
A Visual Approach to Validating System Level Designs ∗

Jochen Klose
University of Oldenburg

Klose@Informatik.Uni-
Oldenburg.de

Thomas Kropf
University of Tübingen

Kropf@Informatik.Uni-
Tuebingen.de

Jürgen Ruf
University of Tübingen

Ruf@Informatik.Uni-
Tuebingen.de

ABSTRACT
This paper proposes a simulation-based methodology for
validation of a system under design in an early phase of
development. The key element of this approach is the vi-
sual specification, as Live Sequence Charts (LSCs), of the
properties to be checked. The LSCs are automatically trans-
lated into the input format for the SystemC-based checker
engine, which indicates during simulation, if the property
is fulfilled or produces a counter-example, if the property is
violated. The entire process from the visual property spec-
ification to the checking is largely automated, which makes
our approach accessible even for users which have not been
trained in formal methods.

Categories and Subject Descriptors
I.6.4 [Simulation and Modeling]: Model Validation and
Analysis

General Terms
Design, Verification

Keywords
Validation Methodology, Simulation, Sequence Charts

1. INTRODUCTION
The advent of languages like SystemC [13] allows to raise

the level of formalized design to higher levels of abstrac-
tion. Up to now, system level design often relied upon
informal, even paper-and-pencil-based methods. Now de-
signs can be captured and simulated at a much earlier stage.
However, a simulation-based system level design requires a
suitable methodology to systematically explore the design

∗This work has been funded by the German Research Coun-
cil (DFG) within the priority program Integration of Spec-
ification Techniques with Engineering Applications under
grants number DA 206/7-2 and KR 1869/3-2.

Permission to make digital or hard copies of all or part of this work for
personal or classroom use is granted without fee provided that copies are
not made or distributed for profit or commercial advantage and that copies
bear this notice and the full citation on the first page. To copy otherwise, to
republish, to post on servers or to redistribute to lists, requires prior specific
permission and/or a fee.
ISSS’02, October 2–4, 2002, Kyoto, Japan.
Copyright 2002 ACM 1-58113-576-9/02/0010 ...$5.00.

space. During this phase key properties of the system must
be identified and captured in a suitable way. These prop-
erties must then be validated to gain sufficient confidence
before the result is used to create an implementation on
lower abstraction levels, e.g. on RTL and gate level.

To achieve this goal we propose a design and valida-
tion environment targeted at system level designers with-
out knowledge of formal or semi-formal methods. Proper-
ties are specified by Live Sequence Charts [2], a graphical
notation for specifying temporal relationships between sig-
nals and events. These are automatically translated into
AR-automata, which are well suited for a simulation-guided
property checking. If properties are violated, counterexam-
ples are automatically generated which can often be easily
visualized with acceptable programming effort. We have de-
liberately chosen simulation instead of formal verification as
in the early phase of the design no fixed and complete spec-
ification is available. This specification is rather the result
of this phase as a growing set of key properties of the de-
sign are identified by manual variation and exploration of
the function space.
The simulation-based approach entails that not all LSC fea-
tures are exploited, in particular liveness requirements are
disregarded, since they are meaningless when considering
finite traces.

The problem of easing the capturing of formal specifica-
tion by graphical methods has been tackled before, e.g. by
Schlör et al. [12], Fishler [3] or by Amla et al. [1]. Also
simulation-based property checking has been presented be-
fore [11]. However, we believe that Live Sequence Charts are
a formalism which – due to its simplistic and intuitive se-
mantics – is especially suited for system level design. More-
over, to our knowledge this paper presents for the first time a
simulation-guided property checking approach for SystemC
based on a graphical specification technique. Our first ex-
periences show that the ease of our approach leads to a high
acceptance of designers, even if they have not been exposed
to formal methods.

The paper is structured as follows: In section 2 we first
describe the general approach. Afterwards, we introduce
AR-automata as the underlying formalism in section 3. Af-
ter Live Sequence Charts are presented in section 4 we ex-
plain how they can be translated into AR-automata. After
having given some details of our implementation in section 6
we present experimental results which show the usefulness
of our approach. The paper ends with conclusions.

186

2. OVERVIEW OF THE APPROACH
Our system level design method is based on a design flow

as given in Figure 1. Basically, we use the SystemC-based
property-checker described in [11] and extend it by Live Se-
quence Charts (LSCs), a more expressive variant of standard
Message Sequence Charts and Sequence Diagrams, for the
visual specification of the properties to be checked. LSCs
have already been successfully used to this end in [5].

Given a design implemented in SystemC the designer
specifies the properties he wants to check by simulation as
LSCs. The LSCs are then translated into automata defining
the semantics of the charts. In a second step each automaton
is translated into an AR-automata, which is better suited for
property checking. The checker then activates and monitors
the selected LSCs during simulation of the SystemC design
by running the correspondent AR-automata in parallel to
the actual design.

The result can be a violation or a fulfillment of the prop-
erty. An inconclusive result is also possible, i.e. the LSC has
neither been traversed completely nor has it been violated.
The point of activation, i.e. when an LSC becomes active,
is part of the chart and given by a boolean condition. Two
variants of checking are possible: global and local checking.
Global checking means that the LSC is activated whenever
its activation condition becomes true. In case of a local
checking the LSC is only activated when the simulation en-
ters a particular area of the SystemC design.

Visualization

LSC Editor

AR-Automaton

Implementation
SystemC

LSC Compiler

Automaton

LSC

Checker

Figure 1: Overview

3. SIMULATION-GUIDED PROPERTY
CHECKING

One approach bringing together simulation and formal
verification is presented in [11]. The authors present a
simulation-based validation technique of formal specifica-
tions. These specifications are given in a temporal logic.
The formulas are translated into finite state machines called
AR-automata. These AR-automata are then driven by the
remaining simulation trace. If an AR-automaton reaches an
accept state (A) then the formula is valid on the given simu-
lation trace, and if the AR-automaton reaches a reject state
(R), the trace is a counter example for the given specifica-
tion.

The advantage of this approach is the small runtime over-

head caused by checking the AR-automaton during simula-
tion and the expressiveness of the underlying system descrip-
tion language (SystemC [13]). Furthermore the approach
allows the user to specify formulas anywhere in the design
description (white-box validation). This means, that formu-
las are only checked if the simulation activates them.

We will now extend the notion of AR-automata in order
to cope with events instead of signal values. These AR-
automata can then be used to check LSCs.

A trace consists of signals and their value changes over
the time. For the remainder of this paper, assume V =
{a, b, c, . . .} is a finite set of distinct symbols, called the vari-
able domain. These symbols either represent boolean signals
of the design or complex boolean conditions over arbitrary
design entities. A simulation trace is then formally defined
by:

Definition 1. A trace T [n..m] (m ≥ n) is a mapping
T : {n, . . . , m} → 2V . If n and m are clear from the context,
we often simply write T instead of T [n..m]. The set of all
traces is denoted by T .

If the variable a ∈ V is contained in T [i] then we interprete
this variable to be true otherwise the variable is false. A
variable a changing from false to true induces a posedge
event ↑a. A variable a changing from true to false induces
a negedge event ↓a. The set of all possible events induced
by a set of variables V is defined by EV

Definition 2. Let T [n..m] be a trace, the induced event

trace T �[k..l] with n ≤ k ≤ l ≤ m is a mapping T � :
{k, . . . , l} → 2EV defined through:

• T �[k] = ∅ if n = k

• for all i with k ≤ i ≤ l and n < i it holds
↑a ∈ T �[i] ⇔ a �∈ T [i − 1] ∧ a ∈ T [i]

• for all i with k ≤ i ≤ l and n < i it holds
↓a ∈ T �[i] ⇔ a ∈ T [i − 1] ∧ a �∈ T [i]

For k > n or l < m we call the event trace an induced event
subtrace. In contrast to induced event traces, induced event
subtraces may have events in the first time period.

Now we are able to extend the notion of AR-automata as
it was presented in [11].

Definition 3. An AR-automaton is a 5-tuple
A = (S,→, A,R, s0) where S = {s1, . . . , sn} is a finite set
of states, →⊆ S × 2EV ×S is the transition relation, A ⊂ S
is the set of accepting states, R ⊂ S is the set of rejecting
states and s0 ∈ S is the start state of A

We write si
in→ sj to express that there is a transition from

si to sj labeled with in ⊆ 2EV .

In the remainder of this paper we will only operate with
deterministic AR-automaton. If we apply a simulation trace
to a deterministic AR-automaton, then we obtain a sequence
of states called a run.

Definition 4. Let A be an AR-automaton and T [0..m]
be a trace. A run of T with respect to A is a sequence of

states s0, s1, . . . , sn such that si
T�[i]→ si+1 holds for 0 ≤ i <

m.

187

We can also compute runs with respect to induced event
subtraces. Now we can define the acceptance or rejection of
traces applied to an AR-automaton.

Definition 5. Let A = (S,→, A, R, s0) be an AR-
automaton and T [0..m] be a trace.

• T is called an accepted trace if for the run
s0, s1, . . . , sm+1 induced by T , there is a j with
0 ≤ j ≤ m + 1 with sj ∈ A and for all k < j holds
sk �∈ R. Accordingly, this particular run is called an
accepted run.

• T is called a rejected trace if for the run
s0, s1, . . . , sm+1 induced by T , there is a j with
0 ≤ j ≤ m + 1 with sj ∈ R and for all k < j holds
sk �∈ A. Accordingly, this particular run is called a
rejected run.

An analog definition can be given for induced event sub-
traces.

4. LIVE SEQUENCE CHARTS

4.1 LSC Overview
Live Sequence Charts (LSCs) have been developed in [2]

to overcome several shortcomings – with respect to a formal
usage – of normal Message Sequence Charts [4] and Sequence
Diagrams (SDs) of UML (Unified Modeling Language, [10].
The major points of criticism are

1. Only an existential or scenario view is supported by
MSCs and SDs, i.e. they only describe a sample behav-
ior of a system, one possible communication sequence.

2. It remains unclear when the communication described
in a chart should be observed, i.e. when the MSC/SD
should be activated.

3. It is impossible to specify if progress is enforced or not,
e.g. if a certain point within the chart must be reached
or a message must be received.

4. There is no formal semantics for Sequence Diagrams.

The basic idea of LSCs is the distinction of mandatory and
possible behavior, where the former constitutes the added
expressiveness of LSCs and the latter corresponds to classi-
cal MSCs and SDs. On the chart level the existential view
represents the possible variant and a new universal inter-
pretation is added for the mandatory variant. A universal
LSC has to be satisfied by all system runs, not just by a
sample one. In our approach we do not distinguish between
universal and existential LSCs, since we in general cannot
observe all system runs by simulation.

The second point of criticism raised above is answered by
adding a boolean activation condition to each LSC, which
activates the chart whenever it is evaluated to true. It is fur-
thermore complemented by an activation mode which can be
either initial, invariant or iterative. The initial mode means
that the behavior described in the LSC has to be observed
at system start. The activation condition is typically simply
true for this mode, since the activation point is already suf-
ficiently characterized. Specifying a non-trivial activation
condition for this mode thus amounts to a restriction of the

system start state. If such an initial activation condition
does not hold, the entire LSC is considered violated. The
invariant mode indicates that the chart is activated when-
ever the activation condition holds. The iterative mode is
similar to the invariant mode, but it additionally requires
that only one incarnation of each LSC may be active at any
point in time, i.e. an LSC cannot be re-activated while it is
still active.

We will not elaborate on the third point above, since live-
ness is irrelevant when only considering finite system runs.
A sketch of the semantics is presented below.

Figure 2: LSC describing the securing protocol

Figure 2 shows an example LSC for the train system ap-
plication, which is described in more detail in section 6. It
shows the message exchange necessary for the securing of a
crossing. The participating components are the train, the
crossing, the communication channel which transports the
messages between them, and the pass sensor, which notifies
the crossing when the train has passed. The protocol starts
when the train requests the securing of the crossing by send-
ing the message enable crossing which therefore appears
as the activation condition of the LSC. This message is re-
layed to the crossing, which immediately acknowledges its
receipt and tries to secure the crossing. The train meanwhile
waits as long as the crossing normally needs to be secured,
and then requests the current status of the crossing.

At this point the LSC contains a branching sub-chart,
since the protocol may evolve in two different directions:
Either the crossing has been secured or some error has oc-
curred. In the first case the crossing reports its status (safe)
to the train, which can then safely pass. In the second case
the crossing does not respond to the status request and the
train must stop in front of the crossing. The driver then has
to ensure that the crossing can be passed before continuing.
These alternatives are captured by the sub-chart construct,
which switches on the presence of the reply of the cross-

188

ing (crossing safe) and then enters the corresponding sub-
LSC. In the case of a reply the sub-LSC Continue (figure 3)is
entered, which contains the behavior for this case, otherwise
the sub-LSC Stop (figure 4) is entered, which describes the
second alternative. Regardless of the branch taken, the train
will pass the crossing and activate the pass sensor.

Figure 3: Sub-LSC for the good case

Figure 4: Sub-LSC for the error case

4.2 Construction of the AR-Automaton
A key point of LSCs with respect to our property-checking

approach is that their formal semantics is defined by au-
tomata, which accept all those communication sequences
satisfying the LSC. The basic strategy of the algorithm for
the construction of an automaton from an LSC is to walk
through the LSC from top to bottom while respecting the
partial order defined by the LSC. The algorithm uses cuts to
step through the LSC, where a cut contains exactly one loca-
tion of each instance line. A cut shows how far the algorithm
has already progressed through the LSC. Each cut becomes
a state in the automaton generated by the algorithm and
transitions in the automaton represent the successor rela-
tion among the cuts. Figure 5 shows a sample cut through
the LSC of figure 2 and figure 6 shows the complete automa-
ton for this LSC, with the state corresponding to the cut of
figure 5 being shaded.
The details of the algorithm can be found in [7].

Figure 5: Cut example

Note that the automaton generated by the algorithm is
not an AR-automaton; the transformation however is easy
to accomplish. The main difference, as figure 6 illustrates, is
that LSC automata only have an accept state, but no reject
state. The only accept state is the state which corresponds
to the complete traversal of the LSC (the last state in fig-
ure 6); all other states are pending, i.e. neither accepting nor

enable_crossing_send

enable_crossing_rec

acknowledge_send

acknowledge_received

status_request_send

status_request_received

NOT crossing_safe_sendcrossing_safe_send

train.stopped

crossing_safe_rec

released_man

cross.passed

A

Figure 6: Automaton for LSC Securing Procedure

rejecting. In order to transform an LSC automaton into an
AR-automaton it suffices to introduce the reject state and
add transitions from all pending states to it for all combina-
tions of input signals, which are not already present on tran-
sitions in the original automaton. For the state correspond-
ing to the cut of figure 5 the transition annotation would
e.g. be ¬status request send∧(enable crossing send∨· · ·∨
cross.passed).

This conversion of automata entails that we do not use all
the features, which LSCs have to offer, such as liveness or
interpretation (existential or universal) of the LSCs. This
is due to the fact that we are monitoring a simulation and
not formally verifying a design. The most valuable feature
– apart from the fact that the semantics of LSCs is given as
automaton – is the possibility to characterize the point of
activation.

5. IMPLEMENTATION USING SYSTEMC
For our implementation of the simulation-based LSC checker
we have chosen the SystemC language [13]. SystemC allows
the specification of systems on various levels of abstraction
and it provides fast simulation speed due to compiled exe-
cutable specifications (simulation kernel + system descrip-
tion). Moreover, SystemC is open source and therefore eas-
ily extendable.

We have realized the LSC checker as a stand-alone li-
brary which is linked to the simulation kernel. The user
sensitizes LSCs with the sc lsc check command. This com-
mand takes the file name of an AR-automaton description
produced by the AR-automaton compilation. If an LSC is
sensitized, it will be checked as soon as the activation con-

189

simulation kernel

executable specification

....

...

SystemC description

sc_lsc_assert("Securing_Procedure");

AR−automata

LSC checker

AR−automaton
synthesisLSC file

with queue of

Figure 7: Architecture of our implementation

dition becomes true. The sc lsc check command may be
placed anywhere in the system description. It is also possi-
ble to globally sensitize a LSC. In this case the LSC will be
activated (i.e. checked) whenever the activation condition
becomes true. More details are described in Section 4.

The checker is implemented as a standard SystemC pro-
cess. It is running in parallel to the simulation. This implies
that LSC violations can be prompted immediately to the
user. Figure 7 gives an overview of our checker architecture.

Whenever the simulation runs over the sc lsc check

statement, the corresponding file will be read and the au-
tomaton will be stored in a checker internal queue.

The first time the activation condition will be checked is in
the current simulation cycle (the simulation cycle in which
the sc lsc check statement is called). In case of the iter-
ative or the invariant LSC-mode, the activation condition
will be checked again in every further simulation cycle. In
case of the initial LSC-mode the activation condition is only
checked once. If this check fails, this indicates a violation of
the LSC.

If the activation condition is true, the AR-automaton will
be reset to its initial state. Then the AR-automaton will be
simulated in parallel to the design simulation. This means
that the AR-automaton performs a state transition each
simulation cycle depending on the current signal values.

In order to handle multiple incarnations of one LSC in the
invariant mode we provide a dynamic list of current states.
For each new incarnation the list is appended by the initial
state and in every simulation cycle all states of the list are
updated.

In case of the iterative mode, the list may have not more
than one entry. Otherwise the iterative-incarnation condi-
tion of LSCs is violated and this failure is also prompted to
the user. If an LSC is accepted or rejected (i.e. the AR-
automaton reaches an accept or a reject state) the user is
informed and the state is deleted from the state list.

6. SAMPLE APPLICATIONS

6.1 Radio-based Signaling System
The first application we use to demonstrate our approach

is part of the specification of a wireless train control sys-
tem, which is currently developed by the German railroad
company Deutsche Bahn. It has been made available as
a trial case study within the DFG-funded program men-
tioned above and is focusing on the interaction between train
and level crossings. The SystemC implementation we use is
based on a Statemate model; see [6] for details.

The basic idea of wireless train control is to remove as
much wayside equipment – like signals and the wiring con-
necting it to crossings, switches, etc. – as possible and use
radio-based communication instead. The main components
of our train system are: the train and the crossing, which
communicate via radio. Thus in the protocol given by the
LSC in figure 2 the communication channel represents the
radio link which the train has established prior to contact-
ing the crossing. The crossing consists of a communication
unit, a traffic light, a barrier and a pass sensor. The commu-
nication between the radio unit and the other units of the
crossing does not use a radio link, but are rather connected
conventionally.
The typical communication between an approaching train
and a crossing is described by the LSC in figure 2. The
communication channel has been modeled explicitly as a
separate component in order to be able to introduce trans-
mission errors into the system.

The SystemC implementation not only covers the con-
trollers for the peripheral units of the crossing, but also in-
cludes the physical elements, i.e. the actual traffic lights,
barriers and pass sensor. These components can also be
disrupted so as to model physical failures or malfunctions,
such as a stuck barrier or a failure of the yellow light. The
train additionally contains a component, which calculates
the maximal speed of the train, controls that the train does
not exceed this speed and computes the point in time when
to contact the crossing.

In the SystemC implementation each component – train,
crossing, and communication channel – is modeled by a pro-
cess.

6.2 Holonic Material Transport System
The holonic material transport system consists of an in-

put station, three machines, an output station and three au-
tonomous transport vehicles (the holons). Two of the three
machines are for work piece processing, one is for cleaning.
All holons are identical. The task of the holons is to move
work pieces to the three machines in consecutive order. The
work pieces leave the plant at the output station. The holons
are autonomous, i.e. they look for tasks and negotiate who
is performing the next task. For instance if two holons are
idle and a cleaned work piece appears on the cleaning ma-
chine, the holons negotiate and the winner starts moving to
the cleaning machine. In our modeling, the winner of such
a negotiation is the holon, which needs less time to move to
the cleaned work piece.

We split the system in different processes so that each
process models a physically unit. The modeling consists of
three identical holons, two processing machines, one cleaning
machine, the input station, the output station, one input
and one output buffer for each machine.

190

7. EXPERIMENTAL RESULTS
In this section we will highlight some of the results we

have achieved by applying our technology to the described
real-world examples.

Radio-based Signaling System
We were able to find several design errors in our SystemC
implementation of the train system by employing the LSC-
Checker. We first checked, if the scenario depicted in fig-
ures 2 - 4 was valid for one pass of the train. The result was a
failure, i.e. the scenario described by the LSCs was violated.
The reason was that a signal was not reset fast enough, so
that it was recognized by the automaton as an illegal sig-
nal occurrence. Whereas this was a mere oversight in the
implementation, the second try revealed a more serious er-
ror of a more conceptual nature: After introducing a barrier
error into the system, which kept the barriers from closing,
the train stopped in front of the crossing and resumed its
journey after confirmation by the driver, as prescribed by
the LSC. But after the passing of the train, the crossing
did not return to its idle state. The problem was that the
controller for the barrier recognized the barrier failure, but
immediately afterwards, i.e. too early, returned to its idle
state, in which it does not react to opening requests. When
the overall controller ordered it to open the barrier again
once the train had passed, it consequently remained silent
and the overall controller entered into a deadlock state.

Holonic Transport System
During simulation we were interested in a correct flow of the
work pieces. Therefore we have checked some LSCs describ-
ing the communication between the holons and the machines
managing the work piece flow.

We found that work pieces properly move between the ma-
chines. But we also found configurations where the holons
are mutually blocked.

8. CONCLUSION
We have presented a simulation-based validation envi-

ronment for system level designers, which does not require
knowledge of formal specification languages. Properties to
be validated are specified by Live Sequence Charts, a graph-
ical notation for specifying temporal relationships between
signals and events. These are automatically translated into
AR-automata, which are well suited for a simulation-guided
property checking. System implementations are given in
SystemC. Our approach is deliberately based on simulation
as typically no fixed specification is given at the beginning of
system-level design but only certain key properties. If these
properties are violated during simulation, counterexamples
are automatically generated which can be often visualized
with limited programming effort, e.g., in Tcl. In our exper-
iments it has turned out that this approach leads to signif-
icantly shorter validation cycles: the specification effort is
reduced due to the tool-based graphical specification input,
which together with a suitable presentation of possible coun-
terexamples also eases the communication between product
designer and system architect.

9. REFERENCES
[1] N. Amla, E. Emerson, R. Kurshan, and K. Namjoshi.

Model Checking Synchronous Timing Diagrams. In
Proceedings Formal Methods in Computer-Aided Design
(FMCAD), LNCS, pages 283–298. Springer Verlag,
2000.

[2] W. Damm and D. Harel. LSCs: Breathing Life into
Message Sequence Charts. Formal Methods in System
Design, 19(1):45 – 80, July 2001.

[3] K. Fisler. Timing Diagrams: Formalization and Formal
Verification. Journal of Logic, Language and
Information, 8(3), 1999.

[4] ITU-T. ITU-T Recommendation Z.120: Message
Sequence Chart (MSC). ITU-T, Geneva, 1999.

[5] J. Klose and M. Lettrari. Scenario-based Monitoring
and Testing of Real-time UML models. In M. Gogolla
and C. Kobryn, editors, UML 2001 - The Unified
Modeling Language: Modeling Languages, Concepts,
and Tools, volume 2185 of LNCS. Springer Verlag,
2001.

[6] J. Klose and A. Thums. The Statemate Reference
Model of the Reference Case Study
’Verkehrsleittechnik’. Technical report, University of
Augsburg, 2000. http://www.Informatik.Uni-
Augsburg.DE/swt/formosa/RefVL/bericht.ps.gz.

[7] J. Klose and H. Wittke. An Automata Based
Representation of Live Sequence Charts. In
T. Margaria and W. Yi, editors, Proceedings of TACAS
2001, number 2031 in LNCS. Springer Verlag, 2001.

[8] T. Kropf. Formal Hardware Verification – Methods and
Systems in Comparison, volume 1287 of Lecture Notes
in Computer Science. Springer Verlag, state of the art
report edition, August 1997.

[9] K. McMillan. Symbolic Model Checking. Kluwer
Academic Publishers, Norwell Massachusetts, 1993.

[10] OMG. Unified Modeling Language Specification,
Version 1.3. OMG, 1999.
http://www.rational.com/uml/resources/documentation.

[11] J. Ruf, D. W. Hoffmann, T. Kropf, and W. Rosenstiel.
Simulation-guided property checking based on
multi-valued AR-automata. In Design Automation and
Test in Europe (DATE). IEEE Conmputer Society
Press, Los Alamitos, 2001.

[12] R. Schlör, B. Josko, and D. Werth. Using a visual
formalism for design verification in industrial
environments. In VISUAL’98, Lecture Notes in
Computer Science 1385, pages 208–221. Springer
Verlag, 1998.

[13] Synopsys, CoWare and Frontier Design,
www.systemc.org. SystemC Version 2.0 User’s Guide.

191

	Main
	ISSS02
	Front Matter
	Table of Contents
	Author Index

