
A Design Space Exploration Framework for Reduced
Bit-width Instruction Set Architecture (rISA) Design ∗

Ashok Halambi Aviral Shrivastava Partha Biswas Nikil Dutt Alex Nicolau

{ ahalambi, aviral, partha, dutt, nicolau }@ics.uci.edu

Center for Embedded Computer Systems
Department of Information and Computer Science

University of California, Irvine, CA 92697-3425, USA

ABSTRACT
Code size is a critical concern in many embedded system ap-
plications, especially those using RISC cores. One promis-
ing approach for reducing code size is to employ a ”dual in-
struction set”, where processor architectures support a nor-
mal (usually 32 bit) Instruction Set, and a narrow, space-
efficient (usually 16 bit) Instruction Set with a limited set of
opcodes and access to a limited set of registers. This feature
(termed rISA) can potentially reduce the code size by up to
50% with minimal performance degradation. However, con-
temporary processors incorporate only a simple rISA feature
with severe restrictions on register accessibility. We present
a compiler-in-the-loop Design Space Exploration framework
that is capable of exploring various interesting rISA designs.
We also present experimental results using this framework
and show rISA designs that improve on the code size reduc-
tion obtained by existing rISA architectures.

Categories and Subject Descriptors
C.0 [Computer Systems Organization]: Instruction Set
Design

General Terms
reduced bit-width Instruction Set Architecture

Keywords
rISA, dual Instruction Set, design space exploration, regis-
ter pressure, reduced bit-width Instruction Set, compressed
Instruction Set, thumb

∗rISA term coined in [9]

Permission to make digital or hard copies of all or part of this work for
personal or classroom use is granted without fee provided that copies are
not made or distributed for profit or commercial advantage and that copies
bear this notice and the full citation on the first page. To copy otherwise, to
republish, to post on servers or to redistribute to lists, requires prior specific
permission and/or a fee.
ISSS’02, October 2–4, 2002, Kyoto, Japan.
Copyright 2002 ACM 1-58113-576-9/02/0010 ...$5.00.

1. INTRODUCTION
RISCmicro-processors, which offer the benefits of increased

design flexibility, high computing power and low on-chip
power consumption, are used to design modern, high-end
embedded systems. Examples of such systems abound and
include cell-phones (Nokia 9210 Communicator[5] using a
32-bit ARM9-based RISC CPU), PDAs (Compaq iPAQ Pock-
etPC[4] using an Intel StrongARM 32-bit RISC), routers
(Cisco 12000 Series[3] using MIPS R5000 CPU), etc.
However, these 32-bit RISC processor based systems suf-

fer from the problem of poor code density and require more
ROM for storing program code. This is a severe limita-
tion for these large volume, cost sensitive embedded systems.
Consequently, there is a lot of interest in reducing program
code size to decrease ROM size.
One innovative architectural modification to achieve code

size reduction is the “dual Instruction-Set” feature, with the
processor capable of executing two different Instruction-Sets
(IS). One, the “normal” set, contains the original IS, and the
other, the “reduced bit-width” set, encodes the most com-
monly used instructions using fewer bits. If an application is
fully expressed in terms of “reduced bit-width” instructions,
then a 50% code size reduction is achieved as compared to
when it is expressed in terms of normal instructions.
A very good example of an architecture supporting “re-

duced bit-width” is the ARM processor with a 32-bit IS
and a 16-bit IS called the Thumb IS. Other processors with
a similar feature include the MIPS 32/16 bit TinyRISC,
STMicro’s ST100 and the ARC Tangent processor. This
feature is termed the “reduced bit-width Instruction Set
Architecture” (rISA) [9]. The term rISAize refers to the
process of converting program code to rISA instructions.
Processors with rISA dynamically expand (translate) the

narrow rISA instructions into corresponding normal instruc-
tions. This translation usually occurs during the decode
stage. Typically, each rISA instruction has an equivalent
instruction in the normal IS. This makes translation simple
and can usually be done without any performance penalty.
As the translator converts rISA instructions into normal in-
structions, no other hardware is needed to execute rISA in-
structions. Thus, the main advantage of rISA lies in achiev-
ing good code size reduction with minimal hardware addi-
tions. However, as more rISA instructions are required to
implement the same task, rISA code has slightly lower per-
formance compared to normal code. ARM/Thumb[2] and

120

MIPS–16[12] report 30%–40% reduction in code size, with
minimal performance penalty for small functions.
The rISA IS, because of bit-width restrictions, can encode

only a subset of the normal instructions and allows access
to only a small subset of registers. Such severe restrictions
make the code-size reduction obtainable by using rISA very
sensitive to the compiler quality and the application fea-
tures. For example, if the application has high register pres-
sure, or if the compiler does not do a good job of register
allocation, it might be better to increase the number of ac-
cessible registers at the cost of encoding only a few opcodes
in rISA. Thus, it is very important to perform compiler-
in-the-loop design space exploration (DSE) while designing
rISA architectures. Contemporary rISA processors (such as
ARM/Thumb, MIPS32/16) incorporate a very simple rISA
model with rISA instructions able to access 8 registers (out
of 16 or 32 general-purpose registers). In this paper, we show
that varying this model by considering the application char-
acteristics and the compiler quality results in substantial im-
provement of code-size reduction. We present a rISA design
space exploration framework that incorporates a compiler
designed to optimize for rISA and is able to explore a wide
range of architecture design points.
In Section 2 we review some contemporary rISA proces-

sors, and outline some proposed rISA modifications and
compiler techniques to achieve better compression ratios.
In Section 3 we present the rISA model, and in Section 4 we
describe the exploration parameters that are used to gener-
ate alternative rISA design points. Section 5 presents our
compiler-in-the-loop rISA Design Space Exploration frame-
work. Section 6 and Section 7 present experimental results
evaluating various rISA designs using the framework, and
Section 8 concludes the paper.

2. RELATED WORK
In this section, we first discuss how various contemporary

processors support rISA. Then we look at the existing com-
piler techniques that make use of this architectural feature.
The ARM7TDMI processor[2] from ARM Inc. features a

32-bit “normal” IS, and 16-bit “reduced” IS, called “Thumb”.
“Thumb” instructions can access 8 registers (out of 16 reg-
isters in normal mode), and can encode only small imme-
diate values. Mode change (between the two Instruction
Sets) takes place only on a branch, using special instruction
“BX”(Branch and mode eXchange). A translation unit con-
verts the “Thumb” instructions into normal instructions in
the pre-decode stage of the pipeline.
The MIPS ISA features a 16-bit extension called MIPS16[12].

MIPS16 IS contains an extend opcode which extends the
values of immediate operands that were otherwise not rep-
resentable because of bit-width constraints. There are no
explicit mode change instructions to switch between the 32-
bit and 16-bit IS. Instead, code alignment dictates the mode
of execution: if a routine is aligned at the half-word bound-
ary it is assumed to be composed of MIPS16 instructions.
The ST100 core[6], from ST Microelectronics is a 32-bit

microcontroller/DSP architecture which hosts a 32-bit nor-
mal IS, and a 16-bit reduced bit-width IS. The switching
between the normal IS and reduced IS is performed by soft-
ware instructions or by external event.
The Tangent-A5 configurable RISC processor from ARC[1]

also supports dual Instruction Sets. However, instead of us-
ing a translation unit to expand 16-bit instructions to 32-bit

instructions, the Tangent processor executes the 16-bit in-
structions natively.
All of the contemporary rISA architectures described above

allow access to only a fixed set of 8 rISA registers due to
bit-width constraints on the operands. Recognizing that
the primary obstacle to achieving good code size reduction
using rISA is the limited bit-width available to encode the
operands, Kwon et. al.[15] propose a new rISA model called
Partitioned Register Extension (PARE). In this model, the
register file is split into (possibly overlapping) partitions,
and each rISA instruction can only write to a particular par-
tition. This reduces the number of bits required to specify
the destination register.
rISA has not been a very effective architectural feature

mainly because of absence of compiler techniques that ex-
ploit this feature to generate good code. There have been
some initial efforts to improve the ability of the compiler
to handle rISA. Halambi et. al[9] propose a register pres-
sure based heuristic to determine the profitability of using
rISA instructions to encode blocks of the program. This
heuristic aims to avoid code size increase due to excessive
spills/reloads.
In this paper, we present a compiler-in-the-loop rISA de-

sign space exploration framework that incorporates the tech-
nique mentioned above. We use the EXPRESSION Archi-
tecture Description Language (ADL)[8] to model the rISA
features. The EXPRESSION description is used to retarget
the compiler for the various rISA design points. The novel
features of our work include the ability to model and explore
a wide variety of rISA design points using the ADL and the
retargetable compiler that produces good quality code for
the various rISA designs.

3. RISA MODEL
In this section, we briefly describe the rISA processor

model. The model defines the rISA IS, and mapping of
rISA instructions to normal instructions. A rISA instruc-
tion should map to a unique normal instruction. Such a
mapping simplifies the translator unit, so that it does not
cause any performance delay.
As rISA processors can operate in either the rISA mode

or in the normal mode, a mechanism to specify the mode is
necessary. For most rISA processors, this is accomplished
using explicit instructions that change the mode of execu-
tion. We term an instruction in the normal IS that changes
mode from normal to rISA the mx instruction, and an in-
struction in the rISA IS that changes mode from rISA to
normal the rISA mx instruction.
Every sequence of rISA instructions starts with an mx in-

struction and ends in a rISA mx instruction. To ensure that
the ensuing normal instruction aligns to the word boundary,
a padding rISA nop instruction is needed.
Due to bit-width constraints, a rISA instruction can access

only a subset of registers. The register accessibility of each
register operand must be present in the rISA model. The
width of immediate fields must also be specified.
In addition, there may be special instructions in the rISA

model to help the compiler generate better code. A very use-
ful technique to increase the number of registers accessible
in rISA mode is to implement a rISA move instruction that
can access all registers (This is possible because a move has
only two operands and hence has more bits to address each
operand.). A technique to increase the size of the immedi-

121

ate value operand is to implement a rISA extend instruction
that completes the immediate field of the succeeding instruc-
tion.
Numerous such techniques can be explored to increase

the efficacy of rISA architectures. In the next section we
describe some of the more important rISA design parameters
that can be explored using our framework.

4. RISA DSE PARAMETERS
Conventional rISA architectures like Thumb[2] and MIPS16[12]

fix the register set accessible by rISA instructions to be 8.
Thus, each operand requires 3 bits for specification. This
implies that, for three operand instructions, up to 128 op-
codes can be encoded in rISA. The primary advantage of
this approach is that most normal 32-bit instructions can
also be specified as rISA instructions. However, this ap-
proach suffers from the drawback of increased register pres-
sure possibly resulting in poor code size. One modification
is to increase the number of registers accessible by rISA in-
structions to 16. However, in this model, only a limited
number of opcodes are available. Thus, depending on the
application, large sections of program code might not be
implementable using rISA instructions. The design param-
eters that can be explored include the number of bits used
to specify operands (and opcodes), and the type of opcodes
that can be expressed in rISA.
Another important rISA feature that impacts the quality

of the architecture is the “implicit operand format” feature.
In this feature, one (or more) of the operands in the rISA in-
struction is hard-coded (i.e. implied). The implied operand
could be a register operand, or a constant. In case a fre-
quently occurring format of add instruction is add Ri Ri Rj

(where the first two operands are the same), a rISA instruc-
tion rISA add1 Ri Rj , can be used. In case an application
that access arrays produces a lot of instructions like addr
= addr + 4 then a rISA instruction rISA add4 addr which
has only one operand might be very useful. The translation
unit, while expanding the instruction, can also fill in the
missing operand fields. This is a very useful feature that
can be used by the compiler to generate good quality code.
A severe limitation of rISA instructions is the inability

to incorporate large immediate values. For example, with
only 3 bits available for operands, the maximum unsigned
value that can be expressed is 7. Thus, it might be useful
to vary the size of the immediate field, depending on the
application and the values that are (commonly) generated
by the compiler. Increasing the size of the immediate fields
will, however, reduce the number of bits available for op-
codes (and also the other operands). This trade-off can be
meaningfully made only with a compiler-in-the-loop DSE
framework.
Various other design parameters such as partitioned reg-

ister files, shifted/padded immediate fields, etc also should
be explored in order to generate a rISA architecture that is
tuned to the needs of the application and to the compiler
quality. While some of these design parameters have been
studied in a limited context, there has been no previous
work that seeks to generate rISA designs that combine all of
these features. Our exploration framework, as explained in
the next section, is able to quantify the impact of these fea-
tures both individually and in various combinations. Also,
since it incorporates the compiler, the quality of each design
point is measured accurately.

Paramters
No. of opcodes in rIS

Opcodes in rIS

No. of operands

Implicit operands

Custom immediate field size

Application Compiler Simulator Analysis

rISA
Model

architecture
model

EXPRESSION
description

+
rISA

description

Code Size

Performance

Figure 1: Design Space Exploration flow

5. DESIGN SPACE EXPLORATION
Figure 1 presents the DSE framework used to explore

rISA design points. The processor architecture (with the
desired rISA features) is described using an Architecture
Description Language (ADL) called EXPRESSION[8]. This
description is then input to the EXPRESS retargetable com-
piler[10] and SIMPRESS simulator[11]. The desired appli-
cations are then compiled, simulated and the code size and
performance numbers are generated for analysis. The vari-
ous rISA design parameters mentioned in the previous sec-
tion can be described in EXPRESSION which is then used to
retarget the EXPRESS compiler to produce code optimized
for those features. Below, we describe our DSE framework
in greater detail. First, we describe how we capture rISA
information in the EXPRESSION ADL. Then, we describe
the rISA optimization techniques incorporated by the EX-
PRESS compiler.

5.1 ADL based DSE
EXPRESSION is an ADL designed to support design space

exploration of a wide class of processor architectures. EX-
PRESSION contains an integrated specification of both struc-
ture and behavior of the processor-memory system. The
structure is specified as a net-list of components (i.e., units,
storages, ports and connections) along with a high-level de-
scription of the pipeline and data-transfer paths in the ar-
chitecture. The behavior describes the Instruction Set of the
processor. Each instruction is defined in terms of its opcode,
operands and its format.
Specification of the rISA model in EXPRESSION con-

sists of describing the rISA instructions and the restrictions
on the operands. Each rISA instruction is specified as the
compressed counterpart of a normal instruction. The regis-
ter accessibility restrictions are specified by considering the
rISA registers as a special class of registers (that is a sub-
set of the general purpose register class). Furthermore, the
limitations on the immediate values that can be specified
in a rISA instruction are also specified. Finally, some spe-
cial rISA instructions such as the mx, rISA mx, rISA nop,
rISA extend, rISA load, rISA store and rISA move are iden-
tified in the specification. This information in the EXPRES-
SION description is used to derive a rISA architecture model
(Figure 1) that is used by the retargetable compiler and the
simulator.

122

Generic
Instruction Set

(3-address code)

architecture

Model
rISA

model

Target
Instruction Set

(Normal + rISA)

Instruction Selection Pass-I

Profitability Analysis

Instruction Selection Pass-II

Normal + rISA
Assembly

Augmented
Instruction Set

(With rISA Blocks)

Source File
C/C++

Register Allocation Pass-I

Register Allocation Pass-II

gcc-Front End

Figure 2: EXPRESS compiler flow

5.2 Compiler-in-the-loop DSE
The heart of the DSE framework is the EXPRESS retar-

getable compiler. EXPRESS [10] is an optimizing, memory-
aware, Instruction Level Parallelizing (ILP) compiler. The
inputs to EXPRESS are the application specified in C, and
the processor architecture specified in EXPRESSION. The
front-end is GCC based and performs some of conventional
optimizations. The core transformations in EXPRESS in-
cludeRDLP[14] – a loop pipelining technique,TiPS : Trail-
blazing Percolation Scheduling[13] – a speculative code mo-
tion technique, Instruction Selection and Register Alloca-
tion. The back-end generates assembly code for the proces-
sor ISA.
Figure 2 describes the phases of the EXPRESS compiler

that are used to perform rISAization. The Front-End out-
puts a sequence of generic 3-addr instructions. Since regis-
ters are usually the critical constraints in rISA architectures,
an initial register allocation is then performed. This ensures
that the later stages of instruction selection and schedul-
ing do not aggressively optimize the code (thus inserting
spills/reloads). Also, during this stage, the compiler deter-
mines those instructions that can be encoded using “implicit
operand” formats. Instruction Selection is then performed
as a two pass process. In the first pass, instructions that
can be converted to rISA are marked. Further, contigu-
ous sequences of such marked instructions are grouped as
candidate rISA blocks. A profitability heuristic then ana-
lyzes each rISA block and decides whether it is profitable
to rISAize the block of instructions. The second pass of
Instruction Selection then replaces all generic instructions
within profitable rISA blocks with rISA instructions, and
all other instructions with normal target instructions. Fi-
nally, register allocation is performed respecting the register
restrictions of the operands.
The profitability heuristic is a register pressure based heuris-

tic that decides whether or not to convert the generic in-
structions in a rISA block to rISA instructions. The heuris-
tic estimates the number of spills/reloads needed if the block

is rISAized. This is calculated based on the number of live
variables in the block, the average number of uses of a defini-
tion and the average live range of the variables in the block.
For a detailed explanation please refer to [9].
The EXPRESS compiler implements a modified version

of Chaitin’s solution[7] to Register Allocation. Registers are
grouped into (possibly overlapping) register classes. Each
program variable is then mapped to the appropriate register
class. For example, operands of a rISA instruction belong to
the rISA register class (which consists of only a subset of the
available registers). The register allocator then builds the
interference graph and colors it honoring the register class
restrictions of the variables.
Thus EXPRESS compiler retargets itself to generate good

quality code for the machine with rISA model described in
EXPRESSION. The EXPRESSION description is also used
to generate the simulator for the machine. Using the rISA
instructions to normal instructions mapping, the translator
unit is generated, and is prepended to the decode unit.
By considering the compiler effects during DSE, the de-

signer is able to accurately estimate the impact of the vari-
ous rISA features. In the next section, we present results of
DSE on some applications for the MIPS 32/16-bit architec-
ture.

6. EXPERIMENTS
To demonstrate the efficacy of our Design Space Explo-

ration framework, we conducted some experiments on the
MIPS 32/16-bit ISA. To avoid the effects of cache on rISA
performance, we perform our experiments on a non-cached
RISC MIPS32 machine. Thus the results quoted in this sec-
tion are purely due to IS design. We chose a set of applica-
tions from numerical computation kernels, and DSP applica-
tion kernels. The MIPS 32/16-bit architecture was specified
in the EXPRESSION ADL and then the various design pa-
rameters mentioned earlier were explored. Table 1 presents
the results of the exploration for a few of the design points
in terms of the code size reduction obtained by using the
EXPRESS compiler.
The first rISA design point (rISA 7333) is a restricted ver-

sion of the most common rISA model. In this design, each
operand is represented using 3 bits. Thus, each operand has
access to 8 registers, or to immediate values representable
in 3 bits.However, instructions with two operands can ac-
cess the entire set of 32 registers. Because of the uniform
instruction format, the translation unit is very simple for
this rISA design.
The second rISA design (rISA 4444) allows each operand,

access to 16 registers. However, this reduces the number of
bits available to specify the opcode to just 4. Thus, this
design allows only 16 rISA instructions. We profiled the
applications, and then incorporated the 16 most frequently
occurring instructions in this model.
The third rISA design point (rISA 7333 imm) is similar

to the MIPS16. In this design too, each operand has ac-
cess to 8 registers. However, for instruction formats with
the immediate field, unused bits from the opcode field are
used to extend the immediate field. Thus, this rISA design
allows larger immediate values within rISA instructions at
the expense of a more complex translation unit.
The fourth rISA design (rISA imp opnd) is similar to the

second design but also allows “implicit operand format” in-
structions. This design contains 2 operand rISA formats of

123

Percentage code size reduction
Bench rISA rISA rISA rISA rISA
marks 7333 4444 7333 imm imp opnd hybrid
hydro 18 30 21 26 30
prod 23 23 23 18 23
band 19 25 21 24 29
tri 28 24 31 24 28
lre 13 19 16 25 24
state 17 39 18 36 39
adii 3 16 3 11 18
pred 6 22 6 20 23
dpred 10 9 10 26 22
sum 25 25 25 19 25
diff 23 20 23 20 26
2dpic 4 26 5 24 25
1dpic 2 16 3 23 28
Ire 5 30 6 30 29
ihydro 3 24 4 23 20
min 3 12 5 10 23

Table 1: Percentage code size reduction

3 operand normal instructions. The number of rISA instruc-
tions is limited to 16, however the implicit operand format
instructions allow access to the full set of 32 registers.
The fifth rISA design point (rISA hybrid) is a custom

ISA in which instructions have variable register accessibil-
ity. Complex instructions with different operands of the
same instructions having different register set accessibility
are also supported. The register set accessible by operands
varies from 4 to 32 registers. We profiled the applications to
determine the combinations of operand bit-width sizes that
provide best code size reduction. The immediate field is also
customized to gain best code size reduction.
We use the code size of each application on MIPS32 ISA

without rISA as the baseline. We then obtain the code size
using each of the rISA designs explained above. The per-
centage code size reduction numbers shown in Table 1 are
the percentage code size reduction when using a rISA de-
sign as compared to the baseline code size. The rISA hybrid
design which is customized for this application set has the
best code size reduction for most of the applications while
the rISA 7333 design has the least code size reduction. The
next section, analyzes the numbers plotted in Table 1.

7. ANALYSIS
The rISA 7333 design does not achieve good code size

reduction in benchmarks that have high register pressure
(such as the adii application). This is because the compiler
heuristic decides not to rISAize large portions of the appli-
cation to avoid code size increase due to extra spill/reload
and immediate extend instructions. rISA 7333 on an aver-
age achieved 11% code size reduction over normal IS.
The register pressure problem is mitigated in the rIS 4444

design. It achieves better code size reduction for benchmarks
that have high register pressure, but performs badly on some
of the benchmarks, because of its inability to convert all
the normal instructions into rISA instructions. rISA 4444
achieves about 23% improvement over normal IS.
The rISA 7333 imm design achieves slightly better com-

pression as compared to the first design point, since it has

30

rISA_7333
rISA_imp_opnd

rISA_hybrid

5

10

15

20

25

rISA Models

A
v
er

ag
e

%
 C

o
d
e

S
iz

e
R

ed
u
ct

io
n

rISA_7333_imm
rISA_4444

Figure 3: Code size reduction for various rISA ar-
chitectures

large immediate fields, while having access to the same set of
registers. rISA 7333 imm achieves about 12% improvement
over normal IS.
The rISA imp opnd design achieves, on average, about

the same code size improvement as the rISA 4444 design
point. However, note that the performance benefits of using
implicit operands is substantial for some applications such
as state and dpred. rISA imp opnd achieves about 22% im-
provement over normal IS.
The rISA hybrid, because it is customized for the appli-

cation set, achieves the best code size reduction. rIS Hybrid
achieves about 26% overall improvement over normal IS.
Figure 3 plots the average reduction in code size in various

rISA designs as compared to the code size obtained by using
the normal (without rISA) MIPS32 ISA.
It is important to note that the numbers for code size

compression due to rISA published so far[2, 12, 9], have been
pre-assembly code size numbers. These approach does not
consider the code size increase due to the immediate extend
instructions that need to be inserted for instructions with
larger immediate values. We present results considering the
effect of adding rISA extend instructions to complete the im-
mediate value. Consider, for example, the rISA instruction
rISA add R1 R2 10110101 in the pre-assembly. If the imme-
diate field in rISA add is only 3 bits, then the assembler will
convert this to two instructions, rISA extend 000000010110;
rISA add R1 R2 101. Thus the post-assembly code size and
number of instructions will be more than the pre-assembly
code size. The rIS hybrid design achieves 40% pre-assembly
code size reduction over normal code; however after includ-
ing the rISA extend instructions the code size reduction is
28%.
The presence of extra instructions (due to extend, spill/reload,

etc.) in rISA code negatively impacts performance. For
the rISA hybrid architecture, the performance degradation
varies from 15% up to 40%.
From the experimental results presented, it can be seen

that conventional rISA designs are not optimal. However,

124

the best rISA design depends on the application characteris-
tics and the compiler technology. In this paper, we presented
a rISA DSE framework that is capable of exploring a wide
range of rISA parameters, and also accurately estimates the
impact of each design point.

7.1 Translator Unit Complexity
Another factor that influences the design of rISA archi-

tectures is the complexity of the translator logic. Simple
rISA designs like rISA 7333 and rISA 4444 have a one-to-
one mapping from rISA instructions to normal instructions.
In more complex rISA design points, like rISA hybrid many
rISA instructions can expand to the same normal instruc-
tion. However, even for complex rISA designs, all the pos-
sible translations can be done in parallel, and the correct
one selected using a multiplexor. Thus in either case, the
best case delay of translator unit is not dependent on the
rISA design. The translation unit of complex rISA may
end up having increased area/cost design. Moreover, the
translation can be done in the negative cycle (i.e pre-decode
stage).

8. SUMMARY AND FUTURE WORK
An architectural feature for improving code density of

RISC processors is the reduced bit-width Instruction Set
Architecture (rISA) extension. In this paper we presented a
Design Space Exploration (DSE) framework capable of ex-
ploring various rISA parameters. Our DSE framework con-
sists of an Architecture Description Language (ADL) that
is used to specify the rISA architectural features, and a re-
targetable compiler that produces code optimized for rISA.
The benefits of such an approach include the ability to ex-
plore a wide variety of rISA parameters and an accurate
estimation of the impact of the various rISA features. We
presented experimental results with rISA design points that
improve on the existing rISA architectures. Future work in
this area includes the problem of automatically generating
customized rISA architectures for sets of applications.

9. ACKNOWLEDGEMENTS
This work was partially supported by grants from DARPA

(F33615-00-C-1632), HITACHI and a Motorola Fellowship.
The authors would like to thank all the EXPRESSION team
members for their valuable support in this framework.

10. REFERENCES
[1] ARCtangent-A5 microprocessor Technical Manual.

ARC Cores, http://www.arccores.com.

[2] ARM7TDMI Technical Manual. ARM,
http://www.arm.com.

[3] Cisco 12000 Series Router Specifications Manual.
CISCO, http://www.cisco.com.

[4] Compaq iPAQ PocketPC Specifications Maual.
COMPAQ, http://www.compaq.com.

[5] Nokia 9210 Specifications. NOKIA,
http://www.nokia.nl.

[6] ST100 Technical Manual. STMicroelectronics,
http://www.st.com.

[7] P. Briggs, K. Cooper, and L. Torczon. Improvements
to graph coloring register allocation. In Proceedings of
SIGPLAN Conference on Programming Language
Design and Implementation, 1994.

[8] A. Halambi, P. Grun, V. Ganesh, A. Khare, N. Dutt,
and A. Nicolau. EXPRESSION: A language for
architecture exploration through compiler/simulator
retargetability. In Proc. of Design Automation and
Test in Europe, 1999.

[9] A. Halambi, A. Shrivastava, P. Biswas, N. Dutt, and
A. Nicolau. An efficient compiler technique for code
size reduction using reduced bit-width isas. In Proc. of
Design Automation and Test in Europe, 2002.

[10] A. Halambi, A. Shrivastava, N. Dutt, and A. Nicolau.
A customizable compiler framework for embedded
systems. In SCOPES, 2001.

[11] A. Khare, N. Savoiu, A. Halambi, P. Grun, N. Dutt,
and A. Nicolau. V-SAT: A visual specification and
analysis for system-on-chip exploration. In Proceedings
of EUROMICRO-99, 1999.

[12] K. Kissell. MIPS16: High-density MIPS for the
embedded market. Silicon Graphics MIPS Group,
1997.

[13] A. Nicolau and S. Novack. Trailblazing: A hierarchical
approach to percolation scheduling. Proc. of Intn’l
Conf. on Parallel Processsing, 1993.

[14] S. Novack and A. Nicolau. Resource directed loop
pipelining : Exposing just enough parallelism. The
Computer Journal, 1997.

[15] X. M. Young-Jun Kwon and H. J. Lee. PARE:
instruction set architecture for efficient code size
reduction. Electronics Letters, 35(24):2098–2099,
November 1999.

125

	Main
	ISSS02
	Front Matter
	Table of Contents
	Author Index

