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ABSTRACT
Application specific systems have potential for customiza-
tion of design with a view to achieve a better cost-
performance-power trade-off. Such customization requires
extensive design space exploration. In this paper, we intro-
duce a performance evaluation methodology for system-level
design exploration that is much faster than traditional cycle-
accurate simulation. The trade off is between accuracy and
simulation speed. The methodology is based on probabilistic
modeling of system components customized with application
behavior. Performance numbers are generated by simulat-
ing these models. We have implemented our models using
SystemC and validated these for uni-processor as well as
multiprocessor systems against various benchmarks.

Categories and Subject Descriptors
C.3 [Special-purpose and Application-based Systems]:
Real-time and embedded systems; C.4 [Performance of
Systems]: Modeling techniques, measurement techniques

General Terms
Performance, Design, Experimentation

Keywords
Design space exploration, statistical simulation, system level
design

1. INTRODUCTION
A system designer is faced with a large number of ar-

chitectural choices while designing a system for a specific
application. To obtain the best solution, a designer needs
to evaluate performance for various design alternatives.
Performance evaluation approaches can be broadly cate-

gorized as analytical and simulation based. Analytical ap-
proaches aim at closed form solutions which lead to quick
evaluation of performance [6, 7, 8, 1, 4]. However, they
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have limitations in one way or other. For example, some
approaches are limited in terms of their ability to take into
account application characteristics (e.g. [6]) or interaction
among multiple processors (e.g. [8, 1]) or instruction level
details of the processors (e.g. [6, 7, 8, 4].
Because of such limitations of analytical models, cycle ac-

curate simulation is the most commonly used approach for
performance evaluation of system. The drawbacks of cycle
accurate simulation is that it is very time consuming. Each
design point requires complete simulation of the architecture
with application mapped on to it. For real applications, each
simulation run can be quite long.
Keeping in mind these drawbacks of existing techniques,

we have developed a new methodology which adopts a mid-
dle path between analytical and cycle-accurate simulation.
We use probabilistic models for components, customized
with application behavior. We have adopted simulation of
probabilistic models because averaged performance numbers
converge very fast. The models are at a higher level of ab-
straction which results in faster simulation, at the expense
of slightly reduced accuracy. The methodology can handle
multiprocessor systems containing processors and application-
specific hardware. The models are generic and can handle
a variety of components. This methodology can be useful in
the following scenario:

1. Evaluating system performance at higher level for nar-
rowing down design alternatives.

2. Evaluating communication cost for a given application
running on processor or application-specific hardware,
in a multiprocessor environment.

3. Studying effects of read/write buffers with in a single
processing element for a given application.

Another approach which adopts a middle path between an-
alytical and simulation is reported by Mark Oskin [9]. How-
ever, his work is limited to a small range of architectures and
for uni-processors only. Statistical models are simplistic and
cannot account for the read/write buffer performance.
In the next section we describe the basic idea behind our

approach. In Section 3 we discuss the overall methodology.
In Section 4, we define the modeling of various architectural
features and customization of models based on application
behavior. In Section 5, we have described validation and
experimental results of our modeling and simulation tech-
nique. Finally conclusion and future work is discussed in
Section 6.
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2. BASIC IDEA
To discuss the basic idea behind our approach, we consider

an example of a non-pipelined processor without buffers and
cache. To execute a load word instruction lw, r1, 1000(r2),
the operation sequence performed by a conventional cycle
accurate simulator will be as shown in Figure 1(a). Our
simulator aims at reproducing only the event timings, ignor-
ing actual data transfers and computations. The timings of
the reproduced events are required to match the actual tim-
ings in statistical sense only. Thus, our simulator generates
only request and acknowledge events when the cycle accu-
rate simulator performs instruction fetch and data fetch, as
shown in Figure 1(b). Other steps of cycle accurate simula-
tion such as register fetch, address calculation, PC update
etc. are simply replaced by delays in our approach. In this
example, the delays between the events are fixed, but in
general, these may be generated randomly with some prob-
abilistic distribution.
Performance metrics are calculated from various statistics

gathered during the course of simulation by monitoring state
of simulator at appropriate points in models. Example of
some metrics are: a) Component utilization, b) Memory and
interconnection bandwidths, c) Fraction of interconnection
bandwidth used by various components, d) Processor CPI,
e) Stalls due to Read/Write and Prefetch Buffer, f) Pipeline
stalls etc.

3. THE METHODOLOGY
The overall methodology for performance evaluation in

the context of system-level design exploration is shown in
dotted box A in Figure 2. This is part of the larger Au-
tomated Synthesis of Embedded Systems, ASSET project
[3]. The methodology takes as input the partitioned ap-
plication, target system architecture containing component
architectures and interconnections, and the binding informa-
tion of application partitions to architectural components.
The methodology can be divided in to five parts: Model Li-
brary building, application parameter extraction, target ar-
chitecture simulator generation, customization of simulator
and simulation and performance number generation. Mod-
els library building is a one time process and is discussed in
Section 4, other parts are discussed here.
The dotted lines in Figure 2 indicate that the design space

exploration may be carried out at a) Component architec-

tural feature level, b) Partitioning level, wherein only the
component-task binding is changed and c) System level,
which involves varying number and types of components as
well as the partitioning. This may be done interactively or
using scripts.
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Figure 2: Design Flow for Performance Evaluation

3.1 Application Parameter Extraction
Application behavior is represented in the form of statis-

tical parameters. These parameters are explained in detail
in section 4. These parameters can be generated by either
a) Static analysis and profiling of the application along with
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cache simulation if needed or b) From some existing simu-
lation framework, like SimpleScalar [2]. We wish to make
it clear that the parameters of applications are independent
of architecture, hence, parameters extraction is a one time
process.

3.2 Simulator Generation
Target system architecture is input to this step. In this

step simulator is generated for target system by instantiat-
ing specified components from model library and connecting
them through ports according to given interconnection spec-
ifications. Component models are built using SystemC. The
generated simulator can be visualized as shown in figure 3.
Each model has two major parts : its functionality and sta-
tistical data gathering and some housekeeping functions.
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Figure 3: Software Aspects of Simulator Generation

Model library contains generic definition of components
like processor, specialized hardware, memory, buffers etc.
Their feature parameters are decided according to given in-
put specification. It makes the methodology generic at sub-
component and their feature level. Components can be con-
veniently interconnected through abstract ports.

3.3 Simulator Customization
This is the stage where captured behavior of the applica-

tion in terms of statistical parameters is used to customize
the respective component of generated system simulator, as
specified by binding information. For each partition of the
application the following binding information is required: a)
Processing element to which it is bound b) Memory where
program is stored and c) Memories where data are stored.
In this customization, the respective processing element’s

probabilistic event generation process is tuned using appli-
cation parameters. Here event generation refers to selection
of next state of processing element from probability distribu-
tion, for example instruction and memory access data size.
Hereafter we will refer to the probabilistic distribution as
distribution.

4. MODEL LIBRARY
A key part of our methodology is model library contain-

ing probabilistic models of components. These models are
created by focusing only on terminal behavior and delays.
Major system level components that we have considered are
processors, application-specific hardware, buses, memories,
caches and write/read buffers. Application parameters con-
sidered for modeling are specific to a component and its
features. In the following subsections we describe a few of
these models.

Instr. Architectural Application
Class Parameters Parameters

Load
Number of words
to be loaded

Distributions of load
instructions or the size
of clustered load

Store Number of words
to be stored

Distributions of store
instructions or the size
of clustered store

Control - branch instruction dis-
tribution, prob. of
branch taken

Compute
(others)

Cycles for execu-
tion stage(EX)

Distributions of in-
structions and the
number of EX cycles

Table 1: Processor instruction classification with
their architectural and application parameters

4.1 Processor Model
For processor modeling we presently consider only RISC

type processors in our framework. However, it is possible to
incorporate CISC type processors with minor modifications.
We next describe in detail the various factors considered
while modeling a processor.
We consider architectural features and parameters like cy-

cle time, word size, pipelining, size of instructions, number
of ports and their size, program and data memory ports,
instruction prefetch buffer size, on-chip cache and its pa-
rameters, write and read buffers.
In figure 4 an abstract architectural model of a proces-

sor is shown with five stage instruction pipeline, instruction
prefetch, write and read buffer. Dotted arrows show the re-
quest and ack and solid arrows show flow of information of
transaction like amount of data to be transferred.
As we are interested only in terminal behavior and delays,

we have classified instruction in four generic classes. Table 1
shows the instruction classification along with their selected
application and architectural parameters used to define a
processor model. Distribution of size of clustered load and
store is helpful in capturing the bursty nature of application
for memory access. We describe in detail modeling of write
and read buffers in Sections 4.5 and 4.6.
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Figure 4: Abstract Architectural Model of A Pro-
cessor

For modeling instruction pipeline, generic instruction ex-
ecution templates are defined for each class of instructions
which can be parameterized for the specific architecture. A
cycle increment model is adopted. In this model we assume
the ideal pipeline performance to be one CPI. Effect of haz-
ards like stalls, pipeline flush etc. are counted by simply
inserting a number of additional penalty cycles.
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4.2 Application Specific Hardware Model
There is no notion of memory access for instruction fetch

in application specific hardware. However memory com-
munication is required for accessing data before and after
processing. In case the data itself is large then memory ac-
cesses are required even during processing. The performance
of an application depends on the available FUs, pipelined
and non-pipelined implementation, data access time from
memory etc. Hardware implementation determines the rate
of external data access. Performance of application spe-
cific hardware considering fixed penalty for data access can
be evaluated by simply scheduling operations considering
available FUs. However to determine overall performance
we have to add data access time which itself is a function of
effective memory bandwidth. In our hardware model we use
a hardware estimator[3], which gives estimated execution
time of application on hardware excluding external data ac-
cess. Table 2 shows considered application parameters for
application specific hardware.

Application Pa-
rameter

Description

Execution Time Obtained from hardware estimator.
Read Data Size Dis-
tribution

Frequency of various data sizes for
reads (in words).

Write Data Size Dis-
tribution

Frequency of various data sizes for
write (in words).

Read Distance Dis-
tribution

Frequency of distances between two
successive reads (in number of cy-
cles).

Write Distance Dis-
tribution

Frequency of distances between two
successive writes (in number of cy-
cles).

Table 2: Application Parameters for H/W

4.3 Memory Model
Features for memory that have been considered include

cycle time, word size, access latency, degree of inter-leaving
and number of ports.
Delay models have been used for memory. Using delay

model the total memory busy time is calculated. One of the
delay models used to calculate the time for which memory
remains busy is given below:

MCR = �BusCycleTime×(ReqBusWords−1)+MemLatency
MemoryCycleTime

�

Where MCR is required memory cycles and ReqBusWords
is the number of bus words requested for memory access.

4.3.1 Cache Model
Features of cache considered are type of cache (I-cache,

D-cache and unified cache), capacity, line size, access time
and write policy. Application parameters extracted are hit-
ratio and dirty line probability. We obtain this information
from Dinero IV cache simulator [5].
Defining mean miss distance (mmd) in number of hits, we

generate next cache (nm) miss randomly, assuming expo-
nential inter miss distance using a uniform random number
generator in the interval zero and one (U[0, 1]).

mmd =
hit ratio

1 − hit ratio
and nm = −mmd ∗ log (U [0, 1])

4.4 Bus Model
Considered features are cycle time, data width, burst/non-

burst transfers, arbitration type, components connected. Even
though we have only validated bus based systems, the frame-
work is not specifically meant for buses only and one can
plug any type of interconnection model.

4.5 Write Buffer Model
Write buffers are subcomponents used to improve proces-

sor performance. Memory write stalls are reduced by using
write buffers. Just considering Store Instruction Distribu-
tion is not sufficient for performance evaluation of proces-
sors with write buffers, because performance of write buffers
depends upon the time interval of store instructions. To cap-
ture this behavior we compute either the store instruction
distance distribution or build a Markov model.

Store Instruction Distance Distribution is the dynamic in-
struction distance between store instructions. During sim-
ulation, next buffer distance is determined from this distri-
bution on occurrence of a write to the buffer.
The above model can be improved by modeling distances

between stores using Markov Chains in terms of basic op-
erations. At any occurrence of store, next distance is de-
termined from the distance distribution for the current dis-
tance. This is explained by the following example:

for (i = 0; i < 50; i ++) do
for (j = 0; i < 100; j ++) do
A[i] = i*j;

end for
end for

Distance
9

Distance
     5

99

49

1 1
mov
mul
store
incr
compare
jump
incr
compare
jump

D
is

ta
n
ce

 i
n
n
er

 l
o
o
p
 =

 5

D
ista

n
ce o

u
ter lo

o
p
 =

 9

Basic operations of example code

Figure 5: Markov model Store Distance

A Markov model is shown in figure 5, where a state repre-
sent a distance of stores. Index variables are stored in regis-
ters and arrays are stored in memory and accessed through
load and store instructions. In this case, the distance be-
tween two array assignment is 5 and in each iteration of
outer loop this distance occurs 99 times. 100th time it goes
to outer loop and that makes a distance of 9.

4.6 Read Buffer Model
Read buffers are data prefetch buffers which are used in

systems where the reading of data are predictable in ap-
plication. Media applications are examples of such applica-
tions. For example, consider convolution computation where
a mask is moved on an image frame. Processing time for
each move is fixed and the pixels to be processed in the next
move are known. In such cases, data read requests can be
put much earlier than their actual need. It improves the
data read delays in systems.
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Features Parameters
Word Size 32-bit
Cycle Time 10 ns
Pipelined 3 stage
Cache Unified 8KB, WTNWA

Write Buffers 4 addresses, 8 words
Memory 40 ns, 32-bit,no inter-leaving

Bus Cycle Time 40 ns, 32-bit

Table 3: ARM710a based uni-processor system
specifications

To model read buffer, we need information about read re-
quests sent to the read buffer, as well as the points where
data is actually read from buffer during execution. Relevant
application parameters that we have used are Data Read Re-
quest Size Distribution, Data Read Request Distance Distri-
bution and Buffer Read Distance Distribution, which is the
distribution of distances between consecutive buffer reads
for which requests have been already placed. As explained
in the write buffer models, Markov models may also be used.

5. VALIDATION
In order to validate our models and simulation method-

ology with existing architectures and simulators, we use
ARM710a and Cradle UMS [10] as uni-processor and mul-
tiprocessor architectures respectively. The ARM simulator,
ARMulator was running on an HP PA-RISC platform with
HP-UX and the UMS architecture simulator was running on
Pentium class workstation with MS Windows. The experi-
mental setups and results are explained as follows.

5.1 Uni-Processor System
We have used ARM710a processor with a bus and a mem-

ory. Specifications of our interest are given in table 3. Ex-
periments have been done for various benchmarks mentioned
in table 4. The biquad N section program, part of DSP-
kernel benchmark suite [11], performs filtering of input val-
ues through N biquad IIR sections. lattice init calculates
the output of a lattice filter, me ivlin is a media applica-
tion, mainly consisting of integer arithmetics, whereas ma-
trix mult implements multiplication of 2D matrices.
Results have been validated against the ARMulator, a

functional simulator for ARM processor family and provides
cycle-counts. We have compared the performance numbers
that can be extracted from ARMulator simulation informa-
tion and are shown in table 4. In the last column, if the
values of metric are absolute then percentage error has been
considered. On the other hand if values of metric are already
in percentage then only the absolute difference has been con-
sidered. Host times shown in Our Simulation columns are
the convergence times. It is clear from comparison that the
simulation results are within 10% of ARMulator results and
convergence time is much less then the time taken by AR-
Mulator. Convergence time is independent of size-of appli-
cation, where size is in terms of code and execution time,
but depends upon the variance in various distributions.

5.2 Muli-Processor System
Validation for multiprocessor systems has been done for

Cradle Technologies UMS (Universal Micro System) [10].
The UMS is a single chip stream-processing architecture,
consisting of clusters of processors connected by a 64-bit

Performance ARMu- Our Diff.
Metric lator Simulator Abs./%

lattice init
CPI 4.5237 4.34092 4.04 %
Bus Util.(%) 65.2032 70.6239 -5.42
Bus Bandw.(MB/sec) 21.7344 23.5468 8.33 %
Processor Util.(%) 74.9857 64.3639 10.62
Host Time(sec) 5.37 1.9

biquad N sections
CPI 2.5143 2.598 -3.32 %
Bus Util.(%) 73.877 74.3893 -0.51
Bus Bandw.(MB/sec) 24.6259 24.797 -0.69 %
Processor Util.(%) 72.082 67.135 4.94
Host Time(sec) 9.69 2.0

me ivlin
CPI 1.2855 1.30945 -1.86 %
Bus Util.(%) 4.14 3.64982 0.490
Bus Bandw.(MB/sec) 1.3466 1.2166 9.65 %
Processor Util.(%) 98.91 97.2309 1.67
Host Time(sec) 17.07 2.1

matrix mult
CPI 2.11386 2.08219 1.49 %
Bus Util.(%) 50.06422 48.3603 1.70
Bus Bandw.(MB/sec) 16.6880 16.1200 3.40 %
Processor Util.(%) 92.8949 95.887 -2.99
Host Time(sec) 17.53 2.3

Table 4: Comparison between ARMulator and our
simulation results for ARM710a based uni-processor
system

high bandwidth global bus. These processor clusters, called
Quads, communicate with external DRAM and I/O inter-
faces. A Quad of the UMS is shown in Figure 6. Each
Quad consists of 4 RISC-like non-pipelined processors called
PEs, 8 DSP-like processors called DSEs, a local 16KB data
memory, a local 12KB instruction memory/cache, a memory
transfer engine, a local 64-bit data bus and 64-bit instruc-
tion bus. Each DSE has a read and write buffer.

0123PE PE PE PE

DSEDSEDSEDSEDSEDSEDSEDSE
0123457 6
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Instruction
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Cache/
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Memory

Data Bus
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Figure 6: A Quad of UMS architecture

Modeling of DSE has been done as application specific
hardware because it has large number of registers and its
own local instruction memory.
A 720x480 colored image filter application has been used

as benchmark. Two quads i.e. 8 PEs and 16 DSEs are
used for filtering. Image is divided in 16 independent groups
each having 30 consecutive rows and each DSE processes one
group of rows. A copy of filter program is mapped to each
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DSE, whereas PEs are only used to initialize and control
DSEs.
Table 5 shows the comparison of various performance num-

bers interpreted from SSi (Soft Silicon), a UMS architecture
simulator and simulation performed by our simulator. As
the same application is mapped to all similar DSEs and
same function is performed by all used PE, results for all
PEs, and DSEs are identical. Again here we have compared
only the metrics that are can be either extracted or available
by SSi results.

Performance SSi Our Diff.
Metric Simulator Simulator Abs./%
PE CPI 5.80161 5.950668 -0.02569 %
DSE 21.262 23.974 -2.712
Utilization(%)
Local Data Bus 38.329 35.606 2.723
packets/cycle(%)
Global Bus 11.698 8.717 2.981
packets/cycle(%)
Host Time (sec) 1380 14
1 frame

Table 5: Comparison of performance numbers of our
simulation with UMS’s SSi simulator

Host times shown in Our Simulation column is the con-
vergence time. It is clear from comparison that the simu-
lation results are again within 10% of SSi simulator results
and convergence time is much less then the time taken by
SSi simulator. Figure 7 shows the convergence of PE uti-
lization. SSi simulation takes 66285280 UMS cycles for one
frame processing, but our simulation converges within 2%
much before 100000 cycles of simulation.

6. CONCLUSION AND FUTURE WORK
We have presented a probabilistic model based simulation

methodology for performance evaluation. This is a faster
technique as compared to cycle-accurate simulation, it can
be used in early system design phase to narrow down the
design alternatives. Even though simulation converges very
fast, it depends upon the variance of application parameter
distributions. We need to develop a technique to prepro-
cess this distribution to ensure a fast convergence. Accord-
ing to our experience with this research, the models can be

extended for system-level power estimations. Presently we
have modeled only RISC type processors, more efforts are
needed to model architectures like VLIW, superscalar and
multithreaded processors.
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