
Efficient Simulation of Synthesis-Oriented System Level
Designs

Nick Savoiu Sandeep K. Shukla Rajesh K. Gupta
Center for Embedded Computer Systems

University of California, Irvine
{savoiu, skshukla, rgupta}@cecs.uci.edu

ABSTRACT
Modeling for synthesis and modeling for simulation seem to be
two competing goals in the context of C++-based modeling
frameworks. One of the reasons is while most hardware systems
have some inherent parallelism efficiently expressing it depends
on whether the target usage is synthesis or simulation. For
synthesis, designs are usually described with synthesis tools in
mind and are therefore partitioned according to the targeted
hardware units. For simulation, runtime efficiency is critical but
our previous work has shown that a synthesis-oriented description
is not necessarily the most efficient, especially if using
multiprocessor simulators. Multiprocessor simulation requires
preemptive multithreading but most current C++-based high level
system description languages use cooperative multithreading to
exploit parallelism to reduce overhead. We have seen that, for
synthesis-oriented models, along with adding preemptive
threading we need to transform the threading structure for good
simulation performance. In this paper we present an algorithm for
automatically applying such transformations to C++-based
hardware models, ongoing work aimed at proving the equivalence
between the original and transformed model, and a 62% to 76%
simulation time improvement on a dual processor simulator.

Categories and Subject Descriptors: B.6.3 Design Aids---
Simulation
General Terms: Algorithms, Performance, Design.
Keywords: System-level Design, Simulation, SystemC.

1. INTRODUCTION
Simulation efficiency is generally one of the critical aspects of a
design model and that can be especially true in design space
exploration. With the advent of System-on-Chip designs a need
for efficient system level models arose and C++-based high-level
modeling frameworks (e.g. SystemC[14] and others[1][9]) were
developed to address that need. As designers progress towards
system level models, even for architectural exploration, they seek
behavioral synthesis tools[2] that allow them to simulate and
synthesize hardware from the same models. This requires models
that are efficient for both synthesis and simulation. Since
hardware designers usually develop models with synthesis (i.e.
implementation structure) in mind we want to improve simulation

speed without imposing on designers a specialized modeling style
just for simulation.

Most hardware designs have some level of concurrency and
therefore some inherent parallelism. When considering simulation
efficiency, it is common to rely on concurrency enhancements
and management techniques (i.e. multithreading, multiprocessing)
for improved performance. Cooperative multithreading currently
seems to be the choice for the simulation kernels of most
modeling frameworks as it provides efficient implementations due
to low runtime overhead. However, as we seek to further improve
simulation performance (by exploiting the inherent design
parallelism) through the use of multiprocessing we must from
cooperative to preemptive multithreading in the simulation
kernels. Our previous work[4] has shown however that simply
switching simulation kernels from cooperative threading to
preemptive threading does not improve simulation performance
but rather degrades it. This is due to potentially high threading
overheads if the threading structure of the model is not
judiciously created. Further insight into the structure of models
was needed to improve multiprocessor simulation performance.
We started from the fact that, if we consider SystemC processes
to be tasks and dataflow through signals to be messages passed
between them, then such a description can be viewed as a task-
based[12] model. It was however shown, in the context of
communication protocol implementation, that for multithreaded
execution, a message-based model would be more efficient but
this requires a structural change of the model as to align it to the
new threading structure. As hardware designers are used to the
task-based design style, first because it is a natural way of
modeling concurrency and second since synthesis tools are also
targeted to suit such a modeling style, we do not want to impose a
new modeling style that is to be used for efficient simulation only.
But can we transparently convert a given task-based SystemC
description into a message-based description such that simulating
the transformed version can improve multiprocessor simulation
performance? In [11] we showed what transformations are needed
and that such restructuring indeed benefits the simulation
performance. In this paper we describe how to automatically
apply those transformations and generate code for efficient
multiprocessor simulation while also giving some insight into the
ongoing work aimed at proving the semantic equivalence of the
transformed models to the original models.

2. ALGORITHM DESCRIPTION
Intuitively the transformations we developed identify new
execution paths through a SystemC description of a design such
that they are fewer and have longer execution times between
synchronization points than the execution paths defined by the
SystemC simulation kernel for the same design. This should help

Permission to make digital or hard copies of all or part of this work for
personal or classroom use is granted without fee provided that copies are
not made or distributed for profit or commercial advantage and that copies
bear this notice and the full citation on the first page. To copy otherwise, or
republish, to post on servers or to redistribute to lists, requires prior specific
permission and/or a fee.
ISSS ’02, October 2-4, 2002, Kyoto, Japan.
Copyright 2002 ACM 1-58113-562-9/02/0010…$5.00.

168

control the runtime overhead due to preemptive threading and
thus provide efficient execution of the simulation on a
multiprocessor simulator.

In Figure 1 we present an overview of the algorithm. The first
step is to analyze the SystemC description and extract the
information needed to restructure the design. Processes and
signals present in the description are identified along with
information about their types and interactions. The processes are
then decomposed into indivisible pieces called Atomic Process
Units (APUs). The APUs are further structured into APU graphs
using the inherent C/C++ sequencing and also the sequencing
imposed by control signals present in the design description. We
then apply scheduling and sequentializing algorithms to the APU
graphs defined above and thus define new execution paths
through the system that can be then be mapped onto threads. As a
last step we generate a semantically equivalent system description
that uses the newly created threads.

Figure 2 outlines in pseudo code the steps we just presented.
Although our algorithm is tailored for SystemC, it could easily be
adapted for other C++-based high-level modeling frameworks.

We illustrate the steps in our algorithm using a Direct Memory
Access (DMA) example model. The SystemC implementation has
four modules implemented as SC_CTHREAD processes and
Figure 3(a) shows the high-level interaction between the modules.

If we implement this example by simply creating a thread for each
process, multiprocessor simulation performance would suffer
from high overhead due to frequent thread synchronization (i.e.
on each cycle). We therefore need to restructure the threads to
better fit a multiprocessor environment. For this we need to refine
our high-level view in Figure 3(a) to better understand the
interaction between these modules. This will allow us to
automatically extract the system execution paths for concurrency
reassignment[11].

2.1 SystemC Analysis
For that we must first understand the design’s structure and the
interactions within it. Therefore we need to represent the

information collected with two major tasks in mind: source-level
code transformations (needed to restructure and reassign
concurrency) and code generation (containing complete system
functionality and resembling the input code as closely as
possible). The latter is particularly important since a designer
should be able to easily identify his code in the output code for
design closure. To satisfy these requirements we represent the
source SystemC code as a class hierarchy with underlying
Hierarchical Task Graphs (HTGs)[5] representing functionality
for each class. The class hierarchy allows us to perform whole-
program transformations (e.g. signal connectivity) while the
underlying HTGs guarantee that sufficient source information is
retained for source-level transformations and code generation.

An important part of the SystemC description are signal
definitions and port connections as they define processes
interconnections. SystemC signals are undirected so we have to
determine the direction of communication by analyzing the
process code.

For our DMA example, the class hierarchy is straightforward: one
class for each component in the system containing a single
SC_CTHREAD process. As for the signals present in the system,
they are identified in Figure 3(a) as undirected.

2.2 Process Analysis
Once the class hierarchy and HTGs are created we can analyze
the source code to identify all the processes and their properties
(types in particular). The types can be identified from the
callbacks registered by the constructors of each class which define
them as SC_METHOD(), SC_THREAD(), or SC_CTHREAD().
The type information later used to divide a process into APUs.
We also determine how processes communicate with each other.
The signal information previously collected is further refined into
a process graph as shown in Figure 3(b). Signals are analyzed for
their direction of communication and the process source code is
used to determine if a signal is a data signal or a control signal. A
data signal allows processes to exchange data whereas a control
signal is primarily used to determine when a dependent process
can resume its execution. In our example, Figure 3(b) has data
signals represented by normal lines and control signals
represented by bold lines. By analyzing the source code we can

Figure 1. Algorithm Flow

Figure 2. Algorithm Pseudo-Code

169

determine that the Controller process uses control signal Start to
notify the DMA process that it should start a new transfer and
also waits on the control signal Done for acknowledgement of
transfer completion. What remains to be determined is in which
order are these signals activated. Intuitively, if we follow the
control signals, we follow the execution paths through the system.

But the process graph is still too coarse to allow us to effectively
determine the execution paths and restructure the graph for better
concurrency. In the original SystemC description two processes
can have a sizeable set of signals to handshake on. We divide
processes into APUs to such reduce interprocess dependences. By
identifying the APUs for each process we seek to refine the
interaction between processes by reformulating it at the APU-
level. This has a two-fold benefit: a reduction in the size of
handshake signal sets and reduction of the impact of such signals
by reducing their control footprint. This leads to more freedom in
scheduling APUs relative to each other that would have been
allowed by the scheduling the whole processes.

We therefore break up the processes into smaller independent (in
respect to control signals) units (i.e. APUs) using the control
signal information.

2.3 APU Generator
An APU represents the part of a process that will execute within
one invocation of the Execute phase by the SystemC simulation
kernel[14]. It is the smallest part of a process that the scheduler
kernel is aware of (hence the atomic quantifier) and has a single
activating control signal1.

To determine the APUs of a process we need to consider the
process type, synchronization points and incoming control
signals. A synchronization point is, in general2, marked by the
presence of a wait() statement in the process source code.
However, a method process is executed until it finishes for each
invocation (i.e. no wait() calls) and thus it is a single APU. For
thread and clocked thread processes we use calls to wait() and
control signals to determine APU boundaries. We first slice[7] the
process once for each incoming control signal. The resulting
slices are then divided into APUs using the synchronization points
still present in each slice. Any calls to wait() are finally removed
from the APUs but control signals that they are waiting on (i.e.
CSuse - the set of control signals they are activated by) are

1 A logical composition of signals that can be seen as a single signal
2 For simplicity we consider here only wait() statements

associated with the respective APU. We also associate processes
with the control signals they update (i.e. CSdef - the set of control
signals that they activate). For loops containing control signal
operations we need only generate APUs for the loop body code
and maintain the loop APU flow.

Currently we assume that synchronization points are not present
in the branches of if statements. If such points are allowed inside
if statements the problem of dividing processes into APUs and
determining the execution paths is complicated by the increased
potential for deadlock. There are however some if statements that
can be handled by our algorithm. Consider the code in Figure
4(a). It shows the implementation of one of the memory units.
The code checks if the control signal read is active. If so, the then
branch is taken containing the code needed to perform a read
operation. Otherwise the write signal is checked and, if true, the
actions needed to perform a write are taken. This example
apparently has synchronization points within the branches of an if
statement. However, to determine the statements that are needed
for a particular APU we must first slice the code based on each
enabling control signal that reaches the process. Let us assume,
for example, that the enabling signal was determined to be control
signal read. After slicing, the memory unit process will only
consist of the section highlighted in Figure 4(b). As we can see,
that code segment has no if statements and it can therefore be
easily divided into APUs using the remaining synchronization
points. Similar results are obtained if slicing is done on the write
control signal. Therefore our restriction regarding if statements
and synchronizing events applies to the process slices rather than
the source process code.

We can finally create the APU graph for a process while taking
into account the control flow imposed by the original C++ code.
Consider the example in Figure 5(a) showing pseudo-SystemC
code for the controller unit and the resulting APU graph in Figure
5(b). The source code was divided into three APUs that were
connected by the sequencing provided in the C++ code. Similarly
we added the control signal information to the graph thus
connecting the APUs that activate a control signal to the APUs
that are activated by that control signal.

While constructing the APU graphs we also have to account for
regular data dependences. Intra-process data dependences are
accounted for by the C++ sequencing. The possible use of global
and module-global variables would imply that they should also
account for inter-APU dependences. However, the SystemC
functional description[14] indicates that the simulation kernel

Figure 4. Process Slicing on a Control Signal
Figure 3. DMA SystemC Example

170

neither enforces nor guarantees an order of execution for the
processes. Thus, if processes depend on global or module global
variables for synchronization, the results can be undetermined and
these dependences can be ignored.

2.4 Scheduler
The APU graph constructed defines a partial ordering on the
execution of APUs. Before we can obtain a full ordering a
preliminary step is needed that concerns SystemC SC_THREAD
and SC_CTHREAD processes. These are generally modeled as
infinite loops encompassing the actual functionality of the
process. We can use the structural nature of the HTGs to identify
the loop bodies of such processes and discard the rest of the loop
construct.

To fully order the APU execution we apply a scheduling
algorithm (e.g. ASAP) to the APU graph. This results in an APU
schedule were several APUs can be executed at each step. Since
we want to finally generate a thread of execution we have to
sequentialize the scheduled graph. In general sequentializing is a
straightforward process that traverses the graph breadth-first.
However we need to ensure that the resulting code corresponds to
the SystemC simulation semantics.

The diagram in Figure 6(b) represents a fragment of the APU
flow diagram in Figure 7 and it is the result of the code in Figure
6(a). To make Figure 7 more readable certain APUs were not
included. One such APU is an example of a common occurrence
when modeling hardware: a signal is pulsed to indicate the
occurrence of a specific event. Such is the case with the Done
control signal for the memory modules. Once data is available on
the data bus the Done signal is raised and held for one cycle as
shown in the code in Figure 6(a). To understand how scheduling
would handle this we have to consider the dependences that are
involved. DropDone has a flow dependence (due to C++-imposed
sequencing) on MemDone while GetD1 has a control signal
dependence (due to process communication) on MemDone.
Therefore both will be scheduled after MemDone and possibly in
the same scheduling step. However, since we are not using the
SystemC signal update semantics (i.e. signals are updated at end
of delta cycles) correct behavior is obtained only if
sequentializing favors control signal dependences over flow
dependences present at the same level in the graph. In this case a
sequence of MemDone, GetD1, DropDone leads to correct
simulation results.

After sequentializing we have obtain the execution paths through
the system’s APUs. Figure 7 shows one such possible execution

path for our DMA example corresponding to a memory transfer
from Mem1 to Mem2. There is a similar path corresponding to the
reverse transfer: Mem2 to Mem1. The graph nodes represent the
APUs that processes have been divided into (again some APUs
have been omitted for clarity). The solid arcs between APUs
reflect sequencing imposed by the input description (i.e. control
flow dependences). The dotted arcs reflect sequencing imposed
by the control signal analysis performed by our algorithm (i.e.
control signal dependences) and are labeled with the signal that
generate them. Finally the numerically labeled arcs represent the
final sequence of APUs that make up the path of execution
through the system for a transfer from Mem1 to Mem2.

2.5 Code Generator
In the final step we generate output SystemC-like C/C++ code for
the transformed description. Some preprocessing is however
required. Recall that in SystemC thread and clocked thread
process functionality is enclosed in an infinite loop. For example,
the dotted line from MemDone to WaitStart in Figure 7 shows the
back arc of the infinite loop in the implementation of Mem1. This
loop is needed so that the memory module is ready to service
another request after finishing the previous one. However, since
we have restructured the system flow to explicitly call the
WaitStart APU when its controlling signal is activated the infinite
loop construct is no longer needed. Other loops ca similarly be
removed but there are cases where that is not possible. For
example, for the Controller module we have to leave the loop in
place since it lacks any incoming control signal (e.g. the process
gets its signal values from a test bench).

The code generator is also responsible for generating the code that
defines the main execution routine and for managing thread
execution and synchronization in the newly restructured system.
As code is generated for the new execution paths, the question
arises of how much of them can be mapped onto threads that can
then be executed simultaneously. In our DMA example we could
create a thread that comprises the whole system but each such
thread will have to wait for the previous thread to finish before it
can execute due to data dependences on the memory array
accesses. This will result in the threads actually executing
sequentially and therefore would not provide any simulation
speedup. We have to therefore try to identify smaller sections of
the execution paths that we can map onto threads and execute
simultaneously. As in traditional software compilation, we give

Figure 6. Controller APU Decomposition

Figure 5. Handling a Signal Pulse

171

special attention to any loops present in the description. Since
applications spend most of their execution time in loops
improvements to loop runtimes translate into good overall runtime
improvements. The DMA module has such a loop corresponding
to the iteration until all the data has been transferred. Since we
would like to issue multiple instances of this thread
simultaneously we need to analyze the path being considered (i.e.
bold line segments 7 through 16 in Figure 7) for loop-carried
dependences (both control and data). If they exist, we need to
enforce them by inserting thread synchronization events between
any APUs involved in dependences to ensure that the threads
execute those APUs in the proper order. In our example there are
no dependences so the threads do not have to wait for each other
nor does the issuing thread need to wait for threads to finish
before issuing more. This will result in almost linear improvement
in the loop execution time for this example but in general some
synchronization will be necessary.

3. TRANSFORMATION CORRECTNESS
One aspect that needs to be addressed is the correctness of our
algorithm or in other words that the resulting model is
semantically equivalent to the original SystemC description. We
will sketch our strategy of proving such an equivalence using the
notions of communicating sequential processes (CSP)[6] and
proof-carrying compiler. Note that, once we precisely
characterize the classes of SystemC models on which our
algorithms will work, we will have the transformed code
equivalent (i.e. by construction) to the original. However, since
we do not have a precise characterization, currently we manually
generate a proof of correctness with each transformation.

3.1 Proof-Carrying Compiler
The idea of proof carrying compiler is that, when a source
program PS is compiled into a target program PT, the proof that PS
is equivalent to PT is also generated during the compilation
process. In our case the original model PO and the final model PF

have to be proven equivalent. This means that all possible APU
sequences that occur when simulating PO are also possible in PF
modulo shuffling on non-local actions (i.e. APU order within PF
will maintain the local APU order present in PO). Any safety
property tested on the transformed design PF would also hold for
the original design PO due to this equivalence. Considering the
DMA example we can illustrate how the compiler could generate
the communicating sequential processes expressions from the
original and the transformed APU graphs and then use a trace
equivalence algorithm to prove their equivalence.

3.2 Communicating Sequential Processes
CSP is a process algebra, in which communicating processes can
be described using terms over an alphabet of atomic actions and
various operators. The operators we use in the following example
are: the sequencing operator →, the choice operator |, and the
parallel composition operator ||. Further details on the semantics
of these and other CSP operators and terms are discussed in [10].
However, given two process terms representing two models, the
modulo shuffling trace equivalence between them is the
equivalence relation semantically meaning that both models are
capable of executing the same (albeit modulo shuffling) sequence
of APUs. In case of the DMA example, we construct the CSP
description of each module, in terms of their atomic actions,
sequencing and choices. A parallel composition of the terms
represents the model of the system. The trace set of this model
should be equivalent to the trace set of the model obtained by
concurrency reassignment. The trace equivalence is decidable,
although EXPSPACE-hard[8]. A future version of the compiler
will also generate CSP expressions for both the initial and
restructured model and generate the equivalence proof or a
counter example showing non-equivalence using modulo
shuffling trace equivalence. However, details of this methodology
are outside the scope of this paper.

3.3 DMA Example
To create CSP processes from our SystemC description we have
to look at the source code from a control signal point of view. As
we mentioned before, we associate each process with the control
signals it activates or it is activated by. Thus we can define the
alphabet of each process as the union of all such signals:

defuse CSCSP ∪=α

Referring to Figure 7 showing the DMA modules in terms of their
APU graphs and the control dependence, we can obtain the CSP
specification of the modules as follows:

Mem1:

BodyMemdonememFinishMem
FinishMemwriteFinishMemreadBodyMem

BodyMeminitMemMem
donememwritereadinitMemMem

11:1
11|11:1

11:1
}1,1,1,1{1

→=
→→=

→=
=α

Mem2:

BodyMemdonememFinishMem
FinishMemwriteFinishMemreadBodyMem

BodyMeminitMemMem
donememwritereadinitMemMem

22:2
22|22:2

22:2
}2,2,2,2{2

→=
→→=

→=
=α

Controller:

Figure 7. DMA Example Final APU Flow

172

BodyControllerxferDonexferStartBodyController
BodyControllerllerinitControController

xferDonexferStartllerinitControController

→→=
→=

=

:
:

},,{α

DMA :

DMAXferdonememwritedonememtoMM
DMAXferdonememwritedonememtoMM

DMABodyxferDonetoMMreadtoMMreadDMAXfer
DMAXferxferStartDMABody

DMABodyinitDMADMA
donememwrite

readdonememwritereadxferDonexferStartinitDMADMA

→→→=
→→→=

→→→=
→=

→=

=

112:12
221:21

|122|211:
:

:
}2,2

,2,1,1,1,,,{α

The entire system can be expressed as a CSP process through
parallel composition of the 4 component modules which will
account for the control dependence shown in Figure 3(b).
Therefore the final CSP expression for our DMA example will be
given by:

2||1|||| MemMemDMAControllerlerDMAControl =

The transformed model can be similarly expressed as CSP terms
and it can be verified by inspection to be MS equivalent to the
original model traces.

4. IMPLEMENTATION AND RESULTS
We have implemented the algorithm starting from an EDG C++
Front End[3] that allows us to fully support the latest C++
standards and easily generate output C/C++ code. To facilitate our
analysis we have layered an HTG representation along with a
class hierarchy on top of the EDG intermediate representation,
and implemented various passes (e.g. data dependence analysis,
constant propagation, dead code elimination, signal analysis,
program slicing) however APU selection for thread mapping and
CSP generation are still done manually.

In [11] we showed simulation results for a simple RISC processor
and an MP3 decoder. For this paper we applied our algorithm to
the DMA example and also a few of the samples included with
the SystemC 2.0 distribution[14]. We simulated both the original
and transformed models on a dual processor machine. Table 1
presents the experimental results and shows improved simulation
performance. There is some overhead due to the use of
preemptive threading in particular for the DMA example (as a
result of not being able to extract a large enough thread of
execution).

5. CONCLUSION
In this paper we presented an algorithm for threading structure
transformation of C++ based system level models that allows
hardware design models (i.e. designed for synthesis with the
hardware structure in mind) to also efficiently target simulation
and, in particular, multiprocessor simulation. Unlike software
synthesis based on scheduling or quasi-scheduling[13], we can
generate a coarsely multithreaded program so as to exploit
multiprocessor simulators. Also, for now, we manually generate a
proof of equivalence or counter example along with the
transformation. This methodology is based on CSP trace
equivalence but we are yet to characterize what classes of
SystemC models will result in equivalent models after the
transformation (the examples we have tried produced trace
equivalent code). However, our future work is focusing on a

necessary and sufficient characterization of the nature of SystemC

models for which the transformation will always produce trace
equivalent code.

6. REFERENCES
[1] CynApps Inc, http://www.cynapps.com.

[2] G. Economakos, P. Oikonomakos, I. Panagopoulos,
“Behavioral Synthesis with SystemC”,
http://www.systemC.org.

[3] Edison Design Group, http://www.edg.com/cpp.html.

[4] P. Garg, S. Shukla, R. Gupta, “Efficient Usage of
Concurrency Models in an Object Oriented Co-Design
Framework”, In Proceedings of DATE 2001.

[5] M. Girkar, C.D. Polychronopoulos, “The Hierarchical Task
Graph as a Universal Intermediate Representation”,
International Journal of Parallel Programming, vol. 22, no. 5,
October 1994.

[6] C. A. R Hoare. “Communicating Sequential Processes”,
Prentice Hall, 1985.

[7] D. Jackson, E. J. Rollins, “Chopping: A generalization of
slicing”, Technical Report CMU-CS-94-169, School of
Computer Science, Carnegie Mellon University, 1994.

[8] A.J. Mayer, L.J. Stockmeyer, "The complexity of word
problems - this time with interleaving", Information and
Computation, Vol 115, 1994.

[9] OCAPI Website, http://www.imec.be/ocapi.

[10] A. W. Roscoe, “The Theory and Practice of Concurrency”,
Prentice Hall, 1998.

[11] Nick Savoiu, Sandeep Shukla, Rajesh Gupta, “Automated
Concurrency Re-Assignment in High Level System Models
for Efficient System Level Simulation”, In Proceedings of
DATE 2002.

[12] D. C. Schmidt, T. Suda, “The performance of alternative
threading architectures for parallel communication
subsystems”, Journal of Parallel and Distributed Computing,
submitted 1996.

[13] M. Sgroi, L. Lavagno, Y. Watanabe, A. Sangiovanni-
Vincentelli, “Quasi-static scheduling of embedded software
using equal conflict nets”, International Conference on
Application and Theory of Petri Nets. ICATPN '99, June
1999.

[14] SystemC 2.0, http://www.systemc.org.

Table 1. Simulation Results on a Dual Processor System

Benchmark Original
Time

Threaded
Time Speedup

DMA 50.674 31.134 62.76%

FIR 17.381 10.190 70.57%

FFT 9.822 5.635 74.30%

PKT_SWITCH 153.234 86.617 76.91%

173

	Main
	ISSS02
	Front Matter
	Table of Contents
	Author Index

