Typing Abstractions and Management in a Component Framework

Frederic J. Doucet Sandeep K. Shukla Rajesh K. Gupta
Center for Embedded Computer Systems Electrical and Computer Engineering Computer Science and Engineering
Univ. of California, Irvine Virginia Tech Univ. of California, San Diego
Irvine, CA 92612 USA Blacksburg, VA 24061 USA La Jolla, CA 92093 USA
e-mail: doucet@ics.uci.edu e-mail: shukla@vt.edu email: gupta@cs.ucsd.edu

Abstract— We consider the type inference problems in a com- The motivation for the BLBOA framework is to provide
positional design environment where the components are auto- an efficient and convenient component composition environ-
matically instantiated from pre-existing C++-based intellectual ment that requires minimal amounts of programming effort to
property (IP) libraries. We present a componentintegration lan- build architectural design models [7]. One of the ways B
guage based on scripting for design specification. Our focus is ar- BOA achieves this is by simplifying the typing requirements
chitectural aspects in specification that uses aggregation— as op- imposed on the system architect for the component models in
posed to the more commonly used inheritance— for composition an architecture. Often the designer would leave typing infor-
of components. Our approach simplifies architectural specifica- mation unspecified or partially specified. In this paper we show
tion by employing a type inference and type managementenviron- that the program of type inferencing is intractable. We then
ment. We show that the type inference problem is NP-complete. describe a heuristic to solve this problem by applying two type
We present a heuristic based on code generation and parameteri- inference rules.
zation to solve the type inference for IP selectionin our C++-based This paper is organized as follows. Section 2 reviews the re-
composition environment. We have implemented the composition lated work. Section 3 gives an overview of thelBoA com-
and type management in theBALBOA framework. The results ponent environment, described the languages, the architecture
show the utility of our approach. and the user model. Section 4 describes the type system and

the type inferencing in BLBOA, and section 5 describes the

implementation of the algorithm.
|. INTRODUCTION

Programming-based high-level modeling frameworks are I1. RELATED WORK
useful in exploration of complex system architectures. By
using programming language to build hardware-software co- System level and hardware specification languages are ac-
design frameworks, the burden on the hardware and embedda@ areas of research. Most approaches are looking to raise
system architects shifts from managing design complexity the level of abstraction above the RTL level into either the ar-
building architectures, platforms and applications. Both hardhitectural or the behavioral design spaces&MC [21] and
ware and software can be described in a compositional wePecC [9] are examples of approaches that are based on pro-
Hardware designs can be conceptualized as a combinationgphmming languages. There are also a number of component-
components connected through ports, via signals or channdiased approaches, notablypQr [3] which has shown pro-
Software components can be connected though similar cosuctivity improvements over RTL approaches, armbPEMY
nectors and also through object relations such as aggregatiaich is centered around interaction of models of computation.
composition and association [19]. C++ is an increasingly pop- The ProLEmY framework [8] provides a mathematically
ular choice of language for many such compositional framesound framework for component-based design using an actor
works [3] [2]. C++ is a strongly typed language and thereforparadigm. During the execution of a model, the actors interact
components have to be implemented using iat$ that are according to different models of computation (called domains).
type compatible. Ensuring such compatibility often results iDomain-specific directors resolve the domain-dependent in-
a significant programming effort that often gets in the way oferactions, and coordinate the communication between actors
system conceptualization. Further, conforming to a specific skbm multiple domains. PoLEMY uses an elaborate type sys-
of interfaces as a requirement for IP manipulation and integréem to statically resolve data types under specified constraints
tion can lower reuse, as the IP is made dependent on its contfd®] [23]. The static type checking inT®LEMY can deter-
of usage. mine the compatibility of a set of component interconnections.
PTOLEMY provides polymorphic actors, whose ports can have
*This work was supported in part by the Semiconductor Research Corpo;ﬁ)lymorphic types. The polymorphism of actors is based on a

tion under a Graduate Fellowship, the Fonds Quebecois de la Recherche syr la . . .
Nature et les Technologies under a Graduate Fellowship, the National Scien@SS|€ss type hierarchy that forms a lattice. Therefore, the static

Foundation, the UC Micro Program and Conexant. type resolution can be reduced to solution of horn-clauses [19],

and thus solved in linear time [23]. However, this requires thamterface definition language.
actors in the library to conform to the polymorphic actor de- Sometimes, script language can be categorized as architec-
sign principles. This means that types of actors and their potigre description languages, or maybe more appropriately mod-
need to be ordered in the type lattice structure in [23]. This igle interconnection languages. Like a script language, an ar-
enforced by requiring interface conformance from new actorshitecture description language (ADL) provides an abstraction
meaning that they need to use theEoREMY base classes. For of many tedious syntactical details of programming language
building system models, this requirement is a limitation whethat are independent of the nature of a system model and not
importing the legacy C++ components into the IP library. needed for composing a structure. In the software engineering
By contrast, in BLLBOA there are a few important differ- research, there are many ADLs [14] to solve typing mismatch
ences. BLBOA design Components are similar tod.EmY in architectures [11] and to perform model analysis. In the
actors since the type system has a similar static inference 8ystem-level design space, they are often focused on special-
data types of ports. However, thesB3oA does not explicitly ized tasks [22], and interoperability can be difficult to achieve
support multiple models of computation, as they are parantf] when the ADL abstracts only part of the underlying model-
eterized from the underlying libraries. Second, we are comg infrastructure. In BLBOA we use a component integration
strained by third party interfaces which may not map to ani@gnguage (CIL) which is similar in spirit to an ADL, but it is
systematic type lattice. This is becauseLBoA does not re- notinterpreted and not declarative.
quire components to inherit from a set of base irstest, but
rather use an interface description language to adapt the envi-
ronment to new components to bepéd in the library. Also,
the type resolution problem being addressed m.B0A is a : . :
more general problem to which fix-point computation over a The BdALIBOA. ﬁomp"”ﬁm enva)nment |s.useqr:]0 bu”?. syls-
semi-lattice can not be applied. In fact, as we show later, o f1 Moadels with an architectural perspective. The particular-

type determination turns out to be an NP-complete problerﬁy of the environment is the split-level model with type ab-

and lacks the property of having a “unique most specific types,tractlon a'nd mferenc.e. The environment implements a spllt-
solution. programming model like NS, but has more layers and an in-

))) . termediate language between the script language and the C++.
As said before, we can introduce new ing®s in B\L- Figyre 1 shows the layers in the environment. Languages are
BOA by using an interface description language. What enablgg, ¢ |eft side and the run-time structure on the right side.
the utilization of components with non-conforming interface in

BALBOA is a technique called split-programming. This tech-
nigue refers to system construction using a combination of a

I1l. THE BALBOA COMPONENTENVIRONMENT

scripting and a compiled language with a common class hi- CIL Interpreter
erarchy. In split-programming, class hierarchies are used in Introspection
two programming environments with hooks that enable their i

combined manipulation [1]. The NS (network simulator) [15] BIDL
uses a split-programming model built on scripting to create a BIDL ~ Compiler—> GCC — Split-Level
network simulation environment, with two layers of program- Interface

ming facilities: one for building network objects/components

with OBJECTTcL (OTcL), and the other for composing them
with C++. Scripting has been used for many years for soft-
ware component integration in CAD frameworks. Ousterhout - Compiled
argues that a script language interpreter for component inte- Gee Objects
gration is essential for API abstraction and reuse because it
reduces type dependencies [16]. Fig. 1. Layering in the B.LBOA environment: languages on the left side,

Script interfaces for C++ coponents can be generated us+un-time structure on the right side
ing a wrapper generator such as SWIG [4, 20]. However, there
are a number of limitations when it comes to typing. Type
parameterizations and subtyping strategies are not well con-The highest layer is the scripting layer. An architectural
sidered, there are no interpreted type construction facilitiestructure is assembled from components by using the compo-
Complex hierarchies are difficult to navigate and manipulat@ent integration language (CIL). At this level, the architect in-
And also, there is no clear separation between a component a@tantiates components, connects them, and inserts test benches,
its environment. Sometimes components are not only simphaonitors etc. We also call this layer the interpreted layer.
interfaces to classes, but they also have complex internal ar-The lowest layer is the component library layer. This layer
chitectures that separate the environment interactions from tbensists of IP libraries of C++ classes/objects. Theoretically,
behavior or meaning of the component [13]. In those casethis layer can accommodate C++ IP models in a wide range of
it is difficult to work with SWIG and other wrapper genera-libraries without affecting the implementation of the other two
tors. This is why we decided to define and use the ®B>A layers. We also call this layer the compiled layer.

Type info
export

The intermediate layer is the wrapper layer. The C++ olthe internal object and its modeling semantics. This imple-
jects from the compiled layer are contained and manipulatedents the introspection and the reflection, where structural
by split-level interbces (SLI). This layerannects and pro- information (which attributes and methods a component has)
vides the mechanism for manipulation of compiled objectsan be queried, like in the Java reflection packages. How-
from the scripting layer. The split-level interface dissociatesver, the type information also contains non-functional prop-
the modeling interface from the implementation interface. erties, as for example, system level characterizations such as

The split-level interface implements the reflection and th&unctional”, “behavior”, “structural”, “port”, “signal”, “mod-
introspection capabilities of the environment. The reflection isle” and “process” that are independent of the C++ interfaces.
the capability of the split-level interface of a compiled objecThese properties are specified (declared and mapped to C++
to explicitly captures the attributes, methods, and properties ofasses) through the BIDL, to be instrospected through the
the object. Introspection is the capability of the CIL languag€IL.
to query the reflected information of a component. This infor-
mation is described using theABBOA interface description
language (BIDL). This information describes the modeling se-
mantics of the component, and we use this as the “type” of the
component. The BIDL was first inspired by the CORBA IDL
[5], but it has been customized and extended for the require-The type abstraction means that an interpreted component
ments of system-level modeling. The BIDL compiler convertgan be shadowed by a number of compiled components. The
the components’ interface description (its type informationT++ library components are often implemented using tem-
into a format that the interpreter can understand. The BIDplates, and the ports of the components may carry different
is a little bit similar to the CPP preprocessadause it can concrete data types. For example we may have an adder which
be thought of expanding the type information, but what it acmay have various implementations in the library. It may have
tually does is to customize a split-level interface for the newwo input ports which may take floating point numbers as in-
component. put, and an output port for a floating point output, and another

In BALBOA, when we refer to a component, it means thgort of Boolean type to indicate overflow/underflow. Another
whole right side of Figure 1. In the CIL a component is amplementation of the adder may take 16 bit integers as input
OTcL object with methods and attributes, and this object iand produce 16 bit output and one Boolean output for the carry.
shadowed by a number of compiled C++ objects. Figure 2 \yhen puilding a system, often a designer may not want to
shows the internal architecture of aB30A component. make specific type choices for all its ports since that very much

depends upon the kind of component to which an instance

CIL Commands may be connected to. Using the CIL, the designer can declare

| a components in an architecture without specifying the input

types, or output types; or a designer might choose to explicitly

IV. TYPE RESOLUTION IN BALBOA

y Y specify the types. If the types are unspecified, but this adder
Split- Interpreted OTcl is then connected to a multiplier, whose input types are spec-
 level class with variables ified, the environment can infer the types of the adder ports,
interface and methods
7y and the system will then instantiate the appropriate component
from the library. This flexibility for designers to be oblivious
Type to C++ typing at the hardware design level is necessary for pro-
Adapter viding the system designer with a degree of flexibility, and for
Bridge automatic exploration of alternatives for best design with the
available components in the library.
"Type ntermal In BALBOA, the type information for each class of compo-
system compiled |, nents is abstracted in the BIDL. The component library de-
information object C++ Objects signer, while exporting the component interface into the BIDL,
Interactions must also specify what different types are available for the spe-
cific components. For example, in the case of an adder, the
Fig. 2. Internal architecture for a8 BoA component library designer must specify that the adder has been imple-

mented for float, 8, 16, 32 bit integers, single bits and so on.
Now, the introspection facility in BLBOA can let the environ-
The internal compiled object is a C++ object that can be ment and the architect know about such availability of different

SysTEMC object, or an object using any other library. Wetypes. But the designer may choose to let the system infer the
sometimes refer to the internal compiled object as the cormappropriate type as well. When the designer chooses to instan-
piled component. The split-level interface executes the contiate components without specifying the types éach port,
mands in the scope of the components and maintains the tygoed/or signal, we call it a component with a “partial type” be-
information, which is the meta information about the type otause it may still make sense at the CIL layer.

A. Split typing of a component d, then the type assignedd@pd to py, must

be exactly the same.

In the BALBOA environment, this partial type can also beTheorem The BALBOA type inference problem is NP-
viewed as “split type” because it is managedtigh the split- complete

Levell mterface(:j. A (I:to rp'ixonent Pgn .havle a ty;:efa t ﬂ:e 'nter‘t)rti'Proof: given a type assignment for all the ports, it is straight-

ve ?lye(;’la” | n?u I?he rpvc\)/ssr:j eflnr1p emrin ar:ozt %Elgfeais aﬁ)rward to verify from the type tables, that the assignments are
compried fevel. n other words, for a component, correct, and the ports connected via signals have the same type.
interpreted type, and a compiled type. In the adder exampl ence the problem is clearly in NP

at the interpreter level, all the ports of the adder are just “Por For the NP-completeness proof, we reduce the problem

e s B Onen-ee mnctone SSAT (0] o hesEion e
0 neighboring components, typ PfRterence problem. 3SAT is the following problem: given a set
cific C++ data types to the ports.

: . . .U of Boolean variables, and a collection of disjunctive clauses
In order to illustrate the algorithms for incremental type in-

. . h th h cl i isjunction of exactlig-3
ference, we use the following notation. LEtbe a set of all overU, such that each clause is a disjunction of exacty

te C++ data t 1Bt b t of ; 8 b erals, find if there is a truth assignment of the variabled jn
concrete ata types, € a set of porls ant be a .such that all the clauses are satisfied. One-in-three 3SAT is a

set of signals in the design created in the CIL. Ports and Si cial case of 3SAT problem, where the truth assignment of

. $he
nals are abstract types, and at the compiled component levﬂwas the restriction that ¥ andx; are two literals appearing

teya;c: i E(_)rrt tégghaggrflgrggzzlei;n::; (?cei:artgilp\?v?t?] tg o?a(t:grt];;r)%ﬁhe same clause, then both cannot be assigned the truth value
. B . Fi -in- AT has the furth
via mappingsgty, anddts, such thatdty : P — TU{L}, and of 1. Finally, the monotone One-in-three 3S as the further

dis:S— TU{L}. A portis untyped ifp € P : dip(p) = L, restriction that no negated literal appears in any clauses

. . . i i -in- AT}
and a signal is untyped ¢ S: di(S) = L, where L denotes Given an instance of monotone One-in-three 3SATefch

the fact that no concrete type has been specified or inferred y%lf.lusec’ which has three literals, X, x;;, one can cre-

. ; i 1
When the type inference is dort, anddts must not map any aé a tableTe, with exactly 3 rows{< 1,0,0>,<0,1,0>

element tal, and if that cannot be achieved thetype-inference< 0,0,1>}, and given the set of vector of variables an

. dXey 5 Xeps Xcg>, ONE has to assign one of the rows in talie
algorithm must detect and report that. with the restriction, that if the variable that appearsgsin

c, also appears asg; in another clausé, then the choice of
B. Components the rows fromT; and Ty must be such that the assigned truth
values are the same feg, andxg. This is a version of the

In the interpreted layer, (i.e. in the CIL) a componefiias BALBOA type inference problem, and hencaiBoa type in-

a set of ports denoted forts(c). If n is the number of ports ference problem is at least as hard as the monotone One-in-
for a component, they are denoted fy, Pc,., - - -, Pe,- IN the S
;, three 3SAT, which is known to be NP-complete [10l

compiled domain, the componegitmight be “polymorphic .
inits port types, and hence there may be various compiled ver-It can be shown that the type inference problem can be for-
sions ofc, such that the ports af might have different types Mulated as a constraint satisfaction problem such as a rela-
from T. The functiondt, has a limited choice in assigning tional constraint problem. TheA&BOA type inference can be
Pey; Py - - - 5 Pens tO the different compiled types. cast as a query evaluation in a relational database comprised of

One can view this as a choice of assignment to a vector 8fl the type availability tables in the type inference.
ports<pe,, Pc,, - - - » Pe,>, from one of the possible rows from a
type availability table of ordered roWlg C T x T x T x ---x T,
each row corrgmonding to a compiled version of In fact, the

author of the component library explicitly puts all the possible The type inference framework has three parts: the BIDL lan-
type combinations for componens instantiation hence the gage and the BIDL compiler, the run-time infrastructure that
tableT, through BIDL descriptions. Since signals are used teaptyres all the type information, and the heuristic that do the
link a port of one component to a port in another component, {fne management, propagation and inference for a design ar-
a signalsdoes not have a type specified by the designer, it calhjtecture. The BIDL compiler parses a component descrip-
also be assigned a concrete type from a set of types. Howen and searches for type parameterization relations (TPR),
a signals must be assigned the same type as the ports it\here types parameters are shared between two components.
connecting, hence, signals can be thought of as constraintsyifere are two cases of TPR: (a) through types of method argu-

the port assignment problem. _ ments (b) through types of the attributes of a component.
Definition TheBALBOA type inference problem: given a de-

sign with a set P of ports, and S of signals, and given the Tvpe P ation Relation th h Method
partition of P, into k disjoint sets (where k is the number o‘rq' ype Parameterization Reiation through Methods
components, and components do not share ports): For eachConsider the following BIDL listing where ainport

component ¢, with its posector<pe,, Pc,, - - - , Pe,>, 8SSIgN & component type with kind _to method is declared:
row from its type table I such that if there is a signals S,

which connects a portgin component ¢ to another por) Component Inport {

V. TYPE INFERENCEIMPLEMENTATION

PARAMETERS {type DATATYPE};

S TAB

void bind_to(const Signhal<DATATYPE>& sig); vector<TypeParamDecl> params_decl (| Typer fulltype
I vector<TypeParamDef> params_defs -
DEFINE_PARAMS {unsigned int} FOR Inport; YOr<ATIDUSTPR aprs v o)
DEFINE_PARAMS {bit_vector32} FOR Inport; map(\‘,’;“cf;’fﬁypg‘mm) o> TAB*> fa”t;nffap %

The partial type of the component lgport , with a TA,B* ; e]
DATATYPHype parameter. The last two lines of the listing de vaid_ Check AttributeTPRO
fine two implementations of the componeeach one specify- % ComponentCrrd
ing a type parameter value, one for an unsigned integer and ar """ TypeParameter Relation vector<MethodTPR> miprs
other one for a 32 bit vector. In this case, thport compo- P int paramindex1 void Check_MethodTPR(SLI)
nent is shadowed by a C++ class also nanmgubrt , whose int__paramindex2 void do_command()
instance is used for the internal object. Whenlaport ?
component is instantiated, the type param&&TATYPEs I
undefined, and the internal object not allocated until there is|a_AtribUuteTPR MethodTPR
valid mapping. string_attributeName string methodName

In this listing, the BIDL compiler finds one type parame- int___parameterNumber

terization relationship between the argumsigt of method _
Fig. 3. Type parameterization framework: the split-level interface (SLI)

bind to and thelnport component, sharing parametercontains the type parameterization relationship by compositioou¢ir
DATATYPEWhen thebind _to method is called on ainport ,ipytes) and the commands contain the type parameterization relations

component, the run-time environment can inspect the full typgrough methods. Classes in gray are extension generated by the BIDL
of sig parameter for the value @ATATYPEIf it is defined, compiler when adding new componenttypes.

it can be propagated from tke@y parameter to the inport com-

ponent, or vice-versa.

figure. The first and most important one is 8Bkl class that
implements the split-level inteate. The BIDL compiler do
Consider the following BIDL listing where Buffer com- specialize this class by inheritance into a class specific for a
ponent type is defined, which has two partsandout : new component. A specialized class contains the information
about type parameters declarations, and at run-time about de-
fined type parameters for an instance of the component. It also
contains a vector of attribute type parameter relateipss
for parameters shared in composition. There are two methods

B. Type Parameterization Relation through Composition

Component Buffer {
PARAMETERS {type DATATYPE};

Inport<DATATYPE> in;

Outport<DATATYPE> out: to chgck the parameterizat'ion relations, we will explain them
Y later in the inference description subsection.
DEFINE_PARAMS {unsigned int} FOR Buffer; The second class that gets extended by the BIDL compiler
DEFINE_PARAMS {bit_vector32} FOR Buffer, is the Type Adapter BridgeT@AB) class. This class manip-

. .) : Iula'[es the exact type of the C++. Only the TAB knows the

This .componer]:t IS aIsp pargmetenzed, and rflas t\g’%.'mp Ef)ecific type and it is the only access to the compiled internal
mentart1|ons, one tor ﬂns'?ngd integer and one or.3 . It Vegbject. The type availability table is implemented through a
tor'. T € B”.:)L comprier finds tW(.) type pa@rametenzaﬂon "table of TABs, and it is indexed by the type parameter defini-
Igtlonsh|ps in the listing. The first one is between the att"lon vectorSLI::params _defs . A specific TABs is derived
tribute (or sub-componenth and theBuffer ~ component , yhe BIDL compiler for every available C++ class usable
where they share the paramet@ATATYPE and the secon_d as the internal object. When all parameters are defined, the
one is between the attribubeit and the component also with . - . ats vector is set and it can index the TAB map to

DATATYPEType parameter definitions ca.n'be propagated d the specific TAB for the exact C++ type match.
theBuffer component along the composition relation when o .
the type parameter of a sub-componientor out is defined, The third important class @ompqnentCmq that execut.es.
or Vice-versa. a command on a component. This class is also specahzed
by the BIDL compiler to implement method calls to the in-
i ternal object (such as a call to tiénd _to method of the
C. Run-Time Structure Inport class). TheComponentCmd class contains the type
Figure 3 shows the simplified class diagram for the run-tim@arameterization relations between command parameters and
environment, in regards to the typing framework. There are i€ component.
classes in the figure and three of them are used as base class€snally, note that type parameter relations are tuples
for extensions generated by the BIDL when adding new confindexL, indexX2) of shared type parameter indexes in the type
ponent to libraries. Those classes are in gray boxes on tteclaration vectors of two components.

D. Run-Time Type Inference Heuristic

The run-time type inference has two tasks: verify if types

are compatible when connections are set and propagate param-
eters along type parameterization relations. A type paramet&in_cmd (componentemd):
can be set by an inference along a relation, but it can also beeckMethodTPR ¢omponentcmd)
constrained by the user of the system. The run-time infrastrugcomponents allocated and all argumentsahdare allocated
ture also has the task of allocating the internal object when gJ| _ €*ecuteomponent: cmd

Ise
type parameters are valid and have a single match in the type gelayedcmds= delayedcmdsJ cmd
availability table. If the types are unknown or incompatibleendif
the infrastructure can delay the allocation of the internal object _
to some other time in the future. In any case, if the type pq%?z‘flkifg:heoﬁgggngt%ﬁgponemcmd)'
rameters of a component are not all defined, the execution of propagataype Param¢omponent
a command on that component has to be delayed. This is be- mtprparamindes,

cause the full type of the compiled object is unknown; hence cmd param¢mt prparameterNumbdy
mtprparamindeg)

we cannot allocate it and invoke its l?ehavior. . Propagatélype Paramémd param$mt pr parameterNumbéy
There are two ways to do the type inference: do it once when mtstparamindeg,

the architectural topology is fully specified (on an elaboration component

phase), or do it progressively as the topology is specified (like mtstparaminded)

in ML [17] by progressively applying type reduction rules). In"" "

this case, parameters can be defined multiple times for a cogheck AttributeTPR (component
ponent; therefore commands have to be delayed until the sitg: allatpr € (componengtprs)
types definitions vector is committed. Note that establishing a Pr°pagatgyp‘;tpfra;‘gfnrlnn’ferf”t
connection is a command. There are two policies for the allo- atgrzgmibute,\,an;e
cation of the internal object of the component. The run-time atpr.paramindeg)
inference engine can be opportunistic and do the allocation as Propagatdlype ParamétprattributeName
soon as it is possible— when the type parameter definition vec- z‘gﬁ;gg;‘aergt'”deg’
tor is defined and there is a type allocation table match. The atpr.paramindeg)
environment can also be lazy and wait until the user of the sysad for
tem issues a command to allocate the objects. The system will _ _
then do the allocation, but it will not run the delayed commanqgr&%?ﬁ]zgiﬁzggﬂ éﬁ%mgggﬁg’fiﬁ%wmponem’ index2)
until the user also instructs the system to do so. (componert.paramde f$indext] == L OR
The heuristic for type inference is presented in figure 4. CONTINUOUSPROPAGAT IONPOLICY))
When a command is invoked on a component, like con- componertparamdefgindex] «
necting a component to a signal, tRun_Cmd procedure Che‘f,?,:’;ﬂ%ﬂf;‘;,ﬁ’;gffefi'”de”]
X . ; ponert)
will verify the type parameter relation between the comendif
ponent and the command arguments. If all internal olf(OPPORTUNISTIANTERNALOBJALLOCAT IONAND
jects are allocated, the command can be executed, else ifa'l:bfnogg’[’coonnfgglﬁgﬁiﬁiﬂi];ﬁ'\;D
will be delayed. The architect can use tRen_.Cmd and allocate internal object afomponert
Run_Delayed_Cmd_For_Component procedures to propa- end if
gate type parameters between components. The latter re-rifgNTINUOUSPROPAGAT IONPOLICY
commands that were delayed becausaindefined parame- __, i?“rLDe'ayedcmdSFor‘Ob‘ (componertt)
ters and delayed allocations. Procedu@éeck_MethodTPR
andCheck_AttributeTPR respectively check for type param- Run_DelayedCmd-For_Component(component
eterization through methods and compositions. The methd all delayedcmde delayedcmds
propagation procedure will propagate from arguments to com- ﬂf’%‘gﬂoitzgg?”sgggggﬁnﬁ2%’:Jergirrlngm dare allocated
ponent, and then the other way around. The composition prop- executeomponent: cmdand remove from setelayedcmds
agation procedure will propagate the parameters “downwards” endif
and then “upwards” in the hierarchy. end for
The Propagate_Type_Param procedure is recursive be-
cause it will always check for composition relations which can
require more propagation. It also calls the procedure to rufiig. 4. Type inference and management heuristics for thee®A run-time
the delayed commands for a component to propagate abﬂyironment: type parametrization relationships are checked and propagated
connections. This procedure is static in the run-time enviroff2 019" method parameters or through attribute coitipas
ment. The method propagation procedure is implemented in
the ComponentCmd class of figure 3, and the composition

propagation is implemented in the scopesaf .

E. Results simplified for several versions of each design, but it remains to

L , . be investigated how this can be used on large designs.
The heuristic is implemented in theaABBOA run-time en-

vironment, and used in four designs examples. The first one

is a behavioral state machine that is refined to RTL FSMDs, VI. CONCLUSION

the second one is a simple packet switch that is connected to

multiple receivers, the third one is a FIR filteomnected to a This paper addresses an importantissue in component-based

source and a display, and the last one for a memory hierarchcroelectronic design environments, that is, how to simplify

research platform called AMRM. strong typing requirements imposed by the C++-based model-
In the state machine and FIR example, the CIL was usé@d methodologies and yet maintain the efficiency of compiled

just to select the right data type of the IP from the library. Th&imulations. Our approach is to raise the abstraction by split-

environment does the type inference, select a component frd@yel programming and automated type inferencing based on

the IP library that matches the type constraints, and does tH constraints on available specific libraries of components.

allocation and binds the connections. In the packet switch e}¥e have shown that in general this problem is NP-complete.

ample, the CIL can be used to build an architecture because € have presented a heuristic and an implementation that al-

design has a regular structure as shown on figure 5. lows for determination of specific port types based on infer-
ences from the overall system architecture, component connec-

tivity or by propagating type information from object to object
along sub-typing relationships. While this formulation is use-
G s = ful in component-based designs, it remains to be seen if it can
i ! be adopted in practice by system designers who may be oblivi-
N ous of the details of typing and how it interacts with the overall
design methodology. Our future work includes generalization
of the type parameter framework to include behavioral typing,
s i to see how compatible two different IPs are, and what is needed
' to substitute one by the other.

clockl

Fig. 5. Packet switch example with a regular structure.
VIlI. ACKNOWLEDGMENTS

The following CIL segment shows how the topology on the The authors would like to acknowledge Jean-Pierre Talpin
figure can be built: and Cristiano Pereira for fruitful discussions about type sys-

tems.
Pkt_Switch pkt_switch

connect pkt_switch.CLK to clock2

for {set i 0} {$i<$NUMBER_OF_PORTS} {incr i} { REFERENCES
Receiver r$i -id $i
Signal pkt_in$i [1] L. Breslau, D. Estrin, K. Fall, J. Heidemann, A. Helmy,
Signal pkt_out$i P. Huang, S. McCanne, K. Varadhan, Y. Xu, and H. Yu. Ad-
connect s$i.pkt_out to pkt_in$i vances in Network SimulatiodEEE ComputerMay 2000.
connect r$i.pkt_in to pkt_out$i [2] J. Buck and R. Vaidyanathan. Heterogeneous modeling and
connect r$i.CLK to clock3 simulation of embedded systems in el greca?toc. Int. Work-
connect pkt_switch.in$i to pkt_in$i shop on Hardware/Software Codesj@d00.
connect pkt_switch.out$i to pkt_out$i [3] W. Cesario, A. Baghdadi, L. Gauthier, D. Lyonnard, G. Nico-

} lescu, Y. Paviot, S. Yoo, A. A. Jerraya, and M. Diaz-Nava.

Component-based design approach foftimare socs. IrProc.
We can also use the CIL to generate and process lists of IEEE/ACM Design Automation Con2002.

type-less signals such as: [4] P.Chen, D. A. Kirkpatrick, and K. Keutzer. Fast Integration of
set signal _list {inl, in2, in3, outl, out2 } EDA Tools and Scripting Language. IEEE/DATC Electronic
and connected them through lists of type-less connections such Design Processes Worksh@®01.

as: [5] CORBA website http://www.corba.org.

set conx _list {{ainl inl } {ack ck 1} .. } [6] F. Doucet, R. Gupta, M. Otsuka, P. Schaumont, and S. Shukla.

: _Interoperability as a Design Issue in C++ Based Modeling Envi-
In other words, we wrote procedures in the CIL so that com ronments. IProc. Int. Symposium on System Synth@§e1.

ponents can “understand” how to connece&th other, based 7] F. Doucet, S. Shukla, M. Otsuka, and R. Gupta. An Environ-
on compatible names or on connection templates, and geneL ment for bynamic Cémponent C'Omp-ﬁm for Efficient Co-
ate the connection code. This shifted the usage of the CIL to pegjgn. InProc. Design Automation and Test in Europe Conf.
an abstraction where the focus is on the interconnections and 2g02.

the structure instead of typing, similar to an ADL. By using [8] Ed Lee et al. The Ptolemy Project. Home Page:
the typing abstraction, the complexity of the specificationswas http://ptolemyeecs.berkeley.edu/.

[9] D.Gajski, J. Zhu, R. Domer, A. Gerstlauer, and S. ZityecC:
Specification Language and Methodologgluwer Academic
Publishers, 2000.

[10] M. R. Garey and D. S. Johnso@omputers and Intractability:

A Guide to the Theory of NP-CompletenédsH. Freeman and
Company, 1979.

[11] D. Garlan, R. Allen, and J. Ockerbloom. Architectural Mis-
match: Why Reuse Is So HardlIEEE Software November
1995.

[12] E. A. Lee and Y. Xiong. System-Level Types for Component-
Based Design. IiFirst International Workshop on Embedded
Software volume 2211 oL ecture Notes in Computer Science
Springer, October 2001.

[13] N. Medvidovic, P. Oreizy, J. E. Robbins, and R. N. Taylor. Us-
ing Object-Oriented Typing to Support Architectural Design in
the C2 Style. InProc. 4th ACM SIGSOFT Symp. on Founda-
tions of Software Engineerin@996.

[14] N. Medvidovic and R. N. Taylor. A Classification and Com-
parison Framework for Software Architecture Description Lan-
guagesl|EEE Trans. on Software Engineerintanuary 2000.

[15] NS: The Network Simulator home page:
http://www.isi.edu/nsnam/ns.

[16] J.K. Qusterhout. Scripting: Higher-Level Programming for the
21st CenturylEEE ComputerMarch 1998.

[17] B. C. Pierce.Types and Programming LanguagégIT Press,
2002.

[18] J. Rehof and T. Mogensen. Tractable Constraints in Finite
Semiilattices. IMhird International Static Analysis Symposium
volume 1145 ol ecture Notes in Computer Scien&pringer,
September 1996.

[19] V. Sinha, F. Doucet, C. Siska, R. Gupta, S. Liao, and A. Ghosh.
YAML: A Tool for Hardware Design Visualization and Capture.
In Proc. Int. Symposium on System Synth@§i60.

[20] Simplified wrapper and interface generator (SWIG) home page:
http://www.swig.org.

[21] SystemC. OSCI. Home page: http://www.systemc.org.

[22] H. Tomiyama, A. Halambi, P. Grun, N. Dutt, and A. Nicolau.
Architecture Description Languages for System-on-Chip De-
sign. In Asia Pacific Conference on Chip Design Language
1999.

[23] Y. Xiong and E. A. Lee. An Extensible Type System for
Component-Based Design. Tine 6th International Conference
on Tools and Algorithms for the Construction and Analysis of
Systemsvolume 1785 olecture Notes in Computer Science
Springer, April 2000.

	Main
	ASP-DAC03
	Front Matter
	Table of Contents
	Author Index

