
A Symbolic Approach for the Combined Solution of
Scheduling and Allocation

Gianpiero Cabodi† Mihai LazarescuÆ Luciano Lavagno‡

Sergio Nocco† Claudio Passerone‡ Stefano Quer†

†Politecnico di Torino
Dip. di Automatica e Informatica

Turin, ITALY

‡ Politecnico di Torino
Dip. di Elettronica

Turin, ITALY

ÆCadence Design Systems, Inc.
Turin, ITALY

ABSTRACT
Scheduling is widely recognized as a very important step in high-
level synthesis. Nevertheless, it is usually done without taking into
account the effects on the actual hardware implementation.

This paper presents an efficient symbolic technique to concur-
rently integrate operation scheduling and resource allocation. The
technique inherits all the features of “standard” BDD-based con-
trol dominated scheduling, including resource-constraining, spec-
ulation and pruning. In addition, it introduces an efficient way of
encoding allocation information within a symbolic scheduling au-
tomaton with a two-folded target. Firstly, it finds a minimum cost
allocation of operation resources satisfying a given schedule. Sec-
ondly, it optimizes the amount of registers required to store inter-
mediate results of operations.

Theory and algorithms are developed and presented. Experimen-
tal results on a well known set of benchmarks show the potentiality
of the approach.

Categories and Subject Descriptors
B.6.3 [Logic Design]: Design Aids — Automatic synthesis

General Terms
Algorithms, design

Keywords
High-level synthesis, scheduling, allocation, BDD, automata

1. INTRODUCTION
Embedded systems are often specified at a very abstract level and

are successively refined toward an implementation, which is parti-
tioned into hardware and software. To be able to rapidly explore a
large design space it is desirable to have an automatic tool to gener-
ate a prototype implementation from a high level specification. In
this paper we address the problem of synthesizing custom hardware
for embedded systems and we thus developed a high level synthesis
tool that we use in our hardware/software codesign framework [1].

Permission to make digital or hard copies of all or part of this work for
personal or classroom use is granted without fee provided that copies are
not made or distributed for profit or commercial advantage and that copies
bear this notice and the full citation on the first page. To copy otherwise, to
republish, to post on servers or to redistribute to lists, requires prior specific
permission and/or a fee.
ISSS’02, October 2–4, 2002, Kyoto, Japan.
Copyright 2002 ACM 1-58113-576-9/02/0010 ...$5.00.

Synthesis of efficient and high performance control units and
data paths from high-level behavioral specifications has long been
considered a very promising technique for tackling the ever grow-
ing complexity of digital design. At the same time, it is a very
elusive goal, because after more than twenty years of intensive re-
search, and even the appearance on the market of some industrial
CAD tools, high-level synthesis is still far from being widely used
as its predecessors, register-transfer level and logic synthesis.

The systems that we are targeting are often a mix of data and
control. However, many HLS tools use Control Data Flow Graphs
(CDFGs) as their internal model and do not model well constraints
coming from input/output operations with the external world (e.g.,
synchronization, min/max rate, jitter, etc.) and often mostly data
dependencies are handled, while control is either ignored or han-
dled by complete case splitting1.

Although we use CDFGs as the input specification for our tool,
we extend the model introduced by [3], which is at the same time
formal (based on concurrent automata), efficient (it is possible to
use symbolic representation techniques with enhancements derived
from concurrent specification models), control-oriented (condition
evaluation and speculative execution are specific features of [3]),
and flexible (I/O constraints can be represented by restrictions on
the automata state space).

Traditionally, the high-level synthesis problem has been split into
a sequence of steps in order to make it manageable:

� Allocation chooses the type and number of functional units and
registers, and thus determines part of the final cost (the intercon-
nection cost still has to be identified) and performance (the clock
cycle is affected by this stage).

� Scheduling assigns time slots (often clock cycles) to I/O, arith-
metic and logical operations of the CDFG, and thus determines
part of the final performance (the clock cycle still has to be de-
fined).

� Binding assigns a functional unit to each operation, a register
to each value that must be preserved across clock cycles, and
enough multiplexers or busses to implement all required data
transfers (this step further affects the cost and clock cycle).

This separation comes at a cost in terms of optimality. As a con-
sequence, several approaches have tried to combine two or all the
three steps in just one phase. However, since any of these problems
is NP-complete by itself, the combination generally requires the
use of efficient heuristics, that may thus forfeit expected improve-
ments with respect to better and more complex algorithms applied
in succession.

1Only recently approaches such as [8] that specifically address
control-intensive CDFGs have been introduced.

237

In this paper we also address this issue, by combining the sche-
duling and allocation steps together, while keeping an implicit rep-
resentation of the complete solution space (as [3] does but dealing
with scheduling alone). The designer must still explore the design
space by defining the acceptable maximum numbers of functional
units and registers. We believe that this data path architecture defi-
nition is too critical to be left to a tool, and we provide the designer
with a quick feedback on the effect of his decisions.

As [3] we represent implicitly the full solution space by means
of the state space of a product of automata, and we represent re-
source (allocation) constraints by reducing the concurrency of the
automata. Our contribution is the introduction of an encoding mo-
del for the allocation information, that allows us to take into ac-
count also estimated clock cycle length, in addition to functional
unit costs and number of clock cycles.

Once the set of valid schedules is symbolically computed, the
extra information we encode allows us to find a schedule with best
allocation cost, whereas in [3] a schedule is only checked to fit
within the given resource bounds.

2. BACKGROUND

2.1 High-Level Synthesis Methodologies
Historically two basic approaches have been used for scheduling

and binding: Heuristics algorithms and Integer Linear Program-
ming. On the one hand, priority-based heuristic methods (e.g.,
[10]) can accommodate a variety of data-dominated and control-
dominated behaviors, quickly finding good solutions for large prob-
lems. They can also take into consideration some loose binding
information. On the other hand, they may fail to find an optimal
solution in tightly constrained problems, where early pruning de-
cisions may exclude candidates eventually leading to superior so-
lutions. Integer Linear Programming methods (e.g., [7]) can solve
scheduling exactly. However, the ILP complexity significantly in-
creases by considering control constraints (if-then-else and loops)
and binding information, and thus can lead to unacceptable execu-
tion times. Moreover, they consider only one solution at a time,
and hence are not particularly suitable for interactive synthesis.

2.2 Symbolic Scheduling
More recently [2, 3, 4, 11] symbolic methods have been proved

effective in finding exact solutions in highly constrained problem
formulations. In these formulations scheduling constraints are rep-
resented as Boolean functions, and all solutions are implicitly enu-
merated. Post-process pruning can be used to apply additional con-
straints which may not have efficient formulation to be considered
within the previous approaches. Moreover, symbolic methods yield
a very efficient formulation of control dependencies and environ-
mental timing constraints.

In [11], the authors propose a symbolic formulation that allows
speculative operation execution and exact resource-constrained sche-
duling. In [2, 3], the authors improved the previous method by
proposing a new efficient encoding to reduce execution time. This
encoding only indicates “whether or not” and not “when” an oper-
ation has been scheduled. Finally, [4] handles loops in Data Flow
Graph (DFGs).

Their scheduling technique (as well as ours) assumes an input in
the form of a CDFG. A CDFG is a directed acyclic graph2 describ-
ing both data-flow and control dependencies between the opera-
tions. Operation nodes are atomic actions potentially requiring the
use of hardware resources for one or more clock cycles. Directed

2We currently model cycles by arbitrarily breaking them and im-
posing the same binding to data dependencies that have been cut.
A better formulation, considering also inter-iteration optimization
such as unrolling and pipelining [8], is left to future work.

arcs establish a link between each operation and the predecessors
that produce data required by it. A source and a sink are added be-
fore every operation without predecessors and after every operation
without successors. Conditional behavior is specified by means of
fork and join nodes, and directed arcs also establish a link between
the operation evaluating the condition and the related fork/join pair.
Operations that are neither connected by a directed path, nor mutu-
ally exclusive due to a preceding fork node, are concurrent3.

EXAMPLE 1. Figure 1 shows an example of CDFG. In particu-
lar Figure 1(a) shows the pseudo-code for a conditional statement
and Figure 1(b) the relative CDFG.

else

if (x>0)
 y = x + 1

 y = x − 1

T F

y

x

>

CDFG source

op2 op3

CDFG sink

op1

Fork

Join

Data Dependency

Control Dependency

−+

(a)

(b)

Figure 1: An example of CDFG.

2.3 Scheduling Automata
A scheduling problem can be represented by an automaton, de-

fined by the four-tuple (V;δ;Si;S f), where V is the finite, non-
empty set of states, δ : V ! V 0 is the next-state function, and Si
and Sf are respectively the sets of initial and final states.

Each operation i in the CDFG (excluding fork and join oper-
ations) is modeled by a two-state automaton, as shown in Fig-
ure 2(a). State 0 means that the result of the operation is not avail-
able, while state 1 means that it is available.

0 1

0 0 1 1

0 1
0 01 1

0 0 1 1

0 1

0 0

0 1

1 1

...
(a)

x x
(b)

Figure 2: Scheduling automata.

This formulation allows standard symbolic reachability analy-
sis techniques to be employed to determine the exact valid sets of
schedules. Present states are described by a vector of p variables,
while a vector of n variables is used for next states. The character-
istic function of a set of states S � V is expressed as χS(p). With
a slight abuse of notation, in the rest of this paper we make no dis-
tinction among a set of states, its characteristic function, and its
BDD representation. As a consequence, we will thus use S(p) to
represent the corresponding characteristic function χS(p).

The transition relation of the i-th operation is encoded with ex-
actly two Boolean variables (pi and ni), as follows:

� pi = 0) ni = 0: operation i has not been scheduled previously
and will not be scheduled in the next cycle.

� pi = 0) ni = 1: operation i has not been scheduled previously
and will be scheduled in the next cycle.

� pi = 1) ni = 0: operation i has been scheduled previously but
the result will no longer be available in the next cycle (because
the register holding it has been re-used); this is forbidden in [3],

3The same model, if the sink is connected back to the source,
can also be viewed as a safe Petri Net. In this paper we use the
automata-based notation for consistency with [11].

238

as well as in our solution, in order to reduce the BDD represen-
tation for the sake of efficiency. As a consequence a register can-
not be re-used within a scheduling trace. Notice that, however,
this possibility is already analyzed in [2], and the methodology
is easily applicable to our case.

� pi = 1) ni = 1: operation i has been scheduled previously and
the result remains available.

The complete scheduling is the Cartesian product of the automata
(Figure 2(b)), restricted by several constraints. We briefly summa-
rize here dependency and resource constraints, since they will be
used in the sequel:

� Data dependencies impose an ordering on operation execution;
the automaton modeling an operation is allowed to make the 0)
1 transition only after all those producing values for it have made
the same transition, i.e., it is illegal to schedule an operation with
a predecessor that has not yet been scheduled:

pin j is illegal for all i! j data dependencies

� Resource constraints limit the number of automata that can make
the 0) 1 at a given clock cycle. Given a resource set with l
resources of a given kind (e.g., multipliers) available, and the
set ρ of operations competing for such a resource, it is illegal to
schedule more than l operations from ρ in a single cycle.

(pini � : : : � pknk) with fi::kg 2 ρ is illegal if jfi::kgj > l

Let S0(p) be the initial state of the scheduling product automaton,
in which no operation has been scheduled. The set of reachable
states on the i-th clock cycle may be computed from the starting
point by a standard iterative image computation:

Si(n) = Img(δ;Si�1) = 9p[Si�1(p) �δ(p;n)] (1)

Valid schedules are represented by state paths that reach a final set
of states in which terminal operations have been scheduled, with
some additional validity criteria (that will be described more for-
mally in Section 3).

Speculative execution may allow some operations after a fork
and before a join to be scheduled before the condition evaluation
has been scheduled. However, the condition must be scheduled
before the join operation may occur. Moreover, for each possible
combination of condition results, all the corresponding operations
must be executed in order to complete the schedule.

3. COMBINING SCHEDULING AND ALLO-
CATION

The method of [3] can find all the minimum latency schedules
with given resource limits. All allowed schedules are implicitly
represented in terms of BDDs as a result of a symbolic traversal
process. Nevertheless, the proposed technique is not able to seek
for optimal allocations within the bounds.

Our method follows [3] to find a symbolic representation of all
minimal latency schedules allowed by a given set of resources. Fur-
thermore, each schedule is (symbolically) associated with all valid
subsets of allocated resources, so that the combined space can be
explored for best allocation purposes. This is achieved by encoding
all possible allocations of resources within the given limits. The ex-
tra information keeps track of allocations within schedule automa-
ton traversal, and it is finally used to select a schedule with optimal
allocation (possibly using less resources than provided by bounds)
for a given latency.

Our approach considers the information whether the output of a
scheduled operation is used immediately or later, implying a reg-
ister in the latter case. A register is required whenever an inter-
mediate result is produced and used in different cycles. A direct

connection, without register, is allowed between predecessor and a
successor in the CDFG, provided that the two operations are exe-
cuted in the same cycle and their combined delays are lower than
a specified upper bound. We model this constraint as an additional
pruning constraint for the transitions in the product automaton.

The designer provides the input CDFG, as well as a set of func-
tional units that can implement the CDFG operations, and a bound
on the maximum number of registers. Each operation, e.g., an addi-
tion, may be implemented by several chosen functional units, e.g.,
an ADD/SUB or an ALU, with different delay, area and power.

EXAMPLE 2. Let us suppose to have the pseudo-code of Fig-
ure 3(a), and the corresponding DFG of Figure 3(b). Several sche-
duling solutions can be found for it, depending on the type and
number of operation resources allocated, and on the choice regard-
ing the position of the registers.

v1 = a+b

v2 = b+ c

v3 = c+d

v4 = v1 � v2

v5 = v4� v3

(a)

1v v v

v

v

2 3

4

5

-

*

+ + +

c dba

(b)

Figure 3: Pseudo-code and corresponding DFG.

Figure 4 and Table 1 show some of the possible scheduling in-
stances, with different combinational resource and register alloca-
tions. In particular, solutions (a) to (d) allocate exactly one register
for each combinational operation, whereas solutions (e) and (f) al-
low combinational propagation of data thus requiring less registers
and cycles (traded off by a possibly longer cycle time).

+
+*

+

−

a c db

(a)

+ +
+*

−

a c db

(b)

Alu

Alu

Alu

Alu

Alu

a c db

(c)

+
+

Alu

Alu

Alu

a c db

(d)

+Alu

Alu +
Alu

a c db

(e)

+Alu

Alu +

a c db

−

(f)

Figure 4: Scheduling solutions for the proposed DFG.

As far as resources type is concerned, we consider combina-
tional multipliers and ALUs with the multiply operation. Each row
of Figure 4 is executed in a different cycle. Registers are allocated
on edges connecting different rows.

Our approach targets both combinational resource and register
minimization. In particular, we keep track of every possible allo-
cation of combinational resources while symbolically computing a
set of schedules. This allows us to be able to finally select the best
allocation, given a table of resource costs (e.g., in terms of area
or power). Regarding registers allocation, we accept as constraints
the maximum number of register available and the upper bound on
combinational propagation delay. We compute, if there exists one,

239

Figure 4 # Resources # Cycles # Registers
ALU + � �

(a) 0 1 1 1 4 5
(b) 0 2 1 1 3 5
(c) 1 0 0 0 5 5
(d) 1 1 0 0 3 5
(e) 2 1 0 0 2 2
(f) 1 1 1 0 2 3

Table 1: Resource allocation and latency for the DFG analyzed.

a schedule compatible with the above bounds, which allows register
sharing among operations on mutually exclusive schedule traces.

3.1 Accounting for allocation of combinational
resources

The first part of our contribution concerns optimal allocation of
resources4.

We extend the model of [3] by symbolically encoding the extra
information required by the allocation process.

In particular, let S 2V be a state of the schedule automaton, de-
scribed by its characteristic function S(p). We can associate to it
the number of resources allocated for any given resource class Rc,
where c 2 1::NR is the index of the class and NR is the number of
resource classes.

Let us call allocation instance a set of allocated resources, di-
vided in classes. For example, a = (jR1j = 1; jR2j = 2; jR3j = 2)
is an allocation instance (1 resource is allocated for class R1, 2
resources each are allocated for classes R2 and R3). A schedule so-
lution is compatible with an allocation instance if (due to resource
sharing across different cycles) each cycle of the schedule requires
at most all the resources in the instance. Let A be the space of all
allocation instances. We introduce a set of additional integer vari-

ables5 pR =
n

pR1 ; pR2 ; : : : ; pRNR

o
, describing the A space. A point

in the A space is an allocation instance. A subspace is a set of allo-
cation instances. We are able to express a state in the V �A space
with the set SR(p; pR), such that we have a state for any possible
instance of allocated resources (see Figure 5).

0 0...0 1 1 1

|Rc| = 1 |Rc| = 1 |Rc| = 2 |Rc| = 2 |Rc| = n |Rc| = n

0 0 1 1

0 1

0 0 1 1

0 1

0 0

0 1

1 1

Figure 5: Scheduling automaton with allocation instances.

EXAMPLE 3. Let us consider 3 resource classes R1;R2; and
R3. A scheduler state S(p) with an allocation instance a = (jR1j=
1; jR2j= 2; jR3j= 2), is represented by:

SR;a(p; pR1 ; pR2 ; pR3) = S(p) � (pR1 = 1) � (pR2 = 2) � (pR3 = 2)

whereas the same scheduler state combined with a set of allocation
instances b = (jR1j= 1; jR2j � 2; jR3j � 2), is expressed as:

SR;b(p; pR1 ; pR2 ; pR3) = S(p) � (pR1 = 1) � (pR2 � 2) � (pR3 � 2)

Given the pR variables and an upper bound jRcjMAX for the re-
sources of the Rc class, the initial state set of the schedule automa-
ton is:

si;R(p; pR) = si(p) � ∏
c21::NR

(pRc � jRcjMAX)

4For sake of simplicity we only consider here combinational re-
sources or sequential resources operating in one cycle. But our
method supports also multiple cycle operations, as described in [3].
5Our BDD-based implementation uses a Boolean encoding of in-
teger variables.

where each original state in V is augmented with all legal allocation
instances.

Each element of the set expresses a possible allocation within
the bounds. The target of our scheduler is to find a schedule with
lowest resource cost within a given bound on the number of clock
cycles.

By also introducing a set of nR variables describing the next state
space, the transition relation δ is extended to δR:

δR(p; pR) = δ(p) � ∏
c21::NR

(pRc = nR)

where the additional product terms captures the fact that the set
of resources allocated is kept constant (albeit underused in some
cycles or clock cycles).

A schedule may or may not be compatible with an allocation
instance, i.e., with a given amount of available resources. For in-
stance, given the set ρc of operations that can be executed by the re-
sources of class Rc, scheduling in one cycle a subset fi::kg � ρc of
operations is not allowed if the set exceeds the allocated resources
(jfi::kgj> jRcj). This can be handled through additional constraints
on the transition relation, one for each resource class:

δR(p; pR) = δ(p) � ∏
c21::NR

((pRc = nR) �CRc(p;n; pRc))

A CRc constraint is true for the transitions allowed by a given allo-
cation for the Rc class. We express it as the complement of illegal
transitions:

CRc(p;n; pRc) = IllegalRc
(p;n; pRc)

IllegalRc
(p;n; pRc)= ∑

fi::kg2ρc

(pini � : : : � pknk) �(pRc < jfi::kgj) (2)

We use the δR transition relation within a symbolic scheduler
based on [3]. The set of schedules obtained after the traversal and
validation phases implicitly contains all possible schedules and al-
locations within given resource bounds.

More specifically validation guarantees that all states in the final
set of schedules are characterized by a valid allocation instance, i.e.
the state is on a valid scheduling trace from the initial state to ter-
mination. In particular, the validated initial state set si;R;validated
includes all possible allocations for the computed set of schedules.

The selection of a minimum cost allocation is done in two steps.
We first extract the maximal set of allocation instances common to
all initial states in si:

Alloc(pR) = 8p(si;R;validated(p; pR))

Then we operate a minterm selection using a weighted sum of the
allocation instances. Each resource class c is assigned a weight wc
(e.g., an area or power estimated cost, see, for example, Table 2).
The allocation cost of a minterm in the A space is defined:

AllocCost(pR) = Alloc(pR) � ∑
c21::NR

(wc � pRc)

We finally choose the minterm that minimizes such a cost function:

pR;min = ArgMin(AllocCost(pR))

Scheduling selection then resumes, and a scheduling trace originat-
ing from si;R;validated(p; pR;min) is selected following the strategy
of [3].

The above technique can be used in order to find a minimum area
or power allocation and the corresponding schedule within a given
latency.

240

3.1.1 Partial Encoding of Allocated Resources
The technique we propose has an additional cost compared with

the original method of [3]. In fact, the resource constraints of [3]
can be derived from equation 2 by replacing the pRc variables with
the (constant) resource bound lRc :

IllegalRc
(p;n) = ∑

fi::kg2ρc

(pini � : : : � pknk) � (lRc < jfi::kgj)

The experimental results section shows a comparison between
the two solutions. In particular, it comes out that the full encoding
within the allocation space may have a relevant impact on memory
and time performance. But this allows an exact search of schedules
with minimal allocation. Whenever the additional cost is too high,
a sequence of partial explorations of the allocation space may still
converge to a nearly optimal solution, at a lower cost. We call this
Partial Encoding of allocation resources.

An example of such intermediate approach is to encode allocated
resources for a given class Rc only above a lower threshold thRc ,
while associating no allocation encoding for allocations above thRc .
For instance, one could fully encode all sets on allocated resources
with 5 � jRcj � 8, while providing no encoding for smaller allo-
cations (jRcj � 4). This would obviously allow finding an optimal
allocation in the range from 5 to 8, and require a further exploration
to look for a solution in lower ranges. The overall process would
imply a sequence of scheduling/allocation problems, possibly con-
verging to a final optimal (or sub-optimal) solution.

3.2 Register allocation
The target of our register allocation policy is to maximize com-

binational connections with an allowed propagation delay, so that
we possibly avoid the registers to latch the results of some opera-
tions. As a motivation for this work, it is worth noticing that the
cost of a register (especially in terms of area) is comparable with
that of combinational resources like adders and comparators (see,
for example, Table 2, Section 4).

We now accept an operation to be scheduled on different cycles
without latching its result. We modify the meaning of the operation
encoding proposed by [3]. In particular, state 1 for the i-th opera-
tion means that the result of the operation is latched in a register,
whereas a combinational operation is possible even in state 0, if a
successor requires it. Of course maximum combinational delays
must be checked.

In order to support the above encoding, we update the data de-
pendency constraints and the way we account combinational re-
source usage. We first define the activity of an operation to allow
combinational propagation of the result to successors:

Activei(p;n) = pini +ni ∑
i! j

Active j(p;n)

A combinational operation i is active (and allocates a resource)
when a 0) 1 transition is scheduled (and the result is latched in
a register) or the next state is 0 (no latching) and a successor j is
active (it requires the result of i through a combinational path).

Data dependencies are replaced by proper checks on combina-
tional propagation delays. Whenever an operation j is active, it is
illegal that one of its operands comes from a combinational path
with invalid propagation delay. Let delayi be the combinational de-
lay of operation i, let DM be the limit for propagation delays on
a data path, and let ! j be the set of predecessors of j on a data
dependency path. Then

Active j(p;n) � (∑
i2! j

(delayi)> DM) � ∏
i2! j

pi

is illegal.

Resource allocation encodings are also modified, to take into ac-
count the combinational activity of an operation. The pini � : : :� pknk
terms in equation 2 are changed to Activei(p;n) � : : : �Activek(p;n).
It is worth noticing that an operation is now allowed to be active
on multiple cycles, but its result may be latched (if required) only
once.

As a consequence of the new encoding we chose, a scheduling
automaton state now has a pi = 1 for every operation i requiring
a register. The number of registers required by a schedule path is
equal to the number of pi = 1 bits in the terminal state. The ter-
minal state set thus implicitly contains all required informations to
know the register usage of a given set of schedules. More specifi-
cally, if we allow register sharing among mutually exclusive sched-
ule traces, an allocation for the number of registers may be checked
by simply filtering out states requiring too many registers.

The conclusion is that we are able to find a schedule (if there ex-
ist one) with best allocation cost for combinational resources, given
a maximum allowed combinational delay, and a limit on the num-
ber of registers. And we are able to symbolically select it among
all possible register locations in the CDFG. The only constraint
that we currently assume is to always require latches on operations
conditioning a fork/join and on terminal operations (i.e., those that
affect the externally visible state of the CDFG).

Circuit Area Cost Power Cost
ADD 1.00 1.00
ALU 2.56 2.26
COMPARATOR 0.58 0.56
MUL 8.35 9.70
REGISTER 0.40 0.09
SUB 1.03 1.02
UnaryMINUS 0.42 0.25

Table 2: Area and Power and costs for the benchmark ana-
lyzed.

Circuit # Operations # Conditions
oven control 12 3
maha 14 6
rotor 35 3
ewf1x1 26 0
ewf1x3 78 0
fdct1x1 42 0

Table 3: Circuit Complexity in terms of Number of Operations
and Conditions Checked.

4. EXPERIMENTAL RESULTS
We show experimental results on the following set of DFG and

CDFG benchmarks:

� Elliptic Wave Filter (EWF); ewf-1 is the standard 34-operation
single iteration filter; ewf-n is a sequence of n unrolled iterations
of the filter. ewf-nxm is the parallel execution of m copies of the
filter, each unrolled n-times.

� Discrete Cosine Transform (FDCT); fdtc-nxm follows the same
notation as ewf-nxm.

� oven control and maha are taken from [9].

� rotor is from [11]. It performs a rotation of coordinates.

All the benchmarks are manually translated from the original VHDL
sources found in [5].

We present in Table 2 some statistics regarding costs in terms
of area, power and time of the cells used to implement our bench-
marks. Data are collected starting from a VHDL description of the
circuit and using the Synopsys Design Compiler [6] with the AMS

241

Circuit Cycle # Resource # # Register Mem. CPU
Bound [Mb] Time

oven control 8 4+,4C,4� 12 4.6 0.1
maha 7 4+,4C,4� 14 5.4 0.5
rotor 7 4+,4C,4�,4*,4u 35 9.1 5.0
ewf1x1 13 8+ 26 4.8 0.3
ewf1x3 28 8+ 78 8.5 7.5
fdct1x1 10 4+,4�,4� 42 5.5 0.8

Table 4: Schedule Results. Terminology for columns Resource #: ADD=+, ALU=A, COMPARATOR=C, SUB=�, MUL=�,
UnaryMINUS=u.

Circuit Cycle # Resource # Register # Mem. CPU
Bound Best Allocation [Mb] Time

oven control 8 4+,4C,4� 2+,2C,1� 12 4.7 0.2
maha 7 4+,4C,4� 2+,1C,2� 13 6.3 1.0
rotor 7 4+,4C,4�,4*,4u 1+,1C,1�,2*,1u 12 12.4 10.5
ewf1x1 13 8+ 4+ 26 5.1 0.6
ewf1x3 28 8+ 3+ 78 14.5 79.0

8+ (2 partial) 3+ 78 13.5 45.0
fdct1x1 10 4+,4�,4� 2+,2�,3� 42 14.0 16.5

4+,4�,4� (2 partial) 2+,2�,3� 42 6.0 3.0

Table 5: Schedule Results. Terminology for columns # Resources: ADD=+, ALU=A, COMPARATOR=C, SUB=�, MUL=�,
UnaryMINUS=u.

library. All variables are 16 bit wide, and we present data on logic
only, excluding interconnect costs. All data are normalized with
respect to the costs of the adder.

Table 3 shows the complexity of the benchmark set in terms of
number of operations, and number of conditions checked. The CD-
FGs and DFGs are similar but not identical to the ones presented
in [11, 3], and this explains some differences (see Tables 4 and 5)
in terms of number of cycles and resources allocated.

We ran our experiments on a 500MHz Pentium III with 256MB
of main memory.

Table 4 and 5 compares the results obtained without and with
allocation encoding. The experiments in Table 4 are run with an al-
gorithm equivalent to the one presented in [3]. As a consequence,
in this case, we do not find the schedule with the best allocation, but
we just check the resource bounds. Table 5 shows the same experi-
ments with allocation encoding and search for the best allocation.

For each CDFG we first present the latency of the final schedule
(# Cycles), the resource bound and the best allocation (5 only).
The number of registers, total memory usage and CPU time for
symbolic exploration (including BDD encoding). Notice that in
Table 4 the number of register is equal to the number of operations
performed, whereas in Table 5 the number of register is usually
smaller. To this respect we have to remember that the reduction
would be larger if we allowed re-using registers in different cycles,
as introduced in [2].

Two of the experiments in table 5 (ew f 1x3 and f dct1x1) are
run as a sequence of 2 partial allocation sub-problems (see Sec-
tion 3.1.1) in order to show the lower costs, compared with the
previous full ending case.

Overall, all experiments show that the problems are tractable,
with an acceptable performance loss, traded off by the ability to
find best allocations.

5. CONCLUSIONS AND FUTURE WORK
We present a new approach for an integrated symbolic schedul-

ing and resource allocation. The method proposed starts from a
state-of-the-art symbolic scheduling technique, and extends it to
target both combinational resource and register minimization. As a
by-product, it allows trading off latency with cycle time, since reg-

ister optimization is based on allowing combinational connections.
Experimental results on benchmark CDFGs show that our solu-

tion is feasible with acceptable performance loss, compared with
the improvements proposed.

6. REFERENCES
[1] F. Balarin, E. Sentovich, M. Chiodo, P. Giusto, H. Hsieh, B. Tabbara,

A. Jurecska, L. Lavagno, C. Passerone, K. Suzuki, and
A. Sangiovanni-Vincentelli. Hardware-Software Co-design of
Embedded Systems – The POLIS Approach. Kluwer Academic
Publishers, 1997.

[2] S. Haynal. Automata-Based Symbolic Scheduling. PhD thesis,
University of California Santa Barbara, Dec. 2000.

[3] S. Haynal and F. Brewer. Efficient Encoding for Exact Symbolic
Automata–Based Scheduling. In Proc. IEEE ICCAD’98, pages
477–481, San Jose, California, Nov. 1998.

[4] S. Haynal and F. Brewer. Automata-Based Scheduling for Looping
DFGs. Internal Report EC99 14, Oct. 1999.

[5] http://ftp.ics.uci.edu/pub/hlsynth/fHLSynth92,HLSynth95g.
[6] http://www.synopsys.com/products/logic/design compiler.html.
[7] C. T. Hwang, J. H. Lee, and Y. C. Hsu. A Formal Approach to the

Scheduling Problem in High-Level Synthesis. IEEE Trans. on
Computer-Aided Design, 10:464–475, Apr. 1991.

[8] K. Khouri, G. Lakkshminarayana, and N. Jha. High-level synthesis
of low-power control-flow intensive circuits. IEEE Trans. on
Computer-Aided Design, 18(12):1715–1729, Dec. 1999.

[9] A. C. Parker, J. T. Pizzarro, and M. Mlinar. MAHA: A Program for
Datapath Sunthesis. In Proc. IEEE/ACM ICCAD’91, pages 461–466,
Las Vegas, June 1986.

[10] P. G. Paulin and J. P. Knight. Force–Directed Scheduling for the
Behavioral Synthesis od ASICs. IEEE Trans. on Computer-Aided
Design, 8:661–679, June 1989.

[11] I. Radivojevic and F. Brewer. A New Sybolic Techniquer for
Control-Dependent Scheduling. IEEE Trans. on Computer-Aided
Design, C–15(1):45–57, Jan. 1996.

242

	Main
	ISSS02
	Front Matter
	Table of Contents
	Author Index

