructions of target architecture.  

• AM : A set of addressing modes of target architecture. 

• ST : A set of the storages of target architecture. 

• RIA ⊆ IS × AM : A relation between the instruction set and 
addressing modes.. 

• RAS ⊆ AM × {ST ∪ IMM} : A relation between the addressing 
modes and associated storages (or immediate value).  

 
B-PASS = < HiISA, STAGES, RES, pipe, resource, lat> where 

• STAGES : set of pipeline stages 

• RES : set of resources 

• pipe : IS × AM  STAGESn for positive integer n 

♦The pipeline architecture is a function of instruction set and 
addressing modes. 

• resource : IS × AM × STAGES  RES 

• lat : STAGES × IS × AM  I × I 

♦Stage has two latency information, issue/result latency 
 
B-PASS formalism defines pipeline architecture with HiISA in a 

hierarchical way. STAGES is a set of stages which constitute a 
pipeline architecture. RES is a set of resources. pipe is a function 
that maps instruction set and addressing mode to the pipeline 
architecture which is a sequence of stages. We can model what 
resources are used at what stage, depending on an instruction and 
addressing mode with resource function. Latency information is 
specified with lat function. The first integer n is an issue latency, 
which implies that the stage can receive a new instruction every 
nth clock cycle. The second integer n is a result latency, which 
implies that n clock cycles are necessary for an instruction to finish 
its job at the stage.  

 
B. Syntax 
Syntax of token-level LowXR2 is a textual form reflecting the 
components of the B-PASS formalism. There are five sections as 
follows. 

(i) General description section 

General information about the processor is specified. We can 
specify the name of the processor, addressing modes, input port 
and output ports in this section. 

(ii) instruction alias section 
For modeling convenience, we can group the instructions to an 
alias. This is helpful when many instructions share pipeline 
architecture. We need not specify for all the instructions, but for 
this instruction aliases. This is used at the stage description body. 
The syntax has the following form. 

Alias_name : inst1, inst2, inst3, …, instn; 
(iii) Resource declaration section 

The resources used at the data path of target processor are declared 
here. This section specifies the name and the number of resources. 

(iv) pipeline section 
This section has the pipeline architecture by sequencing stages. 
This section has the following form 

Pipeline1{ (stage1, stage2, stage3, …, stagen); } 
(v) stage description section 

This section describes various feature of stages used at the pipeline 
section. The following is an example of a stage description.  

m_cycle_ex{ 
issue latency = 4; result latency = 8; 
phase(7:1){ bypass_to s_cycle_ex, m_cycle_ex; } 

} 
mem{ 

issue latency = 1; result latency = 1; 
switch(inst){ 

case(LD_INST): phase(0){ lock DABUS, DBUS;} 
} 

      } 
m_cycle_ex stage has four as its issue latency and eight as its 

result latency. The body of syntax phase(n1:n2) should be 
performed at the (n1+1)th cycle and (n2+1)th phase. For example, 
phase(7:1) shown in the example specifies that the bypassing the 
result to the s_cycle_ex and m_cycle_ex stages should be 
performed at the 2nd phase of the 8th(last) cycle. The phase(n) is 
used only for the stages with result latency one.  

In addition, some syntactic sugars specialized to processor 
architecture are supported. For example, with keywords fetch_opds, 
lock_dest, unlock_dest and bypass_to can we model the data 
hazard of a processor. These keywords are used at the stage 
description body. When keyword lock_dest is specified at a stage, 
it implies that the destination register should be locked at the stage 
to declare this register is unavailable. Keyword unlock_dest 
performs the unlocking of the destination register. Keyword 
fetch_opds implies that operand fetching is done at the stage. If the 
registers which contain the source operands are locked by other 
instruction, it should wait till the registers become available. 
Keyword bypass_to specifies the forwarding logic. This keyword 
has an argument which is a stage. This implies that the result is 
directly forwarded to the stage specified as an argument regardless 
of the register locking. With these keywords and simple 
scoreboarding algorithm can we model and simulate the data 
hazard very easily 



FETCH

(1,1)

(0,0)

DECODE

(1,1)

(0,0)

MULTI_ALU

(1,2)

(0,[0,0])

WB

(1,1)

(0,0)

SINGLE_ALU

(1,1)

(0,0)

FLOAT_POINT

(2,4)
(0,[0,0])

(¬,¬) (¬,¬) (¬,¬)

(¬,¬), (¬,¬)

(¬,¬), (¬,¬)

(¬,¬)

Stage name

(issue latency,
result latency)

(issue_latency_count,
result_latency_count)

(current-inst-seq, 
next-inst-seq)

FETCH

(1,1)

(1,1)

DECODE

(1,1)

(0,0)

MULTI_ALU

(1,2)

(0,[0,0])

WB

(1,1)

(0,0)

SINGLE_ALU

(1,1)

(0,0)

FLOAT_POINT

(2,4)
(0,[0,0])

(1,1) (¬,1) (¬, ¬)

(¬,¬), (¬,¬)

(¬,¬), (¬,¬)

(¬, ¬)

(a) Initial Configuration (b) Cycle 1 : Fetching single cycle instruction

Action
1) Get the pipeline sequence for

fetched instruction
2) Set the next-inst-seq of stages

determined to following with
min(fetched_inst, current_inst)

FETCH

(1,1)

(1,1)

DECODE

(1,1)

(1,1)

MULTI_ALU

(1,2)

(0,[0,0])

WB

(1,1)

(0,0)

SINGLE_ALU

(1,1)

(0,0)

FLOAT_POINT

(2,4)

(0,[0,0])

(2,2) (1,2) (¬,1)

(¬,¬), (¬,2)

(¬,¬), (¬,¬)

(¬,1)

FETCH

(1,1)

(1,1)

DECODE

(1,1)

(1,1)

MULTI_ALU

(1,2)

(0,[0,0])

WB

(1,1)

(0,0)

SINGLE_ALU

(1,1)

(0,0)

FLOAT_POINT

(2,4)

(0,[0,0])

(2,2) (1,2) (¬,1)

(¬,¬), (¬,2)

(¬,¬), (¬,¬)

(¬,1)

(d) Cycle 2, step1 : Proceed the instructions within
the pipeline architecture

FETCH

(1,1)

(0,0)

DECODE

(1,1)

(0,0)

MULTI_ALU

(1,2)

(0,[0,0])

WB

(1,1)

(0,0)

SINGLE_ALU

(1,1)

(0,0)

FLOAT_POINT
(2,4)

(0,[0,0])

(1,1) (¬,1) (¬,1)

(¬,¬), (¬,¬)

(¬,¬), (¬,¬)

(¬, ¬)

FETCH

(1,1)

(0,0)

DECODE

(1,1)

(0,0)

MULTI_ALU

(1,2)

(0,[0,0])

WB

(1,1)

(0,0)

SINGLE_ALU

(1,1)

(0,0)

FLOAT_POINT
(2,4)

(0,[0,0])

(1,1) (¬,1) (¬,1)

(¬,¬), (¬,¬)

(¬,¬), (¬,¬)

(¬, ¬)

Action
•decrement issue_latency_count
•decrement result_latency_count
Condition
• a stage has an instruction with

result latency count 0
• next stage has issue latency

count 0
• resource is free for the next

stage (omitted at this figure)

(c) Cycle 2, step 1 : Checking the condition to proceed instruction
within the pipeline architecture

FETCH

(1,1)

(0,0)

DECODE

(1,1)

(0,0)

MULTI_ALU

(1,2)

(0,[0,0])

WB

(1,1)

(0,0)

SINGLE_ALU

(1,1)

(0,0)

FLOAT_POINT

(2,4)

(0,[0,2])

(101,101) (101,100) (¬,99)

(¬,¬), (100,97)

(¬,¬), (¬,98)

(97,96)

FETCH

(1,1)

(0,0)

DECODE

(1,1)

(0,0)

MULTI_ALU

(1,2)

(0,[0,0])

WB

(1,1)

(0,0)

SINGLE_ALU

(1,1)

(0,0)

FLOAT_POINT

(2,4)

(0,[0,2])

(101,101) (101,100) (¬,99)

(¬,¬), (100,97)

(¬,¬), (¬,98)

(97,96)

(e) Cycle N, step1 : What instruction will proceed to WB stage?

FETCH

(1,1)

(1,1)

DECODE

(1,1)

(1,1)

MULTI_ALU

(1,2)

(1,[0,2])

WB

(1,1)

(1,1)

SINGLE_ALU

(1,1)

(0,0)

FLOAT_POINT

(2,4)

(0,[0,1])

(102,102) (102,101) (¬,99)

(¬,¬), (¬,100)

(¬,¬), (101,98)

(98,97)

FETCH

(1,1)

(1,1)

DECODE

(1,1)

(1,1)

MULTI_ALU

(1,2)

(1,[0,2])

WB

(1,1)

(1,1)

SINGLE_ALU

(1,1)

(0,0)

FLOAT_POINT

(2,4)

(0,[0,1])

(102,102) (102,101) (¬,99)

(¬,¬), (¬,100)

(¬,¬), (101,98)

(98,97)

(f) Cycle N, step 2 : instruction sequence 97 matches

Conflict
Instructions at SINGLE_ALU
stage and MULTI_ALU stage
can proceed  to the WB stage

This instruction
can proceed

stall!

The behavior of an instruction is not specified because the 
simulation at this abstraction level does not perform the evaluation 
of register value at all. In other words, only information about 
control-path is specified. This is helpful in simplifying not only the 
modeling but also retargeting a processor.  

 

IV. Simulation Algorithm 
 
Simulation algorithm has three inputs, APG, code trace and 
decoding table. 

First input is APG, an abstract pipeline graph, that has a close 
relationship with B-PASS formalism. With APG, we can manage 
the pipeline architecture as a graph form. Node represents a stage 
and edge implies the stage sequence defined for an instruction. The 
mapping from B-PASS formalism to APG is as follows. 

APG = <v, e> is a directed acyclic graph and related with  
correct B-PASS formalism model as follows 

v = STAGES 

e = v × v where vn× e× vm is an element of valid pipeline 
architecture set.  

This can be obtained with pipe(is, am) for is∈ISΣ, am∈AM, 
any value n and m that are nonnegative values. 

The second input is a code trace, CT, which is free of control 
dependency. This can be shared by different pipeline simulation 
which shares the instruction set architecture.  

The third input is a decoding table, DT, which determines the 
pipeline path with instruction. This is synthesized from the 
LowXR2 description.  

Actually, we perform the phase-accurate simulation in our 
framework, but the explanation is shown on the cycle-by-cycle 
base for brevity.  

 
A. Initialization 

Initial configuration is shown in Fig3.(a). Initially, every stage 
has its latency information. For example, MULTI_ALU stage has 
one as its issue latency and two as its result latency. Next, there are 
dynamic values for each latency, issue latency count and result 
latency count. Issue latency count acts as a condition with which 
we can decide if a new instruction can be issued to that stage. With 
result latency count, we can know if there is an instruction finished 
in that stage. During initialization, issue latency count and result 
latency count for all the stages are initialized to zero.  

Topological sort is performed on original APG because we will 
decide whether an instruction in a stage can proceed to the next 
stage or not in reverse topological sorted order. An instruction in 
one stage can proceed to the next stage if possible because the 
processing of the next stage is already performed.  

Last, there is instruction sequence information. This is used to 
keep the in-order completion causality of instruction processing.  

Resources are assigned to each stage and resource table is 
managed although now shown in figure. Scoreboarding algorithm 
is used to manage the register file.  

  
B. Issuing an instruction to a stage 
There are two cases in issuing a new instruction to a stage. The 
first case is fetching instruction from instruction memory and the 
next case is handover the completed instruction between stages. In 
case of instruction fetching(Fig3.(b)), a new instruction can always 
be issued to the first stage as decoded by decoding table if the 
issue latency count of the stage is zero. Instruction handover 
between stages is more complex. The following conditions should 
be met for an instruction to proceed from a stage to the next stage. 

 There is a completed instruction in one stage 
 The next stage determined by APG and DT has zero as its 

issue latency count. 
 Resources declared to be used at the next stage by the 

completed instruction are free. 
 The register which contains the source operand should be 

Fig.3 How the Simulation Algorithm Works on the Pipeline Model 



available if operand fetching is done at the next stage. 
 The sequence number expected to come by the next stage is 

the sequence number of the completed instruction. 
The first condition can be checked if there is an instruction 

whose result latency is zero at the current stage(Fig.3(c)). Second, 
the issue latency of the next stage should be zero(Fig.3(c)). Third, 
the resources the instruction uses at the next stages should be 
free(Fig.3(c)). With the fourth condition, we can model the true 
data hazard. Finally, the instruction that the next stage expects to 
come should be the completed instruction of the current stage. 

The third and fourth condition explains how it deals with 
resource conflict and data hazard. The true data hazard is 
addressed by scoreboard algorithm. Four keywords, fetch_opds, 
lock_dest, unlock_dest and bypass_to, enable us to model this true 
data dependency. When an instruction goes to a stage where 
operand fetch should be performed, it first checks if the source 
operand is available by looking into the scoreboard bit. If available, 
it can proceed to the next stage when its result latency is zero. If 
not, it should wait for another instruction that locked the operand 
to unlock it. Dependency checking of implicitly used registers 
such as status register is also handled. When an instruction enters a 
stage where it is specified to lock the destination, it should lock the 
destination. Forward modeling is possible by locating unlock_dest 
or bypass_to at an appropriate stage. These features are modeled in 
the way that the designer specifies at the token-level LowXR2 
description. We can model the control hazard by considering 
PC(Program Counter) as a resource. That is, when conditional 
branch instruction enters the pipeline, it locks the PC at the very 
first stage. When the conditional branch instruction has reached the 
stage at which the condition is expected to be resolved, it unlocks 
the PC. Because every instruction to be fetched uses PC at the very 
first stage, no other instruction can be issued. For the case of 
delayed branching, we depend on the compiler. Retargetable 
compiler generates a retargeted compiler based on the XR2 
machine description language and the syntax of LowXR2 holds the 
expression power of delayed branching. Branch prediction scheme 
is reserved as a further work.  

The fifth condition guarantees the in-order issue and in-order 
completion strategy. Instructions in the code trace have sequence 
number in an increasing order from sequence number one. When 
there is a conflict in a stage between instructions of precedent 
stages, instruction whose sequence number is identical to the 
expected sequence number of the next stage can precede. When an 
instruction enters a stage, it registers its own sequence number to 
the next stage. The next stage sets its expected sequence with a 
minimum value of its own expected sequence and the newly 
entered instruction’s sequence number.(Fig.3(e)). The sequence 
number of an instruction that should finish next time is managed 
separately, and the simulation algorithm is borrowed from the 
ROB(Re-Order Buffer) used at the superscalar architecture. 

 

V. Experiment 
 
We have experimented with CalmRISC[5], which is a 32-bit low-
power MCU from Samsung Electronics Company. CalmRISC has 
pipeline architecture that consists of five stages: Fetch-Decode-
Excute-Memory-Writeback. We used the ADPCM benchmark 
program as an application which is a member of MediaBench. 

First, we have constructed an instruction set simulation 
environment for CalmRISC with HiXR2. By simulating the 

ADPCM benchmark program with this simulator, we could get a 
trace whose target addresses of all the branch instructions are fixed. 
The performance of this instruction set simulator is about 30MIPS 
because we applied compiled simulation technique. The size of 
trace file is 874 Kbytes. 

Next, with these fixed instructions and addressing modes, we 
experimented with various pipeline architectures on the proposed 
token-level simulation environment. The pipeline architecture of 
CalmRISC is relatively simple, so we made a variation on the 
original pipeline architecture. Fig.4 shows the pipeline architecture 
of modified CalmRISC processor. There are two pipeline paths : 
ALU pipeline and DIV pipeline. It takes longer time for division 
instructions to finish its operation. To improve one cycle period, 
we assumed that the result latency of DIV_EX stage is 8 cycles 
and it is internally pipelined into two micro-stages, thus issue 
latency is 4 cycles.  

We tested our framework at the coursework which many 
graduate students hear. It took about two or three days for a 
graduate student to model the CalmRISC processor from scratch. 
The model size is 1716 bytes and 123 lines. We measured 
simulation performance on AMD Athlon 2100+, whose OS is 
Windows XP.  

 
 
 
 

Fig. 4 Experimental Pipeline Model 

FETCH DECODE EX MEM WB

Load instruction

Store instruction

Single cycle
Execution instruction

PABUS ++PC
Decode instructions

Calculate effective
address

DABUS effective address

Reg DBUS

IR PBUS
PABUS ++PC

Decode instructions

Calculate effective
address

DABUS effective address
DBUS data to store

IR PBUS
PABUS ++PC

Decode instructions
Execute

Result available
with forwarding

Write to register

IR PBUS

Operand fetch

Result available with forwarding

Memory fetches the 
data on DBUS

FETCH

Issue latency : 1
Result latency : 1

DECODE

Issue latency : 1
Result latency : 1

DIV_EX

Issue latency : 4
Result latency : 8

MEM

Issue latency : 1
Result latency : 1

ALU_EX

Issue latency : 1
Result latency : 1 WB

Issue latency : 1
Result latency : 1

: Data path when forward is used

(a) Phase-accurate activity of CalmRISC

(b) Delay model of CalmRISC for Simulation



Table 3 Experiment Result : ADPCM on CalmRISC model 

 Using Forward Without Forward

Total cycle count 222174 435861 

# of instruction executed 219170 

# stall due to data hazard 0 208686 

Simulation time(ms) 1105.86 1459.28 

CPI 1.01371 1.98869 

Kcycle/se
c 200.907 298.682 Simulation 

performance Kinst/sec 198.19 150.191 

 
Simulation result is shown in table 3. All the modeling and 

simulation is performed in a phase-accurate way. When forward is 
applied, there is no data hazard. Without forwarding, data hazard 
happens 208686 times. By applying the forward, 49% 
improvement of total cycle count has been achieved. The number 
of instruction executed is same for the two cases. The simulation 
performance is about 200~300 Kcycle/sec and 150~200 Kinst/sec. 
Because stall happens many times for the second case, simulation 
performance of the second case in Kcycle/sec is better than that of 
the first case. When the simulator detects there to be a hazard, it 
does not process any other instruction in the pipeline model. This 
is possible because the evaluation is performed in reverse 
topological sorted order. On the other hands, the performance of 
the second case in Kinst/sec is worse than that of the first case. 
This is because the number of instruction executed is same, but the 
processing time of the second case is longer due to the stalls. 
When we experimented with only cycle-accurate model, not 
phase-accurate model, the simulation performance was observed to 
be as twice that of phase-accurate case. This is reasonable because 
the load of simulating a phase-accurate model is almost twice that 
of simulating a cycle-accurate model. In addition to the total cycle 
count, the resource utilization has been counted also.  

 Compared with the simulation performance of instruction set 
simulator, which is about 30MIPS, the simulation performance of 
token-level LowXR2 is low but expected to be higher than that of 
other interpretive pipeline simulator. This is because unnecessary 
processing to get total cycle count is not performed. To get the 
correct total cycle count with conventional approach, we should 
perform cycle-accurate simulation. This simulation requires a 
cycle-accurate model, and to build a cycle-accurate model needs 
much more time and effort. In addition, cycle-accurate simulation 
takes much longer time because it evaluates all the values cycle-
by-cycle, unlike the token-level pipeline simulation. 

 

VI. Conclusion and Future Work 
 
This paper proposes an efficient way of evaluating pipeline 
architecture by introducing a new abstraction level called token-
level LowXR2. The experiment shows that the new abstraction 
level, token-level LowXR2, is valuable in exploring the large 
design space of pipeline architecture. Two factors enable us to get 
high simulation performance. First, evaluating the pipeline 

architecture without value evaluation saves the processing time 
very much. Without the evaluation, total cycle count and resource 
utilization can be measured with pipeline architecture with only 
latency information and resource assignment. Second factor is the 
hierarchical property of the proposed framework. With one trace 
that is generated with fast instruction set simulator and free of 
control dependency, multiple pipeline architectures can be 
evaluated. This is because pipeline architectures share the 
instruction set and addressing modes determined to use at the high-
level design. This helps explore a large design space of pipeline 
architectures which share an instruction set architecture. 

The ILP processor can also be modeled by token-level 
LowXR2 with resource declaration, but some syntactic sugar and 
related simulation algorithm will be very helpful in designing such 
an ILP processor. To get correct total cycle count, a few more 
peripherals should be available such as cache. Currently, cache 
simulator that uses traces is developed based on the DINERO 
cache simulator. The trace used by the DINERO can be generated 
using our HiXR2 simulator. We are currently working on this 
integration. Power and area is another important metrics for 
determining the architecture of a processor, thus high level 
estimation of power and area is necessary. We will show the 
effectiveness of our framework by exemplifying more processors 
and using various benchmark programs.  

Other techniques can also be applied at the same time. The 
application of compiled simulation technique would greatly 
improve the simulation performance. By introducing the compiled 
simulation, we expect there to be improvement of simulation up to 
a few million cycles per second.  

 

VII. REFERENCES 
[1] Braun, G., Hoffmann, A., Nohl, A. and Meyr, H.., “Using 

static scheduling techniques for the retargeting of high speed, 
compiled simulators for embedded processors from an 
abstract machine description”, Proceeding of the 14th ISSS, pp. 
57-62, Montreal, Que. Canada Oct. 2001.  

[2] Young Geol Kim and Tag Gon Kim, “A Design and Tool 
Reuse Methodology for Rapid Prototyping of Application 
Specific Instruction Set Processors”, IEEE RSP-99, pp46-51, 
1999, Clearwater, FL, U.S.A 

[3] Zhao Wu and Wayne Wolf, “Iterative Cache Simulation of 
Embedded CPUs with Trace Stripping”, Proceeding of the 
seventh Hardware/Software Codesign, pp. 95-99, 1999 

[4] Lahiri, K., Raghunathan, A. and Dey, S., “System-Level 
Performance Analysis for Designing On-Chip 
Communication Architectures”, IEEE Transaction on 
Computer-Aided Design of Integrated Circuits and Systems, 
pp. 768-783, Vol. 20, No. 6, June 2001 

[5] Kyoung-Moon Lim, et al., “CalmRISCTM : a low power 
microcontroller with efficient coprocessor interface”, 
International Conference on Computer Design, pp. 299-302, 
1999

 


	Main
	ASP-DAC03
	Front Matter
	Table of Contents
	Author Index




