
Typing Abstractions and Management in a Component Framework�

Frederic J. Doucet Sandeep K. Shukla Rajesh K. Gupta

Center for Embedded Computer Systems Electrical and Computer Engineering Computer Science and Engineering
Univ. of California, Irvine Virginia Tech Univ. of California, San Diego

Irvine, CA 92612 USA Blacksburg, VA 24061 USA La Jolla, CA 92093 USA
e-mail: doucet@ics.uci.edu e-mail: shukla@vt.edu email: gupta@cs.ucsd.edu

Abstract— We consider the type inference problems in a com-
positional design environment where the components are auto-
matically instantiated from pre-existing C++-based intellectual
property (IP) libraries. We present a component integration lan-
guage based on scripting for design specification. Our focus is ar-
chitectural aspects in specification that uses aggregation– as op-
posed to the more commonly used inheritance– for composition
of components. Our approach simplifies architectural specifica-
tion by employing a type inference and type managementenviron-
ment. We show that the type inference problem is NP-complete.
We present a heuristic based on code generation and parameteri-
zation to solve the type inference for IP selection in our C++-based
composition environment. We have implemented the composition
and type management in theBALBOA framework. The results
show the utility of our approach.

I. I NTRODUCTION

Programming-based high-level modeling frameworks are
useful in exploration of complex system architectures. By
using programming language to build hardware-software co-
design frameworks, the burden on the hardware and embedded
system architects shifts from managing design complexity to
building architectures, platforms and applications. Both hard-
ware and software can be described in a compositional way.
Hardware designs can be conceptualized as a combination of
components connected through ports, via signals or channels.
Software components can be connected though similar con-
nectors and also through object relations such as aggregation,
composition and association [19]. C++ is an increasingly pop-
ular choice of language for many such compositional frame-
works [3] [2]. C++ is a strongly typed language and therefore
components have to be implemented using interfaces that are
type compatible. Ensuring such compatibility often results in
a significant programming effort that often gets in the way of
system conceptualization. Further, conforming to a specific set
of interfaces as a requirement for IP manipulation and integra-
tion can lower reuse, as the IP is made dependent on its context
of usage.

�This work was supported in part by the Semiconductor Research Corpora-
tion under a Graduate Fellowship, the Fonds Quebecois de la Recherche sur la
Nature et les Technologies under a Graduate Fellowship, the National Science
Foundation, the UC Micro Program and Conexant.

The motivation for the BALBOA framework is to provide
an efficient and convenient component composition environ-
ment that requires minimal amounts of programming effort to
build architectural design models [7]. One of the ways BAL -
BOA achieves this is by simplifying the typing requirements
imposed on the system architect for the component models in
an architecture. Often the designer would leave typing infor-
mation unspecified or partially specified. In this paper we show
that the program of type inferencing is intractable. We then
describe a heuristic to solve this problem by applying two type
inference rules.

This paper is organized as follows. Section 2 reviews the re-
lated work. Section 3 gives an overview of the BALBOA com-
ponent environment, described the languages, the architecture
and the user model. Section 4 describes the type system and
the type inferencing in BALBOA, and section 5 describes the
implementation of the algorithm.

II. RELATED WORK

System level and hardware specification languages are ac-
tive areas of research. Most approaches are looking to raise
the level of abstraction above the RTL level into either the ar-
chitectural or the behavioral design space. SYSTEMC [21] and
SPECC [9] are examples of approaches that are based on pro-
gramming languages. There are also a number of component-
based approaches, notably COLIF [3] which has shown pro-
ductivity improvements over RTL approaches, and PTOLEMY

which is centered around interaction of models of computation.
The PTOLEMY framework [8] provides a mathematically

sound framework for component-based design using an actor
paradigm. During the execution of a model, the actors interact
according to different models of computation (called domains).
Domain-specific directors resolve the domain-dependent in-
teractions, and coordinate the communication between actors
from multiple domains. PTOLEMY uses an elaborate type sys-
tem to statically resolve data types under specified constraints
[12] [23]. The static type checking in PTOLEMY can deter-
mine the compatibility of a set of component interconnections.
PTOLEMY provides polymorphic actors, whose ports can have
polymorphic types. The polymorphism of actors is based on a
lossless type hierarchy that forms a lattice. Therefore, the static
type resolution can be reduced to solution of horn-clauses [18],

and thus solved in linear time [23]. However, this requires that
actors in the library to conform to the polymorphic actor de-
sign principles. This means that types of actors and their ports
need to be ordered in the type lattice structure in [23]. This is
enforced by requiring interface conformance from new actors,
meaning that they need to use the PTOLEMY base classes. For
building system models, this requirement is a limitation when
importing the legacy C++ components into the IP library.

By contrast, in BALBOA there are a few important differ-
ences. BALBOA design components are similar to PTOLEMY

actors since the type system has a similar static inference on
data types of ports. However, the BALBOA does not explicitly
support multiple models of computation, as they are param-
eterized from the underlying libraries. Second, we are con-
strained by third party interfaces which may not map to any
systematic type lattice. This is because BALBOA does not re-
quire components to inherit from a set of base interfaces, but
rather use an interface description language to adapt the envi-
ronment to new components to be placed in the library. Also,
the type resolution problem being addressed in BALBOA is a
more general problem to which fix-point computation over a
semi-lattice can not be applied. In fact, as we show later, our
type determination turns out to be an NP-complete problem,
and lacks the property of having a “unique most specific type”
solution.

As said before, we can introduce new interfaces in BAL -
BOA by using an interface description language. What enables
the utilizationof components with non-conforming interface in
BALBOA is a technique called split-programming. This tech-
nique refers to system construction using a combination of a
scripting and a compiled language with a common class hi-
erarchy. In split-programming, class hierarchies are used in
two programming environments with hooks that enable their
combined manipulation [1]. The NS (network simulator) [15]
uses a split-programming model built on scripting to create a
network simulation environment, with two layers of program-
ming facilities: one for building network objects/components
with OBJECTTCL (OTCL), and the other for composing them
with C++. Scripting has been used for many years for soft-
ware component integration in CAD frameworks. Ousterhout
argues that a script language interpreter for component inte-
gration is essential for API abstraction and reuse because it
reduces type dependencies [16].

Script interfaces for C++ components can be generated us-
ing a wrapper generator such as SWIG [4, 20]. However, there
are a number of limitations when it comes to typing. Type
parameterizations and subtyping strategies are not well con-
sidered, there are no interpreted type construction facilities.
Complex hierarchies are difficult to navigate and manipulate.
And also, there is no clear separation between a component and
its environment. Sometimes components are not only simple
interfaces to classes, but they also have complex internal ar-
chitectures that separate the environment interactions from the
behavior or meaning of the component [13]. In those cases,
it is difficult to work with SWIG and other wrapper genera-
tors. This is why we decided to define and use the BALBOA

interface definition language.
Sometimes, script language can be categorized as architec-

ture description languages, or maybe more appropriately mod-
ule interconnection languages. Like a script language, an ar-
chitecture description language (ADL) provides an abstraction
of many tedious syntactical details of programming language
that are independent of the nature of a system model and not
needed for composing a structure. In the software engineering
research, there are many ADLs [14] to solve typing mismatch
in architectures [11] and to perform model analysis. In the
system-level design space, they are often focused on special-
ized tasks [22], and interoperability can be difficult to achieve
[6] when the ADL abstracts only part of the underlying model-
ing infrastructure. In BALBOA we use a component integration
language (CIL) which is similar in spirit to an ADL, but it is
not interpreted and not declarative.

III. T HE BALBOA COMPONENTENVIRONMENT

The BALBOA component environment is used to build sys-
tem models with an architectural perspective. The particular-
ity of the environment is the split-level model with type ab-
straction and inference. The environment implements a split-
programming model like NS, but has more layers and an in-
termediate language between the script language and the C++.
Figure 1 shows the layers in the environment. Languages are
on the left side and the run-time structure on the right side.

ReflectionType info

C++

export

CIL

Compiled
Objects

BIDL
BIDL
Compiler GCC Split-Level

Interface

Introspection
Interpreter

GCC

Fig. 1. Layering in the BALBOA environment: languages on the left side,
run-time structure on the right side

The highest layer is the scripting layer. An architectural
structure is assembled from components by using the compo-
nent integration language (CIL). At this level, the architect in-
stantiates components, connects them, and inserts test benches,
monitors etc. We also call this layer the interpreted layer.

The lowest layer is the component library layer. This layer
consists of IP libraries of C++ classes/objects. Theoretically,
this layer can accommodate C++ IP models in a wide range of
libraries without affecting the implementation of the other two
layers. We also call this layer the compiled layer.

The intermediate layer is the wrapper layer. The C++ ob-
jects from the compiled layer are contained and manipulated
by split-level interfaces (SLI). This layer connects and pro-
vides the mechanism for manipulation of compiled objects
from the scripting layer. The split-level interface dissociates
the modeling interface from the implementation interface.

The split-level interface implements the reflection and the
introspection capabilities of the environment. The reflection is
the capability of the split-level interface of a compiled object
to explicitly captures the attributes, methods, and properties of
the object. Introspection is the capability of the CIL language
to query the reflected information of a component. This infor-
mation is described using the BALBOA interface description
language (BIDL). This information describes the modeling se-
mantics of the component, and we use this as the “type” of the
component. The BIDL was first inspired by the CORBA IDL
[5], but it has been customized and extended for the require-
ments of system-level modeling. The BIDL compiler converts
the components’ interface description (its type information)
into a format that the interpreter can understand. The BIDL
is a little bit similar to the CPP preprocessor because it can
be thought of expanding the type information, but what it ac-
tually does is to customize a split-level interface for the new
component.

In BALBOA, when we refer to a component, it means the
whole right side of Figure 1. In the CIL a component is a
OTCL object with methods and attributes, and this object is
shadowed by a number of compiled C++ objects. Figure 2
shows the internal architecture of a BALBOA component.

CIL Commands

C++ Objects
Interactions

interface
level
Split- Interpreted OTcl

class with variables
and methods

Type
Adapter

Bridge

Type
system

information object

Internal
compiled

Fig. 2. Internal architecture for a BALBOA component

The internal compiled object is a C++ object that can be a
SYSTEMC object, or an object using any other library. We
sometimes refer to the internal compiled object as the com-
piled component. The split-level interface executes the com-
mands in the scope of the components and maintains the type
information, which is the meta information about the type of

the internal object and its modeling semantics. This imple-
ments the introspection and the reflection, where structural
information (which attributes and methods a component has)
can be queried, like in the Java reflection packages. How-
ever, the type information also contains non-functional prop-
erties, as for example, system level characterizations such as
“functional”, “behavior”, “structural”, “port”, “signal”, “mod-
ule” and “process” that are independent of the C++ interfaces.
These properties are specified (declared and mapped to C++
classes) through the BIDL, to be instrospected through the
CIL.

IV. TYPE RESOLUTION IN BALBOA

The type abstraction means that an interpreted component
can be shadowed by a number of compiled components. The
C++ library components are often implemented using tem-
plates, and the ports of the components may carry different
concrete data types. For example we may have an adder which
may have various implementations in the library. It may have
two input ports which may take floating point numbers as in-
put, and an output port for a floating point output, and another
port of Boolean type to indicate overflow/underflow. Another
implementation of the adder may take 16 bit integers as input
and produce 16 bit output and one Boolean output for the carry.

When building a system, often a designer may not want to
make specific type choices for all its ports since that very much
depends upon the kind of component to which an instance
may be connected to. Using the CIL, the designer can declare
a components in an architecture without specifying the input
types, or output types; or a designer might choose to explicitly
specify the types. If the types are unspecified, but this adder
is then connected to a multiplier, whose input types are spec-
ified, the environment can infer the types of the adder ports,
and the system will then instantiate the appropriate component
from the library. This flexibility for designers to be oblivious
to C++ typing at the hardware design level is necessary for pro-
viding the system designer with a degree of flexibility, and for
automatic exploration of alternatives for best design with the
available components in the library.

In BALBOA, the type information for each class of compo-
nents is abstracted in the BIDL. The component library de-
signer, while exporting the component interface into the BIDL,
must also specify what different types are available for the spe-
cific components. For example, in the case of an adder, the
library designer must specify that the adder has been imple-
mented for float, 8, 16, 32 bit integers, single bits and so on.
Now, the introspection facility in BALBOA can let the environ-
ment and the architect know about such availability of different
types. But the designer may choose to let the system infer the
appropriate type as well. When the designer chooses to instan-
tiate components without specifying the types foreach port,
and/or signal, we call it a component with a “partial type” be-
cause it may still make sense at the CIL layer.

A. Split typing

In the BALBOA environment, this partial type can also be
viewed as “split type” because it is managed through the split-
level interface. A component can have a type at the interpre-
tive layer, and multiple possible implementation types at the
compiled level. In other words, for a component, there is an
interpreted type, and a compiled type. In the adder example,
at the interpreter level, all the ports of the adder are just “Port”
type. Based on the containment hierarchy and on connections
to neighboring components, type inference will associate spe-
cific C++ data types to the ports.

In order to illustrate the algorithms for incremental type in-
ference, we use the following notation. LetT be a set of all
concrete C++ data types, letP be a set of ports andS be a
set of signals in the design created in the CIL. Ports and Sig-
nals are abstract types, and at the compiled component level
each port type and signal type must be mapped to a concrete
type in T . Each port or signal is associated with a data type
via mappings,dtp, anddts, such thatdtp : P! T

S
f?g, and

dts : S! T [f?g. A port is untyped ifp 2 P : dtp(p) = ?,
and a signal is untyped ifs2 S: dts(S) = ?, where? denotes
the fact that no concrete type has been specified or inferred yet.
When the type inference is done,dtp anddts must not map any
element to?, and if that cannot be achieved the type-inference
algorithm must detect and report that.

B. Components

In the interpreted layer, (i.e. in the CIL) a componentc has
a set of ports denoted byports(c). If n is the number of ports
for a component, they are denoted bypc1; pc2; : : : ; pcn. In the
compiled domain, the componentc, might be “polymorphic”
in its port types, and hence there may be various compiled ver-
sions ofc, such that the ports ofc might have different types
from T. The functiondtp has a limited choice in assigning
pc1; pc2; : : : ; pcn, to the different compiled types.

One can view this as a choice of assignment to a vector of
ports/pc1; pc2; : : : ; pcn., from one of the possible rows from a
type availability table of ordered rowsTc�T�T�T��� ��T ,
each row corresponding to a compiled version ofc. In fact, the
author of the component library explicitly puts all the possible
type combinations for componentc’s instantiation hence the
tableTc through BIDL descriptions. Since signals are used to
link a port of one component to a port in another component, if
a signalsdoes not have a type specified by the designer, it can
also be assigned a concrete type from a set of types. However,
a signals must be assigned the same type as the ports it is
connecting, hence, signals can be thought of as constraints in
the port assignment problem.
Definition TheBALBOA type inference problem: given a de-
sign with a set P of ports, and S of signals, and given the
partition of P, into k disjoint sets (where k is the number of
components, and components do not share ports): For each
component c, with its portvector/pc1; pc2; : : : ; pcn., assign a
row from its type table Tc, such that if there is a signal s2 S,
which connects a port pci in component c to another port pdj ,

of a component d, then the type assigned to pci and to pdj must
be exactly the same.
Theorem The BALBOA type inference problem is NP-
complete.
Proof: given a type assignment for all the ports, it is straight-
forward to verify from the type tables, that the assignments are
correct, and the ports connected via signals have the same type.
Hence the problem is clearly in NP.

For the NP-completeness proof, we reduce the problem
of One-in-three monotone 3SAT [10] to the BALBOA type-
inference problem. 3SAT is the following problem: given a set
U of Boolean variables, and a collection of disjunctive clauses
overU , such that each clause is a disjunction of exactly 3lit-
erals, find if there is a truth assignment of the variables inU ,
such that all the clauses are satisfied. One-in-three 3SAT is a
special case of 3SAT problem, where the truth assignment of
U has the restriction that ifxi andxj are two literals appearing
in the same clause, then both cannot be assigned the truth value
of 1. Finally, the monotone One-in-three 3SAT has the further
restriction that no negated literal appears in any clauses.

Given an instance of monotone One-in-three 3SAT, foreach
clausec, which has three literalsxc1;xc2;xc3, one can cre-
ate a tableTc, with exactly 3 rowsf< 1;0;0>;< 0;1;0>

;< 0;0;1 >g, and given the set of vector of variables inc,
/xc1;xc2;xc3., one has to assign one of the rows in tableTc,
with the restriction, that if the variable that appears asxc1 in
c, also appears asxdi in another claused, then the choice of
the rows fromTc andTd must be such that the assigned truth
values are the same forxc1 and xdi . This is a version of the
BALBOA type inference problem, and hence BALBOA type in-
ference problem is at least as hard as the monotone One-in-
three 3SAT, which is known to be NP-complete [10].

It can be shown that the type inference problem can be for-
mulated as a constraint satisfaction problem such as a rela-
tional constraint problem. The BALBOA type inference can be
cast as a query evaluation in a relational database comprised of
all the type availability tables in the type inference.

V. TYPE INFERENCEIMPLEMENTATION

The type inference framework has three parts: the BIDL lan-
guage and the BIDL compiler, the run-time infrastructure that
captures all the type information, and the heuristic that do the
type management, propagation and inference for a design ar-
chitecture. The BIDL compiler parses a component descrip-
tion and searches for type parameterization relations (TPR),
where types parameters are shared between two components.
There are two cases of TPR: (a) through types of method argu-
ments (b) through types of the attributes of a component.

A. Type Parameterization Relation through Methods

Consider the following BIDL listing where anInport
component type with abind to method is declared:

Component Inport {

PARAMETERS {type DATATYPE};

void bind_to(const Signal<DATATYPE>& sig);
};
DEFINE_PARAMS {unsigned int} FOR Inport;
DEFINE_PARAMS {bit_vector32} FOR Inport;

The partial type of the component isInport , with a
DATATYPEtype parameter. The last two lines of the listing de-
fine two implementations of the component,each one specify-
ing a type parameter value, one for an unsigned integer and an-
other one for a 32 bit vector. In this case, theInport compo-
nent is shadowed by a C++ class also namedInport , whose
instance is used for the internal object. When anInport
component is instantiated, the type parameterDATATYPEis
undefined, and the internal object not allocated until there is a
valid mapping.

In this listing, the BIDL compiler finds one type parame-
terization relationship between the argumentsig of method
bind to and theInport component, sharing parameter
DATATYPE. When thebind to method is called on a inport
component, the run-time environment can inspect the full type
of sig parameter for the value ofDATATYPE. If it is defined,
it can be propagated from thesig parameter to the inport com-
ponent, or vice-versa.

B. Type Parameterization Relation through Composition

Consider the following BIDL listing where aBuffer com-
ponent type is defined, which has two portsin andout :

Component Buffer {
PARAMETERS {type DATATYPE};

Inport<DATATYPE> in;
Outport<DATATYPE> out;

};
DEFINE_PARAMS {unsigned int} FOR Buffer;
DEFINE_PARAMS {bit_vector32} FOR Buffer;

This component is also parameterized, and has two imple-
mentations, one for unsigned integer and one for 32 bit vec-
tor. The BIDL compiler finds two type parameterization re-
lationships in the listing. The first one is between the at-
tribute (or sub-component)in and theBuffer component
where they share the parameterDATATYPE, and the second
one is between the attributeout and the component also with
DATATYPE. Type parameter definitions can be propagated to
theBuffer component along the composition relation when
the type parameter of a sub-componentin or out is defined,
or vice-versa.

C. Run-Time Structure

Figure 3 shows the simplified class diagram for the run-time
environment, in regards to the typing framework. There are 6
classes in the figure and three of them are used as base classes
for extensions generated by the BIDL when adding new com-
ponent to libraries. Those classes are in gray boxes on the

void allocate()
call_method()void

Type* fulltype

TAB
vector<TypeParamDecl> params_decl
vector<TypeParamDef> params_defs
vector<AttributeTPR> atprs
set<ComponentCmd> cmds
map<vector<TypeParamDef>,TAB*> tabmap
TAB* tab

string attributeName

AttributeTPR

string methodName
parameterNumberint

MethodTPR

paramIndex2int
paramIndex1int

TypeParameterRelation

SLI

void Check_AttributeTPR()

vector<MethodTPR> mtprs

do_command()void
void Check_MethodTPR(SLI*)

ComponentCmd

Fig. 3. Type parameterization framework: the split-level interface (SLI)
contains the type parameterization relationship by composition (through
attributes) and the commands contain the type parameterization relations
through methods. Classes in gray are extension generated by the BIDL
compiler when adding new component types.

figure. The first and most important one is theSLI class that
implements the split-level interface. The BIDL compiler do
specialize this class by inheritance into a class specific for a
new component. A specialized class contains the information
about type parameters declarations, and at run-time about de-
fined type parameters for an instance of the component. It also
contains a vector of attribute type parameter relationsatprs
for parameters shared in composition. There are two methods
to check the parameterization relations, we will explain them
later in the inference description subsection.

The second class that gets extended by the BIDL compiler
is the Type Adapter Bridge (TAB) class. This class manip-
ulates the exact type of the C++. Only the TAB knows the
specific type and it is the only access to the compiled internal
object. The type availability table is implemented through a
table of TABs, and it is indexed by the type parameter defini-
tion vectorSLI::params defs . A specific TABs is derived
by the BIDL compiler for every available C++ class usable
as the internal object. When all parameters are defined, the
params defs vector is set and it can index the TAB map to
find the specific TAB for the exact C++ type match.

The third important class isComponentCmd that executes
a command on a component. This class is also specialized
by the BIDL compiler to implement method calls to the in-
ternal object (such as a call to thebind to method of the
Inport class). TheComponentCmd class contains the type
parameterization relations between command parameters and
the component.

Finally, note that type parameter relations are tuples
(index1; index2) of shared type parameter indexes in the type
declaration vectors of two components.

D. Run-Time Type Inference Heuristic

The run-time type inference has two tasks: verify if types
are compatible when connections are set and propagate param-
eters along type parameterization relations. A type parameter
can be set by an inference along a relation, but it can also be
constrained by the user of the system. The run-time infrastruc-
ture also has the task of allocating the internal object when all
type parameters are valid and have a single match in the type
availability table. If the types are unknown or incompatible,
the infrastructure can delay the allocation of the internal object
to some other time in the future. In any case, if the type pa-
rameters of a component are not all defined, the execution of
a command on that component has to be delayed. This is be-
cause the full type of the compiled object is unknown; hence
we cannot allocate it and invoke its behavior.

There are two ways to do the type inference: do it once when
the architectural topology is fully specified (on an elaboration
phase), or do it progressively as the topology is specified (like
in ML [17] by progressively applying type reduction rules). In
this case, parameters can be defined multiple times for a com-
ponent; therefore commands have to be delayed until the sub-
types definitions vector is committed. Note that establishing a
connection is a command. There are two policies for the allo-
cation of the internal object of the component. The run-time
inference engine can be opportunistic and do the allocation as
soon as it is possible– when the type parameter definition vec-
tor is defined and there is a type allocation table match. The
environment can also be lazy and wait until the user of the sys-
tem issues a command to allocate the objects. The system will
then do the allocation, but it will not run the delayed commands
until the user also instructs the system to do so.

The heuristic for type inference is presented in figure 4.
When a command is invoked on a component, like con-
necting a component to a signal, theRun Cmd procedure
will verify the type parameter relation between the com-
ponent and the command arguments. If all internal ob-
jects are allocated, the command can be executed, else it
will be delayed. The architect can use theRun Cmd and
Run Delayed Cmd For Component procedures to propa-
gate type parameters between components. The latter re-runs
commands that were delayed because ofundefined parame-
ters and delayed allocations. ProceduresCheck MethodTPR
andCheck AttributeTPR respectively check for type param-
eterization through methods and compositions. The method
propagation procedure will propagate from arguments to com-
ponent, and then the other way around. The composition prop-
agation procedure will propagate the parameters “downwards”
and then “upwards” in the hierarchy.

The Propagate Type Param procedure is recursive be-
cause it will always check for composition relations which can
require more propagation. It also calls the procedure to run
the delayed commands for a component to propagate along
connections. This procedure is static in the run-time environ-
ment. The method propagation procedure is implemented in
the ComponentCmd class of figure 3, and the composition
propagation is implemented in the scope ofSLI .

Run Cmd (component, cmd):
CheckMethodTPR (component, cmd)
if componentis allocated and all arguments ofcmdare allocated

executecomponent:: cmd
else

delayedcmds= delayedcmds[cmd
endif

Check MethodTPR (component, cmd):
for all mtpr2 (cmd:mtprs)

PropagateType Param(component;
mtpr:paramIndex1;

cmd:params[mtpr:parameterNumber];
mtpr:paramIndex2)

PropagateType Param(cmd:params[mtpr:parameterNumber];
mtsr:paramIndex2;

component;
mtsr:paramIndex1)

end for

Check AttributeTPR (component):
For all atpr2 (component:atprs)

PropagateType Param(component;
atpr:paramIndex1;

atpr:attributeName;
atpr:paramIndex2)

PropagateType Param(atpr:attributeName;
atpr:paramIndex2;

component;
atpr:paramIndex1)

end for

PropagateType Param (component1; index1;component2; index2)
if (component2:paramde f s[index2] 6=? AND

(component1:paramde f s[index1] ==?OR
CONTINUOUSPROPAGAT IONPOLICY))

component1:paramde f s[index1]
component2:paramde f s[index2]

CheckAttributeTPR(component1)
end if
if (OPPORTUNIST ICINTERNALOBJ ALLOCAT IONAND
8i: component1.paramdefs[i] 6=? AND
tabmap[component1.paramdefs] 6=?)

allocate internal object ofcomponent1
end if
if CONTINUOUSPROPAGAT IONPOLICY

Run DelayedCmdsFor Obj (component1)
end if

Run DelayedCmd For Component(component)
for all delayedcmd2 delayedcmds

CheckMethodTSR(component, delayedcmd)
if componentis allocated and all arguments ofcmdare allocated

executecomponent:: cmdand remove from setdelayedcmds
endif

end for

Fig. 4. Type inference and management heuristics for the BALBOA run-time
environment: type parametrization relationships are checked and propagated
through method parameters or through attribute composition.

E. Results

The heuristic is implemented in the BALBOA run-time en-
vironment, and used in four designs examples. The first one
is a behavioral state machine that is refined to RTL FSMDs,
the second one is a simple packet switch that is connected to
multiple receivers, the third one is a FIR filter connected to a
source and a display, and the last one for a memory hierarchy
research platform called AMRM.

In the state machine and FIR example, the CIL was used
just to select the right data type of the IP from the library. The
environment does the type inference, select a component from
the IP library that matches the type constraints, and does the
allocation and binds the connections. In the packet switch ex-
ample, the CIL can be used to build an architecture because the
design has a regular structure as shown on figure 5.

s0

clock1

clock2

clock3

r0 r1 r2 r3 r4

pkt_switch

s1

r5 rm

...

sns5s4s3s2

Fig. 5. Packet switch example with a regular structure.

The following CIL segment shows how the topology on the
figure can be built:

Pkt_Switch pkt_switch
connect pkt_switch.CLK to clock2
for {set i 0} {$i<$NUMBER_OF_PORTS} {incr i} {

Receiver r$i -id $i
Signal pkt_in$i
Signal pkt_out$i
connect s$i.pkt_out to pkt_in$i
connect r$i.pkt_in to pkt_out$i
connect r$i.CLK to clock3
connect pkt_switch.in$i to pkt_in$i
connect pkt_switch.out$i to pkt_out$i

}

We can also use the CIL to generate and process lists of
type-less signals such as:
set signal list fin1, in2, in3, out1, out2 g

and connected them through lists of type-less connections such
as:
set conx list ffa.in1 in1 g fa.clk clk g ... g

In other words, we wrote procedures in the CIL so that com-
ponents can “understand” how to connect toeach other, based
on compatible names or on connection templates, and gener-
ate the connection code. This shifted the usage of the CIL to
an abstraction where the focus is on the interconnections and
the structure instead of typing, similar to an ADL. By using
the typing abstraction, the complexity of the specifications was

simplified for several versions of each design, but it remains to
be investigated how this can be used on large designs.

VI. CONCLUSION

This paper addresses an important issue in component-based
microelectronic design environments, that is, how to simplify
strong typing requirements imposed by the C++-based model-
ing methodologies and yet maintain the efficiency of compiled
simulations. Our approach is to raise the abstraction by split-
level programming and automated type inferencing based on
the constraints on available specific libraries of components.
We have shown that in general this problem is NP-complete.
We have presented a heuristic and an implementation that al-
lows for determination of specific port types based on infer-
ences from the overall system architecture, component connec-
tivity or by propagating type information from object to object
along sub-typing relationships. While this formulation is use-
ful in component-based designs, it remains to be seen if it can
be adopted in practice by system designers who may be oblivi-
ous of the details of typing and how it interacts with the overall
design methodology. Our future work includes generalization
of the type parameter framework to include behavioral typing,
to see how compatible two different IPs are, and what is needed
to substitute one by the other.

VII. A CKNOWLEDGMENTS

The authors would like to acknowledge Jean-Pierre Talpin
and Cristiano Pereira for fruitful discussions about type sys-
tems.

REFERENCES

[1] L. Breslau, D. Estrin, K. Fall, J. Heidemann, A. Helmy,
P. Huang, S. McCanne, K. Varadhan, Y. Xu, and H. Yu. Ad-
vances in Network Simulation.IEEE Computer, May 2000.

[2] J. Buck and R. Vaidyanathan. Heterogeneous modeling and
simulation of embedded systems in el greco. InProc. Int. Work-
shop on Hardware/Software Codesign, 2000.

[3] W. Cesario, A. Baghdadi, L. Gauthier, D. Lyonnard, G. Nico-
lescu, Y. Paviot, S. Yoo, A. A. Jerraya, and M. Diaz-Nava.
Component-based design approach for multicore socs. InProc.
IEEE/ACM Design Automation Conf., 2002.

[4] P. Chen, D. A. Kirkpatrick, and K. Keutzer. Fast Integration of
EDA Tools and Scripting Language. InIEEE/DATC Electronic
Design Processes Workshop, 2001.

[5] CORBA website http://www.corba.org.
[6] F. Doucet, R. Gupta, M. Otsuka, P. Schaumont, and S. Shukla.

Interoperability as a Design Issue in C++ Based Modeling Envi-
ronments. InProc. Int. Symposium on System Synthesis, 2001.

[7] F. Doucet, S. Shukla, M. Otsuka, and R. Gupta. An Environ-
ment for Dynamic Component Composition for Efficient Co-
Design. InProc. Design Automation and Test in Europe Conf.,
2002.

[8] Ed Lee et al. The Ptolemy Project. Home Page:
http://ptolemy.eecs.berkeley.edu/.

[9] D. Gajski, J. Zhu, R. Domer, A. Gerstlauer, and S. Zhao.SpecC:
Specification Language and Methodology. Kluwer Academic
Publishers, 2000.

[10] M. R. Garey and D. S. Johnson.Computers and Intractability:
A Guide to the Theory of NP-Completeness. W. H. Freeman and
Company, 1979.

[11] D. Garlan, R. Allen, and J. Ockerbloom. Architectural Mis-
match: Why Reuse Is So Hard.IEEE Software, November
1995.

[12] E. A. Lee and Y. Xiong. System-Level Types for Component-
Based Design. InFirst International Workshop on Embedded
Software, volume 2211 ofLecture Notes in Computer Science.
Springer, October 2001.

[13] N. Medvidovic, P. Oreizy, J. E. Robbins, and R. N. Taylor. Us-
ing Object-Oriented Typing to Support Architectural Design in
the C2 Style. InProc. 4th ACM SIGSOFT Symp. on Founda-
tions of Software Engineering, 1996.

[14] N. Medvidovic and R. N. Taylor. A Classification and Com-
parison Framework for Software Architecture Description Lan-
guages.IEEE Trans. on Software Engineering, January 2000.

[15] NS: The Network Simulator home page:
http://www.isi.edu/nsnam/ns.

[16] J. K. Ousterhout. Scripting: Higher-Level Programming for the
21st Century.IEEE Computer, March 1998.

[17] B. C. Pierce.Types and Programming Languages. MIT Press,
2002.

[18] J. Rehof and T. Mogensen. Tractable Constraints in Finite
Semilattices. InThird International Static Analysis Symposium,
volume 1145 ofLecture Notes in Computer Science. Springer,
September 1996.

[19] V. Sinha, F. Doucet, C. Siska, R. Gupta, S. Liao, and A. Ghosh.
YAML: A Tool for Hardware Design Visualization and Capture.
In Proc. Int. Symposium on System Synthesis, 2000.

[20] Simplified wrapper and interface generator (SWIG) home page:
http://www.swig.org.

[21] SystemC. OSCI. Home page: http://www.systemc.org.
[22] H. Tomiyama, A. Halambi, P. Grun, N. Dutt, and A. Nicolau.

Architecture Description Languages for System-on-Chip De-
sign. In Asia Pacific Conference on Chip Design Language,
1999.

[23] Y. Xiong and E. A. Lee. An Extensible Type System for
Component-BasedDesign. InThe 6th International Conference
on Tools and Algorithms for the Construction and Analysis of
Systems, volume 1785 ofLecture Notes in Computer Science.
Springer, April 2000.

	Main
	ASP-DAC03
	Front Matter
	Table of Contents
	Author Index

