
Code Compression for VLIW Processors Using
Variable-to-fixed Coding

Yuan Xie, Wayne Wolf
Electrical Engineering Dept

Princeton University
Princeton,NJ,08540,USA

yuanxie,wolf@ee.princeton.edu

Haris Lekatsas
NEC USA

4 independence way
Princeton, NJ, 08540, USA

lekatsas@nec-lab.com

ABSTRACT
Memory has been one of the most restricted resources in the
embedded computing system domain. Code compression
has been proposed as a solution to this problem. Previous
work used fixed-to-variable coding algorithms that translate
fixed-length bit sequences into variable-length bit sequences.
In this paper, we propose code compression schemes that use
variable-to-fixed (V2F) length coding. We also propose an
instruction bus encoding scheme, which can effectively re-
duce the bus power consumption. Though the code compres-
sion algorithm can be applied to any embedded processor,
it favors VLIW architectures because VLIW architectures
require a high-bandwidth instruction pre-fetch mechanism
to supply multiple operations per cycle. Experiments show
that the compression ratios using memoryless V2F coding
for IA-64 and TMS320C6x are around 72.7% and 82.5% re-
spectively. Markov V2F coding can achieve better compres-
sion ratio up to 56% and 70% for IA-64 and TMS320C6x
respectively. A greedy algorithm for codeword assignment
can reduce the bus power consumption and the reduction
depends on the probability model used.

Categories and Subject Descriptors
B.3 [Hardware]: Memory structures; E.4 [Data]: Coding
and information theory

General Terms
Algorithms,Design,Experimentation,

1. INTRODUCTION
Embedded computing systems are space and cost sensi-

tive. Memory has been one of the most restricted re- sources,
which poses serious constraints on program size. This prob-
lem has led to many executable code compression efforts.
One industrial example is the IBM Power PC 400 series
processor. In Figure 1, the compressed code is stored in the

Permission to make digital or hard copies of all or part of this work for
personal or classroom use is granted without fee provided that copies are
not made or distributed for profit or commercial advantage and that copies
bear this notice and the full citation on the first page. To copy otherwise, to
republish, to post on servers or to redistribute to lists, requires prior specific
permission and/or a fee.
ISSS’02, October 2–4, 2002, Kyoto, Japan.
Copyright 2002 ACM 1-58113-576-9/02/0010 ...$5.00.

external memory and a decompression core, which is called
CodePack [1], is placed between the memory and cache.
Existing statistical code compression algorithms are mostly
variable-to-variable coding or fixed-to-variable coding. This
means that the decompression takes variable length input
and the decompression procedure is sequential, since the de-
compressor does not know where to start decompressing the
next symbol until the current symbol is fully decompressed.
Power consumption is another important issue for embedded
systems. According to Givargis and Vahid [2], a system’s
power can be broken into two components. The first compo-
nent is internal circuit capacitance times the average internal
circuit transitions, while the second component is external
bus capacitance times the average external bus transitions.
On the average, the busses in a typical IC consume half of
the total chip power. It is therefore important to reduce bus
power consumption. Much has been done in reducing the
internal circuit power. Instruction busses are often consid-
ered highly rigid and unalterable. Therefore they have not
been greatly optimized for power.

Power PC 40x
Embedded
Processor

Cache Decompression
Core

Decoder Tables

External
Memory

Processor Local Bus

Figure 1: IBM Codepack for PowerPC

In this paper, we present novel code compression schemes
that use variable-to-fixed (V2F) coding. The decompres-
sion procedure takes fixed length input, which makes decom-
pressor design easier. Parallel decompression for memory-
less V2F coding scheme favors VLIW architectures where a
high-bandwidth instruction pre-fetch mechanism is required
to supply multiple operations per cycle. A novel instruction
bus power reduction scheme is also proposed based on the
V2F coding. This paper is organized as follows. Section 2
reviews previous related work. Section 3 describes the code
compression algorithm. Section 4 discusses the decompres-
sor design. Section 5 describes the instruction bus power re-
duction by using V2F coding. Experimental results on two
VLIW architectures, IA-64 and TMS320C6x, are presented

138

in Section 6 and finally Section 7 concludes the paper.

2. RELATED WORK
Wolfe and Chanin [8] were the first to propose an embed-

ded processor design that used Huffman coding to compress
cache blocks. A similar technique, which uses more compli-
cated Huffman tables called CodePack [1], has been devel-
oped by IBM and used in their PowerPC processor. Liao et
al. [5] proposed dictionary methods, which make compressed
code easy to be decompressed. Lekatsas and Wolf proposed
an algorithm called SAMC [4], which is based on arithmetic
coding in combination with a precalculated Markov model.
Both schemes targeted RISC architectures.

For VLIW architecture, Ishiura [3] reduced the problem
of finding a good instruction coding for code compression
to the problem of splitting up instructions into fields such
that these fields are compressed optimally. Their scheme is
a dictionary-based table look-up approach. Nam et al. [6]
also proposed a dictionary-based code compression using iso-
morphism among VLIW instruction words. Frequently used
instruction words are extracted from the original code to be
mapped into two dictionaries, an opcode dictionary and an
operand dictionary. Both approaches mentioned above are
dictionary-based schemes and target traditional VLIW ar-
chitectures, which have rigid instruction word formats and
a lot of redundancy.

Our investigation [9] of several modern VLIW architec-
tures, including TI’s DSP TMS320C6x and Motorola’s Star-
Core DSP SC140, as well as Intel/HP’s IA-64, reveals that
modern VLIW ISAs adapt a VLES (various length execu-
tion set) scheme to achieve high code density, which im-
plies that the dictionary-based schemes by Ishiura and Nam
are not feasible for modern VLIW processors. We extended
the arithmetic coding algorithm and present compression
schemes as well as the decompression architecture design
for modern VLIW architectures, which have very flexible
instruction word formats to achieve code density [9] [10].

Variable-to-fixed (V2F) coding was first investigated by
Tunstall [7]. One advantage of V2F coding is that it is
easy to index into the compressed data since the codeword
length is fixed. To the best of our knowledge, although
variable-to-fixed length codes have been investigated, there
is no application on the code compression area yet. Our
research is the code compression application using variable-
to-fixed coding.

3. COMPRESSION ALGORITHM
Both the Huffman coding and arithmetic coding that used

by previous work are fixed-to-variable coding algorithms,
which translate fixed-length bit sequences into variable-length
bit sequences. In this section, we describe two variable-to-
fixed coding algorithms that translate variable-length bit se-
quences into fixed-length bit sequences.

3.1 Memoryless V2F coding algorithm
We use the same procedure that was proposed by Tunstall

[7] to generate an optimal V2F code for discrete memoryless
source. Assume that the ones and zeros in the executable
code have independent and identical distribution (iid); we
calculate the probability for 1s and 0s. For example, in
IA64 ISA, probability of 0 is about 83% and probability of
1 is about 17%, while in TMS320, probability of 0 is about

75% and 1 is about 25%. Suppose we want to construct
N-bit Tunstall codewords, the number of codewords is 2N.
The algorithm is given below:

1. A tree is created with the root node having probability
1.0. We attach 0 and 1 to the root, the resulting two
leaf nodes each have probability of the occurrence of 1
and 0, which are Prob(1) and Prob(0) respectively.

2. The leaf node with the highest probability is split up
into two branches with 0 and 1 as the label. After
splitting, the number of leaf nodes increase by 1.

3. Step 2 is repeated until the total number of leaf nodes
is equal to 2N .

4. Assign equal length codeword (length=N) to the leaf
nodes. The assignment can be arbitrary, which will
not affect the compression ratio at all.

Figure 2 shows the construction of a 2-bit Tunstall code
for a binary stream with iid probability, in which the prob-
ability of a bit to be 0 is 0.8 and the probability of a bit
to be 1 is 0.2. The code tree expands until there are 4 leaf
nodes. A 2-bit codeword is randomly assigned to each leaf
node. After the Tunstall codebook is ready, compression of
the binary stream is straightforward. For example, a binary
stream 000 01 001, will be encoded as 11 01 10.

1.0
Bit

sequence codeword

1 00

01 01

001 10

000 11

0.20.8

0.160.64

0.1280.512 P(0)=0.8
P(1)=0.2

00

01

1011

1

1

1

0

0

0

Figure 2: A memoryless Tunstall Coding Tree

After constructing the coding tree and the codebook, we
compress the instructions block by block to ensure random
access. To compress each block, we start from the root node,
if a ”1” is occurred, we take the right branch; otherwise, we
take the left branch. Whenever a leaf node is encountered,
a codeword related to that leaf node is produced and we
restart from the root node.

There are two problems that have to be taken care during
compression:

• End of Block. Since we compress the instructions
block by block, it is very likely that at the end of the
block, the tree traversal ends at a non-leaf node. For
instance, when we restart from the root node in Fig-
ure 2, if the last two bits in the block are ”00”, the
compression ends at a non-leaf node and no codeword
is produced. To avoid this problem, at the end of the
block, when the compression ends without reaching a
leaf node, we pad extra bits to the block such that the
traversal can continue until a leaf node is met and a
codeword is produced. In the example we gave, we
simple pad a ”1” to the original block such that the

139

last 3 bits ”001” can be encoded into ”11”. During de-
compression, the whole block is decoded together with
the extra padded bits. However, since we know the
block size a priori, we simple truncate the extra bits.

• Byte-alignment. To make decompression hardware
simpler, and make the storage of the compressed code
easier, the compressed block must be byte aligned. This
means that if after compressing a block the result is
not a multiple of 8 (in bits), a few extra bits are padded
to ensure that it becomes a multiple of 8. We can thus
ensure that the next block will start on a byte-aligned
boundary.

3.2 Markov V2F coding algorithm
In this section, we present a new Markov V2F code com-

pression algorithm that combines the original V2F coding
algorithms with a Markov model.

In order to improve the compression ratio, we have to
exploit the statistical dependencies among bits in the in-
structions and use a more complicated probability model.
One of the most popular ways of representing dependence
in data is through the use of Markov models, which consist
of a number of states, where each state is connected to other
states and each transition has a probability as- signed to it.
Two main variables are used to describe our model, namely,
the model depth and the model width, which represent the
number of layers and the number of Markov nodes per layer,
respectively. Intuitively the depth should divide the instruc-
tion size evenly, or be multiples of the instruction size, since
we would like our model to start at exactly the same layer
after a certain number of instructions, such that each layer
corresponds to a certain bit in the instruction, and therefore
it stores the statistics for this bit. The model’s width is a
measure of the model’s ability to remember the path to a
certain node. The upper part of Figure 3 is an example of a
4X4 Markov model. The left (right) edge with a probability
P from a state A to state B implies that if current state is
A, then the probability of next bit is zero (one) is P and
next state will be B.

The procedure used to compress instructions using a Markov
model can be described as following:

1. Statistics-gathering phase. Choose the width and
depth for the Markov model. The first state is the
initial state corresponding to no input bits. Its left and
right child correspond to the “0 input” and “1 input”,
respectively. By going through the whole program, we
gather the probability for each transition. Note that
we always go back to the initial state whenever we
start a new block.

2. Codebook construction phase After constructing
the Markov model, we generate an N-bit variable-to-
fixed length coding tree and codebook for each state
in the Markov model, using the same memoryless al-
gorithm mentioned in the previous section. Each state
in the Markov model has its own coding tree and code-
book. Therefore, for a M-state Markov model using a
N-bit variable-to-fixed length codes, there are M code-
books and each codebook has 2N codewords. Similar
to the memoryless V2F coding, the codeword assign-
ment for each codebook of these M codebooks can be
arbitrary and will not affect the compression ratio.

0

4

8

12

6

10

14

0.2
0.8

0.3
0.7

0.9
0.1

bit
codeword

next
state

1 00 6

01 01 10

001 10 14

000 11 12

0 1 2 3

4 5 6 7

8 9 10 11

0 2 0 2 1 3 1 3

0.8
0.2

0.7

0.3
0.4

0.6

12 13 14 15

0.1
0.9

sequence

Figure 3: A Markov model and a 2-bit V2F coding
tree and codebook for Markov state 0

3. Compression phase.

We compress instructions block by block. We always
use the coding tree and the codebook for initial state
at the beginning of each block. This ensures that the
decoder can start decompressing at any block bound-
ary. Starting from the root of the coding tree for each
state, the compression procedure traverses the tree ac-
cording to the input bits until a leaf node is met. A
codeword related to the leaf node is produced and the
compression procedure jumps to the root node of the
coding tree (and use the code book) of the state that
indicated by this leaf node.

Figure 3 describes a 2-bit coding tree and the codebook
for state 0 of the Markov model, using Tunstall coding based
algorithm. Compared to Figure 2, here we use the proba-
bility that is associated with each edge instead of a fixed
probability for bit 0 and bit 1. Furthermore, for each code-
book entry, we have to indicate what the next state is. For
example, starting from state 0, if the input is 000, then the
encoder output is 11 and next state is 12. The encoder then
jumps to the codebook for state 12 and starts encoding using
that codebook.

4. DECOMPRESSION ARCHITECTURE
In order to decode the compressed code, the same code-

book must be available to the decoder. For memoryless
variable-to-fixed code compression, parallel decompression is
possible because the codeword size is fixed and all codewords
in the compressed code are independent. If it is compressed
using N-bit V2F codes, we can segment the compressed code
to be many N-bit chunks, and all those N-bit chunks can be
decompressed simultaneously in one clock cycle.

Figure 4 shows the parallel decoding for memoryless variable-
to-fixed coding. Each decoder D is an N-bit table lookup
unit that corresponds to the codebook such as the one in
Figure 1. The decoder is very small. For example, a 4-bit
decoder for the codebook in Figure 2 has only less than 100

140

gates and the size is only 4um2 when implemented in TSMC
0.25 standard cell library.

For Markov variable-to-fixed coding, we can not decom-
press the next N-bit chunk (assume it is compressed using
N-bit fixed length VF code) before the current N-bit chunk
is decompressed, because we have to decompress the cur-
rent N-bit to know which codebook to be use to decode the
next N-bit chunk. We can use the similar architecture that
was present in our previous work for arithmetic coding [9],
storing the codebooks in the RAM (or ROM), and using
match logic to decode the current N- bits and send the next
codebook address to the RAM (or ROM).

N-bit N -bit N -bit N -bit

D D D D

Figure 4: An N-bit parallel V2F decoder

5. POWER REDUCTION FOR INSTRUC-
TION BUS

Even though much work on reducing the address bus power
has been done, the instruction bus is often considered highly
rigid and unalterable. Therefore it has not been greatly
optimized for power. In this section we show that by us-
ing variable-to-fixed coding, we can reduce instruction bus
power consumption when transmitting compressed instruc-
tions. As we mentioned in Section 2, the codeword assign-
ment for V2F coding can be arbitrary. Since the codeword
length is fixed, any codeword assignment will result in the
same compression ratio. But carefully assigning the code-
word can reduce bit toggling on the bus, therefore bus power
consumption is reduced since the energy consumed on the
bus is proportional to the number of bit toggles on the bus.
Assume that we use Markov V2F coding (memoryless V2F
coding is a special case of Markov V2F coding, in which
the Markov model has only one state). There are M states
in the Markov model and the length of the codeword is N.
Therefore we have M codebooks and each codebook has 2N

codewords. Each codeword can be represented by [Ci,Wj],
in which Ci (Ci =1,2,3 . . . M) is one of the M codebooks
and Wj (Wj =1,2,3 . . . 2N) is a label for each of the 2N

codewords in codebook Ci.
When packing and transferring compressed blocks via bus,

there are two ways to pack the compressed block: one is to
pad current compressed block with part of next com- pressed
block to increase bandwidth and another is to just leave the
leftover bits without padding. These two different packing
approaches for the bus may affect bus toggling. Our exper-
iments show that the non-padding one results in lower bus
toggles than the padding approach, therefore the discussion
below will be based on the non-padding approach.

Figure 5 shows the example of codeword patterns that
are transmitted over the instruction bus. [Ci,Wj] is an N-
bit codeword that belongs to codebook Ci. The beauty of
the variable-to-fixed coding compared to variable-to-variable
coding or fixed-to-variable coding is that the bus transition
patterns can be transferred to the codeword transition pat-
terns because the codeword length is fixed.

[C1, W1] [C2,W2] [C3,W3]

[C4, W4] [C5,W5] [C6,W6]

…

…
N-bit

Figure 5: Instruction bus transition

By going through the whole compressed program, we can
construct a codeword transition graph as shown in Figure
6. Each node in the graph is a codeword in the codebook.
The edge between two nodes indicates that there are bus
transitions between these two codewords. Each edge has a
weight Ei associate with it, specifying how many times the
transition happens.

.
[C1,W1]

[C2,W 2]

[C3,W3]

[C4,W 4]

[C5,W5]E1

E1

E3

E4

E5

E6

E7

Figure 6: Codeword transition graph

The N-bit codeword assignment can be arbitrary except
that for the same codebook, each codeword has to be dis-
tinctive, i.e., for [Ci,Wj] and [Ck,Wl], if Ci = Ck, and Wj

�= Wl, the N-bit binary codeword assigned to node [Ci,Wj]
must be different from the one that assigned to [Ck,Wl] .
We use Hi to denote the Hamming distance between two
N-bit binary codewords that assigned to the nodes that the
edge associated with. Therefore, the total bus toggles can
be represent by the sum of Hi ∗ Ei. Our goal is to find out
the best codeword assignment such that the bus toggles are
minimized. There are (2N !)M combinations for an M-state
Markov model with codeword length N. Actually, when M
=1, the problem is simplified to be a classical state assign-
ment problem in VLSI design, which has been proved to
be an NP problem. Therefore, we use a greedy algorithm
as following, to achieve a good codeword assignment, even
though the bus toggles are not minimized.

A greedy heuristic codeword assignment algorithm:

1. sort all the edges by weights in decreasing order.

2. for each edge, if either node is not assigned, assign
valid codewords with minimal Hamming distance

3. go to step 2 until all nodes are assigned.

The greedy algorithm sorts all the edges by weights in de-
creasing order. Then for each edge, it tries to assign two
binary N-bit codeword to the nodes that associated to the
edge, such that the Hamming distance is minimized. The
Hamming distance could be 0 if the two nodes belong to dif-
ferent codebook. There is only one restriction on the assign-
ment; codewords in the same codebook must be distinctive.

141

0.7

0.75

0.8

0.85

0.9

0.95

ad
pc

m

blo
ck

_m
se fir

g7
21 iir

m
ac

_v
se

lp

m
ax

m
in

m
od

em
m

pe
g

pe
gw

it

ve
rti

bi

2-bit 3-bit 4-bit 5-bit 6-bit

Figure 7: Compression ratio for TMS320C6x using
N-bit Tunstall coding

6. EXPERIMENTAL RESULTS
In this section, we present our experiments to compress

TMS320C6x code and IA-64 code. Benchmarks are col-
lected for different applications. Most of the benchmarks
are provided by Texas Instruments or part of Meadiabench
(http://www.cs.ucla.edu/ leec/mediabench/), which are for
general embedded systems and applications that have strong
DSP component. TMS320C6x benchmarks are complied
using the Code Composer Studio IDE from Texas Instru-
ments. The benchmarks are compiled using IA-64 Linux
Developer’s Kit from HP.

Figure 7 and Figure 8 show the compression ratio for
TMS320C6x and IA-64 respectively, using a memoryless
V2F coding. We can see that when N=4, it achieves the
best compression ratio: average 72.7% for IA64 and average
82.5% for TMS320C6x.

0.5

0.55

0.6

0.65

0.7

0.75

0.8

0.85

0.9

0.95

3d

ad
pc

m
en

c
cp

r

die
se

l
ep

ic
g7

21 ke
y

m
pe

g

pe
gw

it
sm

o
tri

ck

2-bit 3-bit 4-bit 5-bit 6-bit

Figure 8: Compression ratio for IA64 using N-bit
Tunstall coding

It is interesting to note that as the codeword length in-
creases from 2-bit long to 4-bit long, the compression ratio is
improved, but after that the compression ratio gets worse as
the codeword length increases.To explain the experimental
results, we calculate the average length of the bit sequence
that is represented by the codeword for each case, as shown
in Table 1. In the table, Ave represents the average length of
the bit sequences represented by N-bit codeword using Tun-
stall coding based V2F compression, and R denotes the ratio
of N over Ave. It shows that for Tunstall coding based V2F

Table 1: Average length of bit sequence represented
by N-bit codeword

N (bits) 2 3 4 5 6
Ave IA64 2.519 4.286 5.706 7.186 8.777

R=N/Ave IA64 0.794 0.70 0.70 0.696 0.684
Ave TMS 2.312 3.538 4.752 5.998 7.223

R=N/Ave TMS 0.865 0.848 0.842 0.834 0.831

compression, R decreases as N increases, which means that
the compression ratio is improved. But the improvement is
not very significant, especially after N larger than 4. On the
other hand, since the compression poses a byte alignment
restriction for every block, by using a 4-bit length codeword,
the chance of padding extra bits is greatly reduced. This ex-
plains why we achieve best compression ratio when N=4 in
both experiments. Intuitively, if we choose N=8, there is
no need to pad extra bits and we can get better compres-
sion ratio. Our experiments confirmed this. however, the
average improvement of the compression ratio is less than
1%. Considering the codebook size for N=4 is only 24 = 16
entries, while the codebook size for N=8 is 28 = 256 en-
tries, we conclude that the best choice for static V2F code
compression is to use 4-bit length codeword.

0.4

0.45

0.5

0.55

0.6

0.65

0.7

0.75

0.8

0.85

0.9

ad
pc

m

blo
ck

_m
se fir

g7
21 iir

m
ac

_v
se

lp

m
ax

m
in

m
od

em
m

pe
g

pe
gw

it

ve
rti

bi

2-bit-T 3-bit-T 4-bit-T

Figure 9: Compression ratio for TMS using 32X4
Markov model and Tunstall based V2F compression

0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

3d

ad
pc

m
en

c
cp

r

die
se

l
ep

ic
g7

21 ke
y

m
pe

g

pe
gw

it
sm

o
tri

ck

2-bit 128x4 3-bit128X4 4-bit 128x4

Figure 10: Compression ratio for IA-64 using 128X4
Markov model and Tunstall based V2F compression

142

Figure 9 and Figure 10 show the compression ratio for
TMS320C6x and IA-64 benchmarks by using a Tunstall based
V2F compression scheme, with a 128X4 (depth=128,width=4)
Markov model and a 32X4 (depth=32, width=4)model re-
spectively. As the codeword length increases, the compres-
sion ratio is improved, though the codebook size doubles
when the codeword length increases by 1. When N=4, the
average compression ratio is about 56% for IA-64 and about
70% for TMS320C6x.

To construct a codeword graph as the one in Figure 6,
we have to profile the program execution and get the mem-
ory access footprint. We used a cycle accurate simulator for
TMS320C6x and profile a benchmark program ADPCM de-
coder (Adaptive Differential Pulse Code Modulation). The
experimental result on the bus toggles is shown in Figure
11. The bus toggles are normalized over the original tog-
gle counts 6699013. The figure shows the bus toggles after
compression and codeword assignment using the greedy al-
gorithm that mentioned in section 5. The experiment use
4-bit length codewords with different probability model. We
can see that using a static 1-bit model, we can not get much
bus power saving. As the model becomes larger, we have
more flexibility on codeword assignment to reduce the in-
struction bus toggles.

0

0.2

0.4

0.6

0.8

1

1.2

static iid 2X2 4X4 4X8 4X16 4X32 32X32

compression ratio

bus toggles

Figure 11: Instruction bus toggles reduction for AD-
PCM decoder running on TMS320C6x

Although the compression ratio for memoryless V2F cod-
ing is not as good as Markov V2F coding, there are two
advantages: The first is that since the Tunstall code we
construct is memoryless, and the probability distribution for
ones and zeros is stable for a specific ISA, the compression
and decompression procedure are not application specific.
Therefore the codebook and decompression engine do not
have to change when the application changes. The second
advantage is that the decompression architecture design is
simple and decompress speed is faster since the decompres-
sion can be done in parallel. From Figure 8, we can see that
in order to achieve higher compression ratio, the Markov
model becomes larger, which implies that the decoder will
be larger and more complicated. A memoryless VF coding
is a simplified Markov V2F coding which has only one state.

From our experiments, it is obvious that there are trade-
offs among compression ratio, bus power consumption re-
duction and the decompression overhead. Our compression
schemes are configurable, because the designer can define
the proper probability model parameter, i.e., the depth and
the width of the Markov model.

7. CONCLUSION AND FUTURE WORK
In this paper, we propose code compression schemes us-

ing variable-to-fixed (V2F) coding for embedded systems.
Though the algorithm can be used for any embedded pro-
cessor, it is more suitable for VLIW. By using a greedy code-
word assignment algorithm, the instruction bus toggles can
be reduced compared to the original uncompressed program.
This is the first code compression schemes that uses variable-
to-fixed coding. Our future work includes finding a better
heuristic algorithm for low power codeword assignment and
the ASIC design of the decompression architecture.

8. ACKNOWLEDGMENTS
This work was supported by Semiconductor Research Cor-

poration (SRC). The authors would like to thank Prof. Niraj
Jha in Princeton University and Dr. George Cai from Intel
for valuable discussion.

9. REFERENCES
[1] T. K. et al. A Decompression Core for PowerPC. IBM

Journal of Research and Development, Vol.
42(6):807–812, November 1998.

[2] T. Givargis and F. Vahid. Interface Exploration for
Reduced Power in Core-Based Systems. Proceedings of
the International Symposium on System Synthesis,
December 1998.

[3] N. Ishiura and M. Yamaguchi. Instruction Code
Compression for Application Specific VLIW
Processors Based on Automatic Field Partitioning.
Proceedings of the Workshop on Synthesis and System
Integration of Mixed Technologies,, pages 105–109,
1998.

[4] H. Lekatsas and W. Wolf. SAMC: A Code
Compression Algorithm for Embedded Processors.
IEEE Transactions on Computer Aided Design, Vol.
18:1689–1701, December 1999.

[5] S. Liao, S. Devadas, and K. Keutzer. Code Density
Optimization for Embedded DSP Processors Using
Data Compression Techniques. Proceedings of the
Chapel Hill Conference on Advanced Research in
VLSI, pages 393–399, 1995.

[6] S.Nam. Improving dictionary-based code compression
in vliw architectures . IEICE trans. Fundamentals,
November 1999.

[7] B. Tunstall. Synthesis of Noiseless Compression
Codes. PhD thesis, Georgia Institute of Technology,
Atlanta, Georgia, September 1967.

[8] A. Wolfe and A. Chanin. Executing Compressed
Programs on an Embedded RISC Architecture.
Proceedings of the International Symposium on
Microarchitecture, pages 81–91, December 1992.

[9] Y.Xie, W.Wolf, and H.Lekatsas. A Code
Decompression Architecture for VLIW processors.
Proceedings of the 34th Annual International
Symposium on Microarchitecture, pages 66–75,
December 2001.

[10] Y.Xie, W.Wolf, and H.Lekatsas. Compression Ratio
and Decompression Overhead Tradeoffs in Code
Compression for VLIW Architectures. Proceedings of
the 4th International Conference on ASIC, pages
337–341, October 2001.

143

	Main
	ISSS02
	Front Matter
	Table of Contents
	Author Index

