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ABSTRACT 
Modeling for synthesis and modeling for simulation seem to be 
two competing goals in the context of C++-based modeling 
frameworks. One of the reasons is while most hardware systems 
have some inherent parallelism efficiently expressing it depends 
on whether the target usage is synthesis or simulation. For 
synthesis, designs are usually described with synthesis tools in 
mind and are therefore partitioned according to the targeted 
hardware units. For simulation, runtime efficiency is critical but 
our previous work has shown that a synthesis-oriented description 
is not necessarily the most efficient, especially if using 
multiprocessor simulators. Multiprocessor simulation requires 
preemptive multithreading but most current C++-based high level 
system description languages use cooperative multithreading to 
exploit parallelism to reduce overhead. We have seen that, for 
synthesis-oriented models, along with adding preemptive 
threading we need to transform the threading structure for good 
simulation performance. In this paper we present an algorithm for 
automatically applying such transformations to C++-based 
hardware models, ongoing work aimed at proving the equivalence 
between the original and transformed model, and a 62% to 76% 
simulation time improvement on a dual processor simulator. 

Categories and Subject Descriptors: B.6.3 Design Aids---
Simulation 
General Terms: Algorithms, Performance, Design. 
Keywords: System-level Design, Simulation, SystemC. 

1. INTRODUCTION 
Simulation efficiency is generally one of the critical aspects of a 
design model and that can be especially true in design space 
exploration. With the advent of System-on-Chip designs a need 
for efficient system level models arose and C++-based high-level 
modeling frameworks    (e.g. SystemC[14] and others[1][9]) were 
developed to address that need. As designers progress towards  
system level models, even for architectural exploration, they seek 
behavioral synthesis tools[2] that allow them to simulate and 
synthesize hardware from the same models. This requires models 
that are efficient for both synthesis and simulation. Since 
hardware designers usually develop models with synthesis (i.e. 
implementation structure) in mind we want to improve simulation 

speed without imposing on designers a specialized modeling style 
just for simulation. 

Most hardware designs have some level of concurrency and 
therefore some inherent parallelism. When considering simulation 
efficiency, it is common to rely on concurrency enhancements 
and management techniques (i.e. multithreading, multiprocessing) 
for improved performance. Cooperative multithreading currently 
seems to be the choice for the simulation kernels of most 
modeling frameworks as it provides efficient implementations due 
to low runtime overhead. However, as we seek to further improve 
simulation performance (by exploiting the inherent design 
parallelism) through the use of multiprocessing we must from 
cooperative to preemptive multithreading in the simulation 
kernels. Our previous work[4] has shown however that simply 
switching simulation kernels from cooperative threading to 
preemptive threading does not improve simulation performance 
but rather degrades it. This is due to potentially high threading 
overheads if the threading structure of the model is not 
judiciously created. Further insight into the structure of models 
was needed to improve multiprocessor simulation performance. 
We started from the fact that, if we consider SystemC processes 
to be tasks and dataflow through signals to be messages passed 
between them, then such a description can be viewed as a task-
based[12] model. It was however shown, in the context of 
communication protocol implementation, that for multithreaded 
execution, a message-based model would be more efficient but 
this requires a structural change of the model as to align it to the 
new threading structure. As hardware designers are used to the 
task-based design style, first because it is a natural way of 
modeling concurrency and second since synthesis tools are also 
targeted to suit such a modeling style, we do not want to impose a 
new modeling style that is to be used for efficient simulation only. 
But can we transparently convert a given task-based SystemC 
description into a message-based description such that simulating 
the transformed version can improve multiprocessor simulation 
performance? In [11] we showed what transformations are needed 
and that such restructuring indeed benefits the simulation 
performance. In this paper we describe how to automatically 
apply those transformations and generate code for efficient 
multiprocessor simulation while also giving some insight into the 
ongoing work aimed at proving the semantic equivalence of the 
transformed models to the original models. 

2. ALGORITHM DESCRIPTION 
Intuitively the transformations we developed identify new 
execution paths through a SystemC description of a design such 
that they are fewer and have longer execution times between 
synchronization points than the execution paths defined by the 
SystemC simulation kernel for the same design. This should help 
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control the runtime overhead due to preemptive threading and 
thus provide efficient execution of the simulation on a 
multiprocessor simulator.  

In Figure 1 we present an overview of the algorithm. The first 
step is to analyze the SystemC description and extract the 
information needed to restructure the design. Processes and 
signals present in the description are identified along with 
information about their types and interactions. The processes are 
then decomposed into indivisible pieces called Atomic Process 
Units (APUs). The APUs are further structured into APU graphs 
using the inherent C/C++ sequencing and also the sequencing 
imposed by control signals present in the design description. We 
then apply scheduling and sequentializing algorithms to the APU 
graphs defined above and thus define new execution paths 
through the system that can be then be mapped onto threads. As a 
last step we generate a semantically equivalent system description 
that uses the newly created threads. 

Figure 2 outlines in pseudo code the steps we just presented. 
Although our algorithm is tailored for SystemC, it could easily be 
adapted for other C++-based high-level modeling frameworks.  

We illustrate the steps in our algorithm using a Direct Memory 
Access (DMA) example model. The SystemC implementation has 
four modules implemented as SC_CTHREAD processes and 
Figure 3(a) shows the high-level interaction between the modules.  

If we implement this example by simply creating a thread for each 
process, multiprocessor simulation performance would suffer 
from high overhead due to frequent thread synchronization (i.e. 
on each cycle). We therefore need to restructure the threads to 
better fit a multiprocessor environment. For this we need to refine 
our high-level view in Figure 3(a) to better understand the 
interaction between these modules. This will allow us to 
automatically extract the system execution paths for concurrency 
reassignment[11]. 

2.1 SystemC Analysis 
For that we must first understand the design’s structure and the 
interactions within it. Therefore we need to represent the 

information collected with two major tasks in mind: source-level 
code transformations (needed to restructure and reassign 
concurrency) and code generation (containing complete system 
functionality and resembling the input code as closely as 
possible). The latter is particularly important since a designer 
should be able to easily identify his code in the output code for 
design closure. To satisfy these requirements we represent the 
source SystemC code as a class hierarchy with underlying 
Hierarchical Task Graphs (HTGs)[5] representing functionality 
for each class. The class hierarchy allows us to perform whole-
program transformations (e.g. signal connectivity) while the 
underlying HTGs guarantee that sufficient source information is 
retained for source-level transformations and code generation. 

An important part of the SystemC description are signal 
definitions and port connections as they define processes 
interconnections. SystemC signals are undirected so we have to 
determine the direction of communication by analyzing the 
process code. 

For our DMA example, the class hierarchy is straightforward: one 
class for each component in the system containing a single 
SC_CTHREAD process. As for the signals present in the system, 
they are identified in Figure 3(a) as undirected. 

2.2 Process Analysis 
Once the class hierarchy and HTGs are created we can analyze 
the source code to identify all the processes and their properties  
(types in particular). The types can be identified from the 
callbacks registered by the constructors of each class which define 
them as SC_METHOD(), SC_THREAD(), or SC_CTHREAD(). 
The type information later used to divide a process into APUs. 
We also determine how processes communicate with each other. 
The signal information previously collected is further refined into 
a process graph as shown in Figure 3(b). Signals are analyzed for 
their direction of communication and the process source code is 
used to determine if a signal is a data signal or a control signal. A 
data signal allows processes to exchange data whereas a control 
signal is primarily used to determine when a dependent process 
can resume its execution. In our example, Figure 3(b) has data 
signals represented by normal lines and control signals 
represented by bold lines. By analyzing the source code we can 

Figure 1. Algorithm Flow 

Figure 2. Algorithm Pseudo-Code 
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determine that the Controller process uses control signal Start to 
notify the DMA process that it should start a new transfer and 
also waits on the control signal Done for acknowledgement of 
transfer completion. What remains to be determined is in which 
order are these signals activated. Intuitively, if we follow the 
control signals, we follow the execution paths through the system. 

But the process graph is still too coarse to allow us to effectively 
determine the execution paths and restructure the graph for better 
concurrency. In the original SystemC description two processes 
can have a sizeable set of signals to handshake on. We divide 
processes into APUs to such reduce interprocess dependences. By 
identifying the APUs for each process we seek to refine the 
interaction between processes by reformulating it at the APU-
level. This has a two-fold benefit: a reduction in the size of 
handshake signal sets and reduction of the impact of such signals 
by reducing their control footprint. This leads to more freedom in 
scheduling APUs relative to each other that would have been 
allowed by the scheduling the whole processes. 

We therefore break up the processes into smaller independent (in 
respect to control signals) units (i.e. APUs) using the control 
signal information. 

2.3 APU Generator 
An APU represents the part of a process that will execute within 
one invocation of the Execute phase by the SystemC simulation 
kernel[14]. It is the smallest part of a process that the scheduler 
kernel is aware of (hence the atomic quantifier) and has a single 
activating control signal1. 

To determine the APUs of a process we need to consider the 
process type, synchronization points and incoming control 
signals. A synchronization point is, in general2, marked by the 
presence of a wait() statement in the process source code. 
However, a method process is executed until it finishes for each 
invocation (i.e. no wait() calls) and thus it is a single APU. For 
thread and clocked thread processes we use calls to wait() and 
control signals to determine APU boundaries. We first slice[7] the 
process once for each incoming control signal. The resulting 
slices are then divided into APUs using the synchronization points 
still present in each slice. Any calls to wait() are finally removed 
from the APUs but control signals that they are waiting on (i.e. 
CSuse - the set of control signals they are activated by) are 
                                                                 
1 A logical composition of signals that can be seen as a single signal 
2 For simplicity we consider here only wait() statements 

associated with the respective APU. We also associate processes 
with the control signals they update (i.e. CSdef - the set of control 
signals that they activate). For loops containing control signal 
operations we need only generate APUs for the loop body code 
and maintain the loop APU flow. 

Currently we assume that synchronization points are not present 
in the branches of if statements. If such points are allowed inside 
if statements the problem of dividing processes into APUs and 
determining the execution paths is complicated by the increased 
potential for deadlock. There are however some if statements that 
can be handled by our algorithm. Consider the code in Figure 
4(a). It shows the implementation of one of the memory units. 
The code checks if the control signal read is active. If so, the then 
branch is taken containing the code needed to perform a read 
operation. Otherwise the write signal is checked and, if true, the 
actions needed to perform a write are taken. This example 
apparently has synchronization points within the branches of an if 
statement. However, to determine the statements that are needed 
for a particular APU we must first slice the code based on each 
enabling control signal that reaches the process. Let us assume, 
for example, that the enabling signal was determined to be control 
signal read. After slicing, the memory unit process will only 
consist of the section highlighted in Figure 4(b). As we can see, 
that code segment has no if statements and it can therefore be 
easily divided into APUs using the remaining synchronization 
points. Similar results are obtained if slicing is done on the write 
control signal. Therefore our restriction regarding if statements 
and synchronizing events applies to the process slices rather than 
the source process code.  

We can finally create the APU graph for a process while taking 
into account the control flow imposed by the original C++ code. 
Consider the example in Figure 5(a) showing pseudo-SystemC 
code for the controller unit and the resulting APU graph in Figure 
5(b). The source code was divided into three APUs that were 
connected by the sequencing provided in the C++ code. Similarly 
we added the control signal information to the graph thus 
connecting the APUs that activate a control signal to the APUs 
that are activated by that control signal.  

While constructing the APU graphs we also have to account for 
regular data dependences. Intra-process data dependences are 
accounted for by the C++ sequencing. The possible use of global 
and module-global variables would imply that they should also 
account for inter-APU dependences. However, the SystemC 
functional description[14] indicates that the simulation kernel 

Figure 4. Process Slicing on a Control Signal 
Figure 3. DMA SystemC Example 
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neither enforces nor guarantees an order of execution for the 
processes. Thus, if processes depend on global or module global 
variables for synchronization, the results can be undetermined and 
these dependences can be ignored. 

2.4 Scheduler 
The APU graph constructed defines a partial ordering on the 
execution of APUs. Before we can obtain a full ordering a 
preliminary step is needed that concerns SystemC SC_THREAD 
and SC_CTHREAD processes. These are generally modeled as 
infinite loops encompassing the actual functionality of the 
process. We can use the structural nature of the HTGs to identify 
the loop bodies of such processes and discard the rest of the loop 
construct. 

To fully order the APU execution we apply a scheduling 
algorithm (e.g. ASAP) to the APU graph. This results in an APU 
schedule were several APUs can be executed at each step. Since 
we want to finally generate a thread of execution we have to 
sequentialize the scheduled graph. In general sequentializing is a 
straightforward process that traverses the graph breadth-first. 
However we need to ensure that the resulting code corresponds to 
the SystemC simulation semantics. 

The diagram in Figure 6(b) represents a fragment of the APU 
flow diagram in Figure 7 and it is the result of the code in Figure 
6(a). To make Figure 7 more readable certain APUs were not 
included. One such APU is an example of a common occurrence 
when modeling hardware: a signal is pulsed to indicate the 
occurrence of a specific event. Such is the case with the Done 
control signal for the memory modules. Once data is available on 
the data bus the Done signal is raised and held for one cycle as 
shown in the code in Figure 6(a). To understand how scheduling 
would handle this we have to consider the dependences that are 
involved. DropDone has a flow dependence (due to C++-imposed 
sequencing) on MemDone while GetD1 has a control signal 
dependence (due to process communication) on MemDone. 
Therefore both will be scheduled after MemDone and possibly in 
the same scheduling step. However, since we are not using the 
SystemC signal update semantics (i.e. signals are updated at end 
of delta cycles) correct behavior is obtained only if 
sequentializing favors control signal dependences over flow 
dependences present at the same level in the graph. In this case a 
sequence of MemDone, GetD1, DropDone leads to correct 
simulation results. 

After sequentializing we have obtain the execution paths through 
the system’s APUs. Figure 7 shows one such possible execution 

path for our DMA example corresponding to a memory transfer 
from Mem1 to Mem2. There is a similar path corresponding to the 
reverse transfer: Mem2 to Mem1. The graph nodes represent the 
APUs that processes have been divided into (again some APUs 
have been omitted for clarity). The solid arcs between APUs 
reflect sequencing imposed by the input description (i.e. control 
flow dependences). The dotted arcs reflect sequencing imposed 
by the control signal analysis performed by our algorithm (i.e. 
control signal dependences) and are labeled with the signal that 
generate them. Finally the numerically labeled arcs represent the 
final sequence of APUs that make up the path of execution 
through the system for a transfer from Mem1 to Mem2. 

2.5 Code Generator 
In the final step we generate output SystemC-like C/C++ code for 
the transformed description. Some preprocessing is however 
required. Recall that in SystemC thread and clocked thread 
process functionality is enclosed in an infinite loop. For example, 
the dotted line from MemDone to WaitStart in Figure 7 shows the 
back arc of the infinite loop in the implementation of Mem1. This 
loop is needed so that the memory module is ready to service 
another request after finishing the previous one. However, since 
we have restructured the system flow to explicitly call the 
WaitStart APU when its controlling signal is activated the infinite 
loop construct is no longer needed. Other loops ca similarly be 
removed but there are cases where that is not possible. For 
example, for the Controller module we have to leave the loop in 
place since it lacks any incoming control signal (e.g. the process 
gets its signal values from a test bench). 

The code generator is also responsible for generating the code that 
defines the main execution routine and for managing thread 
execution and synchronization in the newly restructured system. 
As code is generated for the new execution paths, the question 
arises of how much of them can be mapped onto threads that can 
then be executed simultaneously. In our DMA example we could 
create a thread that comprises the whole system but each such 
thread will have to wait for the previous thread to finish before it 
can execute due to data dependences on the memory array 
accesses. This will result in the threads actually executing 
sequentially and therefore would not provide any simulation 
speedup. We have to therefore try to identify smaller sections of 
the execution paths that we can map onto threads and execute 
simultaneously. As in traditional software compilation, we give 

Figure 6. Controller APU Decomposition 

Figure 5. Handling a Signal Pulse 
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special attention to any loops present in the description. Since 
applications spend most of their execution time in loops 
improvements to loop runtimes translate into good overall runtime 
improvements. The DMA module has such a loop corresponding 
to the iteration until all the data has been transferred. Since we 
would like to issue multiple instances of this thread 
simultaneously we need to analyze the path being considered (i.e. 
bold line segments 7 through 16 in Figure 7) for loop-carried 
dependences (both control and data). If they exist, we need to 
enforce them by inserting thread synchronization events between 
any APUs involved in dependences to ensure that the threads 
execute those APUs in the proper order. In our example there are 
no dependences so the threads do not have to wait for each other 
nor does the issuing thread need to wait for threads to finish 
before issuing more. This will result in almost linear improvement 
in the loop execution time for this example but in general some 
synchronization will be necessary. 

3. TRANSFORMATION CORRECTNESS 
One aspect that needs to be addressed is the correctness of our 
algorithm or in other words that the resulting model is 
semantically equivalent to the original SystemC description. We 
will sketch our strategy of proving such an equivalence using the 
notions of communicating sequential processes (CSP)[6] and 
proof-carrying compiler. Note that, once we precisely 
characterize the classes of SystemC models on which our 
algorithms will work, we will have the transformed code 
equivalent (i.e. by construction) to the original. However, since 
we do not have a precise characterization, currently we manually 
generate a proof of correctness with each transformation. 

3.1 Proof-Carrying Compiler 
The idea of proof carrying compiler is that, when a source 
program PS is compiled into a target program PT, the proof that PS 
is equivalent to PT is also generated during the compilation 
process. In our case the original model PO and the final model PF 

have to be proven equivalent. This means that all possible APU 
sequences that occur when simulating PO are also possible in PF 
modulo shuffling on non-local actions (i.e. APU order within PF 
will maintain the local APU order present in PO). Any safety 
property tested on the transformed design PF would also hold for 
the original design PO due to this equivalence. Considering the 
DMA example we can illustrate how the compiler could generate 
the communicating sequential processes expressions from the 
original and the transformed APU graphs and then use a trace 
equivalence algorithm to prove their equivalence. 

3.2 Communicating Sequential Processes 
CSP is a process algebra, in which communicating processes can 
be described using terms over an alphabet of atomic actions and 
various operators. The operators we use in the following example 
are: the sequencing operator →, the choice operator |, and the 
parallel composition operator ||. Further details on the semantics 
of these and other CSP operators and terms are discussed in [10]. 
However, given two process terms representing two models, the 
modulo shuffling trace equivalence between them is the 
equivalence relation semantically meaning that both models are 
capable of executing the same (albeit modulo shuffling) sequence 
of APUs. In case of the DMA example, we construct the CSP 
description of each module, in terms of their atomic actions, 
sequencing and choices. A parallel composition of the terms 
represents the model of the system. The trace set of this model 
should be equivalent to the trace set of the model obtained by 
concurrency reassignment. The trace equivalence is decidable, 
although EXPSPACE-hard[8]. A future version of the compiler 
will also generate CSP expressions for both the initial and 
restructured model and generate the equivalence proof or a 
counter example showing non-equivalence using modulo 
shuffling trace equivalence. However, details of this methodology 
are outside the scope of this paper. 

3.3 DMA Example 
To create CSP processes from our SystemC description we have 
to look at the source code from a control signal point of view. As 
we mentioned before, we associate each process with the control 
signals it activates or it is activated by. Thus we can define the 
alphabet of each process as the union of all such signals: 

defuse CSCSP ∪=α  

Referring to Figure 7 showing the DMA modules in terms of their 
APU graphs and the control dependence, we can obtain the CSP 
specification of the modules as follows:  

Mem1: 

BodyMemdonememFinishMem
FinishMemwriteFinishMemreadBodyMem

BodyMeminitMemMem
donememwritereadinitMemMem

11:1
11|11:1

11:1
}1,1,1,1{1

→=
→→=

→=
=α  

Mem2: 

BodyMemdonememFinishMem
FinishMemwriteFinishMemreadBodyMem

BodyMeminitMemMem
donememwritereadinitMemMem

22:2
22|22:2

22:2
}2,2,2,2{2

→=
→→=

→=
=α  

Controller: 

Figure 7. DMA Example Final APU Flow 
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BodyControllerxferDonexferStartBodyController
BodyControllerllerinitControController

xferDonexferStartllerinitControController

→→=
→=

=

:
:

},,{α  

DMA : 

DMAXferdonememwritedonememtoMM
DMAXferdonememwritedonememtoMM

DMABodyxferDonetoMMreadtoMMreadDMAXfer
DMAXferxferStartDMABody

DMABodyinitDMADMA
donememwrite

readdonememwritereadxferDonexferStartinitDMADMA

→→→=
→→→=

→→→=
→=

→=

=

112:12
221:21

|122|211:
:

:
}2,2

,2,1,1,1,,,{α
 

The entire system can be expressed as a CSP process through 
parallel composition of the 4 component modules which will 
account for the control dependence shown in Figure 3(b). 
Therefore the final CSP expression for our DMA example will be 
given by: 

2||1|||| MemMemDMAControllerlerDMAControl =  

The transformed model can be similarly expressed as CSP terms 
and it can be verified by inspection to be MS equivalent to the 
original model traces. 

4. IMPLEMENTATION AND RESULTS 
We have implemented the algorithm starting from an EDG C++ 
Front End[3] that allows us to fully support the latest C++ 
standards and easily generate output C/C++ code. To facilitate our 
analysis we have layered an HTG representation along with a 
class hierarchy on top of the EDG intermediate representation, 
and implemented various passes (e.g. data dependence analysis, 
constant propagation, dead code elimination, signal analysis, 
program slicing) however APU selection for thread mapping and 
CSP generation are still done manually.  

In [11] we showed simulation results for a simple RISC processor 
and an MP3 decoder. For this paper we applied our algorithm to 
the DMA example and also a few of the samples included with 
the SystemC 2.0 distribution[14]. We simulated both the original 
and transformed models on a dual processor machine. Table 1 
presents the experimental results and shows improved simulation 
performance. There is some overhead due to the use of 
preemptive threading in particular for the DMA example (as a 
result of not being able to extract a large enough thread of 
execution). 

5. CONCLUSION 
In this paper we presented an algorithm for threading structure 
transformation of C++ based system level models that allows 
hardware design models (i.e. designed for synthesis with the 
hardware structure in mind) to also efficiently target simulation 
and, in particular, multiprocessor simulation. Unlike software 
synthesis based on scheduling or quasi-scheduling[13], we can 
generate a coarsely multithreaded program so as to exploit 
multiprocessor simulators. Also, for now, we manually generate a 
proof of equivalence or counter example along with the 
transformation. This methodology is based on CSP trace 
equivalence but we are yet to characterize what classes of 
SystemC models will result in equivalent models after the 
transformation (the examples we have tried produced trace 
equivalent code). However, our future work is focusing on a 

necessary and sufficient characterization of the nature of SystemC 

models for which the transformation will always produce trace 
equivalent code. 
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Table 1. Simulation Results on a Dual Processor System 

Benchmark Original 
Time 

Threaded 
Time Speedup 

DMA 50.674 31.134 62.76% 

FIR 17.381 10.190 70.57% 

FFT 9.822 5.635 74.30% 

PKT_SWITCH 153.234 86.617 76.91% 
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