
The Formal Execution Semantics of SpecC

Wolfgang Mueller
Paderborn University, Paderborn, Germany

wolfgang@acm.org

Rainer Dömer, Andreas Gerstlauer
University of California, Irvine, USA

doemer@ics.uci.edu, gerstl@ics.uci.edu

ABSTRACT
We present a rigorous but transparent semantics definition
of the SpecC language that covers the execution of SpecC
behaviors and their interaction with the kernel process. The
semantics include wait, waitfor, par, and try statements
as they are introduced in SpecC. We present our definition
in form of distributed Abstract State Machine (ASM) rules
strictly following the lines of the SpecC Language Refer-
ence Manual [4]. We mainly see our formal semantics in
three application areas. First, it is a concise, unambiguous
description for documentation and standardization. Second,
it applies as a high–level, pseudo code–oriented specification
for the implementation of a SpecC simulator. Finally, it is
a first step for SpecC synthesis in order to identify similar
concepts with other languages like VHDL and SystemC for
the definition of common patterns and language subsets.

Categories and Subject Descriptors
F.3.1 [Specifying and Verifying and Reasoning about
Programs]: Specification techniques; B.7.2 [Design Aids]:
Simulation

General Terms
Systems Design, Specification Languages, Verification

Keywords
Formal Specifications, ASMs, SpecC, Simulation

1. INTRODUCTION
The SpecC language [5, 6] has been proposed as a stan-

dard system-level language for adoption in industry and
academia and is promoted for standardization by the SpecC
Technology Open Consortium (STOC). The SpecC language
was specifically developed to address the issues involved with
system design, including both software and hardware. Al-
though the SpecC language is defined by a Language Refer-
ence Manual (LRM) [4], and comes with a freely available

Permission to make digital or hard copies of all or part of this work for
personal or classroom use is granted without fee provided that copies are
not made or distributed for profit or commercial advantage and that copies
bear this notice and the full citation on the first page. To copy otherwise, to
republish, to post on servers or to redistribute to lists, requires prior specific
permission and/or a fee.
ISSS’02, October 2–4, 2002, Kyoto, Japan.
Copyright 2002 ACM 1-58113-576-9/02/0010 ...$5.00.

open source reference implementation, a compiler and a sim-
ulator, the precise meaning of the execution semantics has
not been captured so far. However, a precise semantics of
SpecC is mandatory for various applications including sim-
ulation, synthesis, and formal verification. If well written, it
can be taken as a complementary, unambiguous documen-
tation to significantly help understanding the language.
This article presents the formal semantics for SpecC ex-

ecution. The SpecC semantics provides a concise definition
of the complete execution semantics of SpecC V1.0 for po-
tential standardization. This is an important step towards
future SpecC compliant implementations and applications
in various fields including formal verification. In synthesis
and (co-)simulation, our formal semantics can be used as
a sound basis to identify common behavioral concepts for
interoperability with Verilog, VHDL, and SystemC.
We present a concise and rigorous but yet intuitive seman-

tic definition of SpecC in terms of Gurevich’s distributed
Abstract State Machines (ASMs) [8]. Our ASM specifica-
tion follows the terminology and outlines given in the SpecC
LRM [4] and additionally correspond to the VHDL’93 se-
mantics in [2]. We present a mathematical definition of
SpecC in terms of a SpecC Algebra considering wait, waitfor,
notify, notifyone, par, and try statements1 , as well as the
complete interaction between the user defined behaviors and
channels with the kernel process. We additionally outline
how to derive a C++ implementation for a SpecC simulator
from this specification and demonstrate how ASMs can be
applied as a formal framework for the general specification
and implementation of virtual machines such as simulators.
The remainder of this paper is organized as follows. Sec-

tion 2 discusses related works. Section 3 briefly introduces
distributed ASMs before Section 4 outlines basic conceptsof
the SpecC language and defines its execution semantics by
means of ASMs. Section 5 outlines how to derive an im-
plementation from the specification. Section 6 finally closes
with a conclusion and outlook.

2. RELATED WORKS
Over previous years, research in formal semantics in EDA

mainly focused on VHDL. There exists numerous works based
on temporal logics, functional semantics, denotational se-
mantics, and operational semantics applying Boyer-Moore
Logic, Process Algebras, Petri-Nets etc. [3]. Most of the
approaches cover subsets dedicated for application in for-
mal verification. In [3], the simulation semantics of com-
plete behavioral VHDL 93 is introduced by Abstract State
1For space reasons, we omit the pipe statement here.

150



Machines [2]. which was later extended for VHDL-AMS in
[11]. Other applications investigated VHDL-Verilog interop-
erability [10]. Most recently, SystemC simulation semantics
have been published in [9] which is oriented towards the
VHDL’93 definitions in [2].
ASMs have already been applied for formal specification

in various other domains such as hardware and software ar-
chitectures, protocols, and programming languages [1]. Ex-
amples for programming languages are semantics definitions
of Java and C++[12]. Furthermore, the ITU standard SDL
2000 is partly underlined by an ASM definition [7].
All these investigations demonstrate that ASMs, i.e., dis-

tributed ASMs, have excellent capabilities to capture the
behavioral semantics of programming and specification lan-
guages. This is particularly true for the specification of un-
derlying virtual machines as required for the formal coverage
of the SpecC simulator. In this article, we focus our investi-
gations on SpecC V1.0 which is the latest official version at
the time of writing. The model is defined along the lines of
the basic concepts of the VHDL’93 and SystemC definitions
in [2, 9] so that future work on interoperability with VHDL
and SystemC is simplified.

3. ABSTRACT STATE MACHINES
Abstract State Machine (ASM) specifications can be un-

derstood as ‘pseudocode over abstract data’, without any
particular theoretical prerequisites. Here, we list only the
basic definitions and refer to [8] for a formal introduction.
An ASM specification comes in form of guarded function

updates, called rules, of the form
if Condition then <Updates> else <Updates> endif

Rules are are presented as nested if–then–else clauses with
a set of function updates in their body. When executing
the rules, the underlying ASM abstract machine executes
state transitions with algebras as states. A state transition
is performed by firing a set of rules in one step. Only those
rules are fired whose guards (Condition) evaluate to true.
At each step, the guards evaluate to a set of function up-

dates, each of the form f(t1, ..., tr) := t0 where ti are terms
(including functions). Note that 0-ary functions play the
role of variables known from imperative programming lan-
guages. A block is a set of function updates separated by a
comma2. The individual function updates of each block are
collected in a so–called update set and are are simultane-
ously executed in one step. Each function update changes a
value at a specific location given by the left–hand–side of the
update. Functions are considered to be global. Two or more
simultaneous updates of the same location in one update set
defines inconsistency. In the case of inconsistency no state
transition is performed and no update in the update set is
being executed.
ASMs are multi–sorted based on the notion of universes.

We presume the standard mathematic universes of booleans,
integers, lists, etc. as well as the standard operations on
them without further mention. A universe can be dynami-
cally extended with individual objects by

extend Universe with v <Rule> endextend

2In extension to [8], we use a comma to syntactically sepa-
rate function updates. We also introduce sequential state-
ments which are enclosed in braces and separate by semi-
colon, e.g., {C:=1; D:=C}. This a shortcut avoids the in-
troduction of an additional state function with additional
conditions.

where v is a variable which is bound by the extend con-
structor. As the inverse operation, a universe can be dy-
namically reduced with individual objects by

reduce Universe by v <Rule> endreduce

where v is a variable which is bound by the reduce con-
structor. The choose constructor defines an arbitrary se-
lection of one element in a universe

choose v in Universe <Rule> endchoose

where v is non–deterministically selected from the given uni-
verse. The choose constructor can be qualified by a con-
dition ( satisfying ). The var rule constructor defines the
simultaneous instantiation of a rule:

var v ranges over Universe <Rule> endvar

Executing the constructor means to spawn and execute the
rule for each element in Universe simultaneously, i.e., the
constructor basically spawns n rules where n is the number
of elements in Universe.
The extension of basic ASMs to distributed ASMs parti-

tions rules into modules where each module is given by its
module name ν. A module is instantiated to execute by set-
ting Mod(a) := ν for an agent a. The symbol Self refers to a
after the instantiation. The execution is defined by partially
ordered state transitions where agents are asynchronously
executed.
The SpecC algebra introduced in the next section comes

in the form of two modules: One for the SpecC kernel and
one for the user defined behaviors.

4. SpecC
The SpecC language [5, 6, 4] is based on ANSI-C and

provides a set of additional constructs needed for model-
ing hardware. The added concepts include behavioral and
structural hierarchy, concurrency, synchronization, excep-
tion handling, and timing. Since the execution semantics of
ANSI-C are already well-defined, we focus in the following
sections on the formal description of these added concepts.

4.1 Structure
A SpecC program consists of a set of behaviors, channels,

and interfaces with ports. Behaviors are active blocks con-
taining computation, whereas channels and interfaces are
passive blocks encapsulating communication. Following the
style of standard block diagrams, behaviors and channels are
composed in form of a structural hierarchy. Thus, the basic
structure of a SpecC model is a hierarchical network of be-
haviors and channels connected by ports. A simple example
is depicted in Figure 1.

b1 b2

c1

p1 p2

v1

B

Figure 1: SpecC Example

For defining execution semantics, only the active behav-
iors need to be considered, the passive channels can be ig-

151



nored or assumed to be inlined. In other words, in this
paper, we can focus on the behavioral hierarchy of SpecC.

4.2 Execution Semantics
The next paragraphs describe the stepwise development of

a formal execution semantics of SpecC V1.0, starting with
the basic behavioral constructs. Afterwards, we present a
formal definition of the kernel process.

4.2.1 Basic Concepts
Derived from hierarchically organized modules, SpecC es-

tablishes a hierarchical network of parallel communicating
BEHAVIORs which, under the supervision of the distin-
guished SpecC kernel process, concurrently update new val-
ues for given V ARIABLEs and send and receive EV ENTs.
After initialization of variables and program counters of

BEHAV IORs, there is a mutually exclusive execution of
the kernel process and the concurrently running behaviors.
In other words, the kernel process periodically starts its ex-
ecution if all behaviors are suspended, and vice versa.
Each user defined behavior is running until it is sus-

pended, for example, waiting at a wait or waitfor state-
ment. It will resume running when the kernel delivers noti-
fied events or increases the time due to an expired timeout.
After executing the last statement, a behavior changes to
completed. Furthermore, we use the state interrupted for
behaviors that have received an event triggering an active
interrupt handler. In summary, throughout the life cycle of a
behavior b, we set status(b) ∈ {running, waiting, completed,
interrupted} (see Figure 2).

running

waiting

completed

interruptedinterrupt

trap

last stmt

stmtlast

event,
timeoutwait,

waitfor
fork join

Figure 2: Life Cycle of a Behavior

When no user defined behaviors are running, i.e., all are
waiting, interrupted or completed, the kernel process goes
through a set of phases and resumes behaviors on events or
timeouts, and advances the simulation time whenever nec-
essary.
The rules in the following paragraphs constitute the pro-

gram of ASM agents, one for the kernel process and one for
each behavior. As previously outlined, agents are instanti-
ations of ASM modules. Thus, we first define rules for the
KERNEL Module. Thereafter, we define the semantics of
distinguished statements executed in instantiations of the
BEHAV IOR Module. For ASMs initialization, we set

Mod(b):= BEHAV IOR Module

∀b∈ BEHAV IOR and
Mod(k):=KERNEL Module

for the kernel process k∈KERNEL 3. We further assume
phase = ResumeOnEvents, current time Tc = 0, status(b) =
running and pipe status(b) = init,∀b ∈ BEHAV IOR.
Unless otherwise noted, all functions are assumed to be set
undef and all sets and lists are initially empty.

3The universe KERNEL is introduced here for technical
purpose and has only one element.

The remainder of this document first defines the execu-
tion semantics of specific SpecC statements. Thereafter, we
define the execution cycle of the kernel.

4.2.2 SpecC Statements
Before we define the semantics for the SpecC statements,

we need to discuss the role of the program pointer when
processing a behavior during the simulation.
In order to focus on the essential behavioral semantics

of SpecC, we basically assume that the continuation of the
control–flow of each (sequential) behavior is determined by
values of the function programCounter which is initially set
to the first statement of each behavior b. After checking their
current watching conditions, all running behaviors execute
their statements. In order to express that a user defined
behavior Self can be executed only when it is running and
the programCounter is assigned to the specific statement, we
use the following abbreviation:

Self executes statement ≡
programCounter(Self) = statement∧
phase := ExecuteBehaviors∧
status(Self) = running

After executing the last statement of a behavior b, the be-
havior completes and we set status(b) := completed. As a
special case, when having completed the behavior of an in-
terrupt handler (explained later), we additionally set the
status of all descendent behaviors of the parent p, bi ∈
descendant(p), from interrupted back to waiting. The par-
ent of a behavior is defined to be the behavior which has
spawned the interrupt handler and its descendents are de-
fined to be all child behaviors (and their children) which
were also interrupted together with b.
Variable Assignment. Right-hand-side values in signal
assignments are immediately assigned to the current value of
variable v. Parallel write accesses to the value of a variable
are allowable. Competing concurrent assignments to vari-
ables v are non-deterministically resolved and are individual
to each implementation. We denote this by resolve(competing

V alues(value(Expr)))which first computes the value of Expr
and stores it into a virtual data structure keeping all concur-
rent assignments. Finally, resolve selects non-deterministi-
cally one of these values. Note here that ASMs cannot di-
rectly express non-deterministic behavior so that we have
to introduce the resolve function which models the non-
deterministic behavior of concurrent write accesses to SpecC
variables.

if Self executes 〈v = Expr〉
then value(v) := resolve(competingV alues(value(Expr))),

programCounter(Self) := nextStmt(Self)
endif

Wait Statement. On reaching a wait statement, a behav-
ior simply stops execution by setting its status to waiting.
The behavior also notes its sensitivity to the given list of
events.

if Self executes 〈wait(EventList)〉
then status(Self) := waiting,

sensitivity(Self) := EventList,
programCounter(Self) := nextStmt(Self)

endif

Waitfor Statement. Similar to the wait statement, a be-
havior stops its execution by setting its status to waiting
upon reaching a waitfor statement. However, instead of

152



setting its sensitivity, it sets a timeout to the current time
increased by the given delay. After the timeout, the behav-
ior will then be resumed by the SpecC kernel.

if Self executes 〈waitfor(Delay)〉
then status(Self) := waiting,

timeout(Self) := Tc + Delay,
programCounter(Self) := nextStmt(Self)

endif

Notify Statement. At a notify statement, a behavior
simply sets flags for all notified events and immediately pro-
ceeds to the next statement. Note that the notified events
will be delivered later to any waiting behaviors by the SpecC
kernel.

if Self executes 〈notify(EventList)〉
then ∀e ∈ EventList : notified(e) := true,

programCounter(Self) := nextStmt(Self)
endif

Notifyone Statement. Similar to the notify statement,
a notifyone statement also records the notified events and
proceeds its execution. Note that, in contrast to notify,
event lists of all notifyone statements given in one execu-
tion cycle have to be managed by a global notifiedonelist
which is organized as a list of event lists.

if Self executes 〈notifyone(EventList)〉
then notifiedonelist := notifiedonelist + Eventlist,

programCounter(Self) := nextStmt(Self)
endif

Par Statement. At a par statement, a behavior spawns
a set of children and proceeds only after the children have
terminated.

if Self executes 〈par{b1; ...; bM}〉
then SPAWN({b1; ...; bM}, Self),

programCounter(Self) := nextStmt(Self)}
endif

The process of spawning children consists of a fork and
a join operation in sequential order. For better readability,
these are defined as ASM macros as follows:

SPAWN(Blist,Self) ≡
{FORK(Blist, Self, waiting);
JOIN(Blist, Self, running)}

The fork operation extends the domain BEHAV IOR by
the behaviors b which are forked. Each of the behaviors is
set to running. For later purpose, the spawning behavior is
noted as their parent. The list of all b is saved as children
of the spawning behavior Self . The status of Self is set
to Status which is waiting in the above case4. When all
children are completed, it is reset to running.

FORK(Blist, Self, Status) ≡
∀b ∈ Blist :
extend BEHAV IOR with b

status(b) = running, parent(b) := Self
endextend ,
children(Self) := Blist,
status(Self) := Status

All children b have joined when their status is completed.
Then the set of children of the parent Self is set empty

4Note that in order to handle also forking of exceptions,
we model the state as a parameter. As we will see later,
exception handling requires to set behaviors to interrupted
or completed.

and its new Status is assigned. In the context of the par-
statement, the Status is set to running in order to con-
tinue execution. Additionally, the domain BEHAV IOR
is reduced by the completed child behaviors. Note how
the domain BEHAV IOR dynamically increases and shrinks
within FORK and JOIN at every par statement.

JOIN(Blist, Self, Status) ≡
if ∀b ∈ Blist : status(b) = completed∧

phase := ExecuteBehaviors
then ∀b ∈ Blist :

reduce BEHAV IOR by b endreduce ,
children(Self) := ∅,
status(Self) := Status

endif

Try Statement. Finally, we define the semantics of the ex-
ception handling given by the combined try-trap-interrupt
statement which basically extends the implementation of a
behavior b encapsulated by try with additional exceptions
Excp1 , ..., ExcpM where

Excpi ≡ [trap | interrupt](Eventlisti){Handleri; }.
That means, that after keyword trap or interrupt a list
of events is specified on which a behavior denoted as a
Handler starts executing. The order of enumeration of the
exceptions defines their priorities starting with the highest
when multiple events are detected by the SpecC execution
kernel. For our semantics, we thus define for an excep-
tion Excpi the functions type(Excpi) ∈ {trap, interrupt},
eventlist(Excpi), and behavior(Excpi), where the latter two
associate the list of events and the Handler to an exception.
The semantics of the try statements defines as follows by
simply ‘linking’ exceptions and their events to functions.

if Self executes 〈try{b; }Excp1...ExcpM 〉
then status(Self) := waiting,

excpSensitivity(Self) :=
eventlist(Excp1) ∪ ... ∪ eventlist(ExcpM ),

exceptions(Self) := Excp1 + ... + ExcpM ,
programCounter(Self) := firstStmt(b)

endif

We set the behavior Self to waiting and accumulate all
events that Self is sensitive to in excpSensitivity. In addi-
tion, all exceptions are stored in exceptions(Self) for later
use by the kernel. Finally, the programCounter is advanced
to the first statement of the behavior enclosed by try.
4.2.3. SpecC Kernel
The SpecC kernel is a separate process which is executed as
soon as all user defined behaviors are not running, i.e., they
are either waiting, interrupted or completed. We abbrevi-
ate this by:

BehaviorsRunning ≡
∃b ∈ BEHAV IOR : status(b) = running ∨
∀c ∈ children(b) : status(c) = completed

When no behavior is running, the kernel goes through
different sequential states (see Figure 3) determined by the
function phase. These phases are expressed by the fol-
lowing rules where we have used placeholders for the in-
dividual sequential phases ProcessEvents, ResetEvents,
AdvanceTime, and ProcessTimeouts.

if ¬BehaviorsRunning
then phase := ProcessEvents endif

In details, the first phase = ProcessEvents checks for
events and sets behaviors to running which are sensitive

153



ProcessTimeouts

AdvanceTime

ResetEvents

ProcessEvents

ExecuteBehaviors
events

no events

KernelBehaviors

Initialization

Exit

Figure 3: Phases of the SpecC Kernel

to events on notify, notifyone, and exceptions. The in-
ner body matches behaviors b with a defined sensitivity
(given by a wait statement) and the corresponding events
which were notified. Therefore, the definition ranges over
all BEHAV IORs and EV ENTs. The first case defines the
condition when the event is supposed to trigger an excep-
tion. Then the exception handling executes which is defined
in more details hereafter. Also, we have to handle waiting
behaviors. When triggered by a notify, the behavior is sim-
ply reset to running. If any notifyone has been set, i.e.,
notifiedonelist �= ∅, one behavior is arbitrarily chosen for
each of the notifiedone sublists nl ∈ notifiedonelist and set
to running. Finally, the lists are reset and the next phase
is set to ResetEvents.

if phase = ProcessEvents
then
var b ranges over BEHAV IOR
var e ranges over EV ENT
if notified(e) = true ∧ e ∈ excpSensitivity(b)
then HandleException
endif
if notified(e) = true ∧ e ∈ sensitivity(b)
then status(b) := running

sensitivity(b) := ∅
endif
if notifiedonelist �= ∅
then ∀nl ∈ notifiedonelist :

choose e1 in nl
satisfying (∃b1 : e1 ∈ sensitivity(b1))

status(b1) := running
sensitivity(b1) := ∅

endchoose
endif
endvar endvar
phase := ResetEvents

endif

Exception handling is defined in more detail by the fol-
lowing rule. This rule is applied when an exception is sen-
sitive to an event and that event occurred. Then, the first
matching exception denoted by minException is selected5

We then have to distinguish if that exception is either of
type trap or interrupt. In the first case, if behavior b is
the topmost ancestor with a received exception event, all
descendants (i.e., forked children and their children) of b
are set to completed and the behavior of the exception is
forked, and b is set to completed. In the second case, all
descendants are correspondingly set to interrupted, and b
is set to interrupted when the behavior of the exception is

5This is the first matching exception w.r.t. the order as they
are defined in the trap statement.

forked. As described in previous sections, the forked be-
havior resets the parent (i.e., b) and all its descendants to
running after executing that last statement.

HandleExceptions ≡
if type(minException) = trap
then if status(b) = waiting ∧ topmost(b) = true

then ∀i ∈ descendant(b) : status(i) := completed
FORK(behavior(minException), Self, completed)

endif
elseif type(minException) = interrupt

then if status(b) = waiting ∧ topmost(b) = true
then

∀i ∈ descendant(b) : status(i) := interrupted
FORK(behavior(minException), Self, interrupted)

endif
endif

In phase ResetEvents, we simply reset all events and pro-
ceed to the execution of behaviors if any have been resumed
by setting their status to running. Otherwise, we advance
the time in order to resume behaviors which are waiting on
the expiration of a timeout.

if phase = ResetEvents
then var e ranges over EV ENT

notified(e) := false,
endvar ,
notifiedonelist := ∅,
if ∃b ∈ BEHAV IOR : status(b) = running
then phase := ExecuteBehaviors
else phase := AdvanceT ime
endif

endif

For advancing the time, we first have to check if all be-
haviors are completed since we need to exit the execution
then. Otherwise, the current time Tc is advanced to the next
point in time which is computed from the minimum over all
timeouts.
In phase AdvanceTime, we exit the execution when all

behaviors are completed and when no further timeouts are
set. We also exit when all behaviors are waiting or are
interrupted and when no further timeouts are set. This
case is called a deadlock as there are behaviors waiting on
events, but no events can be generated. Otherwise, we set
the current time Tc to the next expiring timeout and proceed
to ProcessTimeouts.

if phase = AdvanceT ime
then if ∀b ∈ BEHAV IOR :

timeout(b) = undef
then EXIT
else

Tc := min{timeout(b) | b ∈ BEHAV IOR∧
timeout(b) �= undef},

phase := ProcessT imeouts
endif

endif

In the final phase, we simply set the status of all behaviors
to running when their timeout equals the current execution
time. Then, their timeout is reset and the kernel sets phase
to ExecuteBehaviors to resume the computation of the be-
havior’s statements.

if phase = ProcessT imeouts
then var b ranges over BEHAV IOR

if timeout(b) = Tc

then status(b) := running,
timeout(b) := undef,

endif
endvar ,
phase := ExecuteBehaviors

endif

154



5. FROM SPECIFICATION TO
IMPLEMENTATION

When starting from an ASM specification, an implemen-
tation seems to be a straightforward refinement as it is sum-
marized in Table 1. However, it has to be noted here that
coding is still not trivial and still requires a lot of imple-
mentation decisions. As high level specification for coding
languages which are based on virtual machines (e.g., VHDL
and SpecC), ASMs can be an ideal starting point in order
to check and verify language concepts before implementa-
tion. The ‘closeness’ of the ASM specification and an actual
implementation basically guarantees stability since it leaves
only little room for errors and definitely eliminates any am-
biguities.
In the case to use our specification for implementation

of an SpecC simulator, the translation is obvious for most
of the basic patterns. Agents of behaviors map directly to
threads, domains map to classes, and the kernel agent may
directly map to the scheduler in the implementation. Note,
however, that the kernel does not necessarily need to be
a separate thread, but its basic control can be combined
with the control of the individual behaviors. In the refer-
ence implementation, for example, the last thread that be-
comes waiting also executes the scheduler and selects the
next thread to run after delivering all notified events and
increasing the simulation time, etc. We can see it as an
implementation decision here that the management of the
program counter is combined with parts of the control of
the SpecC kernel process. Similar decisions include, for ex-
ample, the selection of the order of thread execution or the
selection of waiting behaviors for ’notifyone’ events.
For implementation of ASM rules, each rule set in the

ASM specification generally directly maps into a function of
our SpecC simulator. Nevertheless, identifying state func-
tions and their associated state machine still requires some
work which can be facilitated by a good documentation and
adequate structuring of the ASM specification. A really crit-
ical issue in the translation to C++ is the selection of effi-
cient data structures and most efficient matching/selection
algorithms for implementation of quantifiers, var-constructs,
etc. In particular, algorithms for the latter have to be care-
fully investigated in order to avoid any inefficiencies.

ASM C++

agent thread
domain class
function variable, method
macro method
∀ loop/matching algorithm
∃ selection/matching algorithm
simultaneous variable assignments & method
function updates calls
if-then-else state machine implementation
construct & algorithm
var & choose matching/selection algorithm
construct & data structures
extend & reduce allocation & garbage
construct collection

Table 1: From ASMs to C++

6. CONCLUSION AND OUTLOOK
This article introduces the execution semantics of com-

plete SpecC V1.0 by the means of ASMs. The specification

has been defined along the notions given in the advanced
SpecC introduction [6], the language reference manual [4]
and the reference implementation. It clearly identifies basic
entities and functions of the SpecC virtual machine. It can
be taken as abstract pseudocode from which an implementa-
tion can be easily derived as it was outlined in Section 5. We
think that ASMs provide an adequate framework for such
applications, i.e., for clearly identifying execution concepts
of virtual machines such as simulators and unambiguous de-
scription of the interaction of the associated concurrently
communicating objects. Though our ASM specification is
not directly executable, we think that it really supports and
accelerates the development of simulators by providing the
formal framework to reason about the validity of execution
semantics of such systems.
Moreover, when a reference implementation is given–such

as it was in our case–the specification really makes already
implemented concepts clearer and greatly helps to relate
them to the behaviroal semantics of established standard
Hardware Description Languages like VHDL and Verilog.
This is a very important point for the investigation of SpecC
synthesis, i.e., for identification of subsets and patterns for
the source language and different target languages. There-
fore, our future investigations will focus on interoperability
issues and equivalences between VHDL’93, SystemC, and
SpecC models.

7. REFERENCES
[1] E. Börger. Annotated Bibliography on Evolving Algebras.

In E. Börger, editor, Specification and Validation Methods.
Oxford University Press, 1994.

[2] E. Börger, U. Glässer, and W. Müller. Formal Definition of
an Abstract VHDL’93 Simulator by EA-Machines. In
C. Delgado Kloos and P. T. Breuer, editors, Formal
Semantics for VHDL, pages 107–139. Kluwer, 1995.

[3] C. Delgado Kloos and P. T. Breuer. Formal Semantics For
VHDL. Kluwer, Boston/London/Dordrecht, 1995.

[4] R. Doemer, A. Gerstlauer, and D. Gajski. SpecC Language
Reference Manual, Version 1.0. SpecC Technology Open
Consortium, March 2001.

[5] D. Gajski, J. Zhu, R. Doemer, A. Gerstlauer, and S. Zhao.
SpecC: Specification Language and Methodology. Kluwer
Academic Publishers, March 2000.

[6] A. Gerstlauer, R. Doemer, J. Peng, and D. Gajski. System:
Design: A Practical Guide with SpecC. Kluwer Academic
Publishers, June 2001.

[7] U. Glaesser, R. Gotzhein, and A. Prinz. Towards a new
formal SDL semantics based on Abstract State Machines.
In R. Dssouli, G. Bochmann, and Y. Lahav, editors, Proc.
of the 9th SDL Forum . Elsevier Science B.V., 1999.

[8] Y. Gurevich. Evolving algebra 1993: Lipari guide. In
E. Börger, editor, Specification and Validation Methods.
Oxford University Press, Oxford, 1994.

[9] W. Mueller, J.Ruf, D. Hofmann, J. Gerlach, T. Kropf, and
W.Rosenstiehl. The Simulation Semantics of SystemC. In
Proc. of DATE 2001. IEEE CS Press, March 2001.

[10] H. Sasaki. A Formal Semantics for Verilog-VHDL
Simulation Interoperability by Abstract State Machine. In
Design, Automation and Test in Europe, 1999.

[11] H. Sasaki, K. Mizushima, and T. Sasaki. Semantic
Validation of VHDL-AMS by an Abstract State Machine.
In IEEE/VIUF International Workshop on Behavioral
Modeling and Simulation, 1997.

[12] C. Wallace. The Semantics of the C++ Programming
Language. In E. Börger, editor, Specification and
Validation Methods.

155


	Main
	ISSS02
	Front Matter
	Table of Contents
	Author Index





