
Managing Dynamic Concurrent Tasks in Embedded
Real-Time Multimedia Systems

Peng Yang(*) Paul Marchal(*) Chun Wong(*) Stefaan Himpe (***)
Francky Catthoor(**) Patrick David Johan Vounckx Rudy Lauwereins(**) ∗

ABSTRACT
This paper addresses the problem of mapping an applica-
tion, which is highly dynamic in the future, onto a hetero-
geneous multiprocessor platform in an energy efficient way.
A two-phase scheduling method is used for that purpose.
By exploring the Pareto curves and scenarios generated at
design time, the run-time scheduler can easily find a good
scheduling at a very low overhead, satisfying the system con-
straints and minimizing the energy consumption. A real-life
example from a 3D quality of service kernel is used to show
the effectiveness of our method.

Categories and Subject Descriptors
D.4.7 [Operating Systems]: Organization and Design—
real-time systems and embedded systems; D.4.1 [Operating

Systems]: Processing Management; I.6.4 [Simulation and

Modeling]: Model Validation and Analysis

General Terms
Design, Algorithms, Performance

Keywords
multiprocessor, embedded system, low-power, scheduling

1. INTRODUCTION
The merging of computers, consumer and communication

disciplines gives rise to very fast growing markets for per-
sonal communication, multimedia and broadband networks.
Technology advances lead to platforms with enormous pro-
cessing capacity that are however not matched with the re-
quired increase in system design productivity.

One of the most critical bottlenecks is the very dynamic
concurrent behavior of many of these new applications. They

∗Kapeldreef 75, Leuven, Belgium, B3001; also Ph.D. stu-
dent of K.U.Leuven-ESAT(*), also professor of K.U.Leuven-
ESAT(**), Ph.D. student at K.U.Leuven-ESAT (***).

Permission to make digital or hard copies of all or part of this work for
personal or classroom use is granted without fee provided that copies are
not made or distributed for profit or commercial advantage and that copies
bear this notice and the full citation on the first page. To copy otherwise, to
republish, to post on servers or to redistribute to lists, requires prior specific
permission and/or a fee.
ISSS’02, October 2–4, 2002, Kyoto, Japan.
Copyright 2002 ACM 1-58113-576-9/02/0010 ..$5.00

are fully specified in software oriented languages (like Java,
UML, SDL, C++) and still need to be executed in real-time
cost/energy-sensitive way on the heterogeneous SoC plat-
forms. A way of mapping this SW/HW specification onto an
embedded multi-processor platform is required. The main
issue is that fully design-time based solutions as proposed
earlier in the compiler and system synthesis communities
cannot solve the problem, and run-time solutions as present
in nowadays operating systems are too inefficient in terms of
cost optimization (especially energy consumption) and are
also not adapted for the real-time constraints.

This dynamic nature is especially emerging because of the
quality-of-service (QoS) aspects of these multi-media and
networking applications. Prominent examples of this can
be found in the recent MPEG4/JPEG2000 standards and
especially the new MPEG21 standard. In order to deal
with these dynamic issues where tasks and complex data
types are created and deleted at run-time based on non-
deterministic events, a novel system design paradigm is re-
quired. This paper will focus on the new requirements that
result in system-level synthesis. In particular a ”task con-
currency management” (TCM) problem formulation will be
proposed, with special emphasis on the results that can be
obtained in terms of where power consumption reduction.
The concept of Pareto curve based exploration is crucial in
the solution for this problem.

The promising results that can be obtained with such
a methodology will be illustrated with an MPEG21 based
demonstrator mapped on a multi-processor simulation plat-
form with a hierarchical share memory organization.

2. PLATFORM BASED DESIGN

Figure 1: The platform integration.

The future of embedded multimedia applications lies in

112



low-power heterogeneous multiprocessor platforms[10]. In
the near future, the silicon market will be driven by low-cost,
portable consumer devices which integrate multi-media and
wireless technology. Most of these applications will be im-
plemented with compact and portable devices, putting strin-
gent constraints on the degree of integration (i.e. chip area)
and on their power consumption (0.1-2W ). The applications
will require a computational performance of the order (1-
40GOPS). Current PCs offer this performance. However,
their power consumption is too high (10-100W ). We must
keep this performance and reduce the power consumption at
least two to three orders of magnitude. Embedded systems
are also subject to stringent real-time constraints, compli-
cating their implementation considerably. Finally, the chal-
lenge to embed these applications on portable devices is in-
creased even further because of user interaction: at any mo-
ment the user will be able to trigger new services, change
the configuration of the running services, stop existing ser-
vices. Hence, the execution behavior changes dynamically
at run-time.

Therefore, the future embedded system should be extremely
fast, have a extremely low energy consumption, and be flex-

ible enough to cope with the dynamic behavior of future
multi-media applications. In spite of modern voltage scaling
techniques, existing single processor systems (e.g. found in
PDA’s) cannot deliver enough computational performance
at a sufficiently low energy budget. On the other hand,
full custom hardware solutions can achieve a good perfor-
mance/energy consumption ratio, but are not flexible enough
to cope with the dynamic behavior and have a relatively
long time-to-market delay. Also the technology scaling trend
with the explosion of masks’ costs and of the physical de-
sign (especially due to timing closure and test) implies that
custom ASICs are only feasible for high volume designs. A
combination of the bests of both worlds is required for the
majority of the new applications (see [7]). This explains the
growing interest in platform based design [6].

The benefits of heterogeneous platforms can however only
be fully exploited when applications are efficiently mapped
on them. Unfortunately, current design technologies fall be-
hind these advances in computer architecture and processing
technology. When looking at contemporary design practices
for systems implemented with these heterogeneous multi-
processor platforms, one can only conclude that these sys-
tems are nowadays designed in a very ad hoc manner. A
systematic methodology and its corresponding tool set are
definitely needed.

In this paper, we present a systematic design method-
ology and tool support to embed multi-media applications
on platforms. With our design methodology, we target es-
pecially the management of dynamic and concurrent tasks
and their data on heterogeneous multiprocessor platforms.
This requires, given an application which has its own specific
control and data structure, and a template for the platform
architecture, finding a way to decide the instance platform
architecture and how to map the application efficiently onto
such an architecture (top part of Fig. 1). We will only focus
on the concurrency management issues in this paper, even
though the data management part [22] is as crucial.

Platform based design also encompasses a physical imple-
mentation problem that can be called platform integration
(bottom part Fig. 1), but that is not addressed here.

3. RELATED WORK
Task scheduling in a task concurrency management con-

text has been investigated overwhelmingly in the last decades.
When a set of concurrent tasks - that is, tasks that can
overlap in time - have to be executed on one or more pro-
cessors, a predefined method, called scheduling algorithm,
must be applied to decide the order in which those tasks are
executed. For a multiprocessor system, another procedure,
assignment is also needed to determine on which processor
one task will be executed. A good overview of scheduling
algorithms can be found in [27]. In this paper, the termi-
nology task scheduling is used for both the ordering and the
assignment.

Scheduling algorithms can be roughly divided into dy-
namic and static scheduling. In a multiprocessor context,
when the application has a large amount of non-deterministic
behavior, dynamic scheduling has the flexibility to balance
the computation load of processors at run-time and make
use of the extra slack time coming from the variation from
worst case execution time (WCET). However, the run-time
overhead may be excessive and a global optimal scheduling
is difficult to find due to the difficulty of the problem. We
have selected a combination of a design-time and run-time
scheduling here to take advantage of both of them.

Since more and more embedded systems are targeted at
multiprocessor architectures, multiple processor scheduling
plays an increasingly important role. El-Rewini et al [11]
give a clear introduction to the task scheduling in multi-
processing systems. Hoang et al [14] try to maximize the
throughput by balancing the computation load of the dis-
tributed processors. All the partition and scheduling deci-
sions are made at compile time. This approach is limited to
pure data flow applications. Yen et al [35, 34] try to com-
bine the processor allocation and process scheduling into
a gradient-search cosynthesis algorithm. It is a heuristic
method and can only handle periodic tasks statically.

In the above work, performance is the only concern. In
other words, they only consider how to meet real-time con-
straints. For embedded systems, cost factors like energy
must be taken into account as well. Gruian et al [13] have
used constraint programming to minimize the energy con-
sumption at system level but their method is purely static
and no dynamic policy is applied to exploit more energy
reduction.

Recently, DVS (dynamic voltage scaling) is getting more
consideration. Since the energy consumption of CMOS dig-
ital circuits is approximately proportional to the square of
the supply voltage, decreasing the supply voltage is advan-
tageous to low power design, though it will also slow down
the cycle speed. 1 Traditionally, the CPU works at a fixed
supply voltage, even at a light workload. In fact, under such
situations, the fast speed of the CPU is unnecessary and can
be traded for a lower energy/power consumption by reducing
the supply voltage. Chandrakasan et al. [5] have compared
several energy saving techniques concerned DVS. Based on
these investigations, several real-time scheduling algorithms
are provided, e.g. by Hong [16] and Okuma [23]. Recently
Transmeta has released a commercial processor that allows
the dynamic voltage scheduling technique [8]. Normally the
scheduling techniques developed in the real-time commu-

1On the long term, the technologically available range for
this scaling will decrease as already mentioned

113



Custom acceler.

Reconfig.core

DSP 
core

SRAM

DRAM

ACU/MMU

programmable
(heterogeneous
instr.set proc
with multi-Vdd)

distributed shared
data mem. hierarchy

RISC 
core

Cache

L1

NV-
RAM

Control

distributed shared
instr. mem. hierarchy

L0

Figure 2: A typical heterogeneous processor plat-

form

nity, e.g., fixed priority scheduling, EDF (earliest deadline
first), slack stealing etc., are still applicable in DVS, only
an extra voltage decision step is needed. A good survey
of the recently proposed DVS algorithms can be found in
[18] and [26]. Most related work, e.g., [4, 15, 26], concen-
trates on saving energy of independent tasks or on a single
processor, while the tasks in real-world applications usually
have control or data dependencies and mapped to multiple
processors, heterogeneous or homogeneous.

Power consumption in a multiple processor context is treated
in [20] by evenly distributing the workload. However, no
manifest power and performance relation is used to steer
the design-space exploration. In addition, they also assume
a continuously scalable working voltage. In [21], for a mul-
tiprocessor and multiple link platform with a given task and
communication mapping, a two phase scheduling method
is proposed. The static scheduling is based on the slack
time list scheduling, and a critical path analysis and task
execution order refinement method is used to find the off-
line voltage scheduling for a set of periodic real-time tasks.
The run-time scheduling is similar to resource reclaiming
and slack stealing, which can make use of the variation from
the WCET and provide the best-effort service to aperiodic
tasks. In [36], a EDF based multiprocessor scheduling and
assignment heuristic is given, which is shown better than the
normal EDF. After the scheduling, an ILP model is used to
find the voltage scaling accurately or approximately by sim-
ply rounding the result from a LP solver and the result is
claimed within 97% accuracy. The method can be used for
both continuous and discrete voltage.

Our scheduling methodology is different from the above
ones in several ways. Firstly, we consider only discrete volt-
ages, which is a more reasonable assumption in terms of fu-
ture process technology and circuit design possibilities, com-
pared to a continuous range. Actually, as illustrated in [36],
it is even more difficult to solve because it corresponds to
an ILP problem, not LP. Secondly, we also use a two-phase
off-line and on-line scheduling. However, the design-time off-
line step is more a design space exploration than a simple
scheduling, because it gives a series of different scheduling
trade-off points, rather than only one given by a conven-
tional scheduler. Thirdly, we avoid having to use the WCET
estimation, which is inaccurate and pessimistic due to the
dynamic features of the applications. Fourthly, we apply
voltage scaling at the intra-task level and make use of the
run-time application information. The intra-task voltage
scaling is considered only recently by other researchers[3].

4. TARGET PLATFORM ARCHITECTURE
AND MODELS

In an up-to-date platform like Fig. 2 (where we focus on
the digital core only), one or more (re-configurable) pro-

grammable components, either general-purpose or DSP pro-
cessor cores or ASIPs, the analog front end, on-chip mem-
ory, I/O and other ASICs are all integrated into the same
chip (System-on-Chip) or in the same package (System-in-
Package). Furthermore, platforms typically contain also
some software blocks (API, Operating System and some
other middleware solutions), a methodology and a tool set to
support rapid architectural exploration. Examples of such
platforms are TI’s OMAP[17], the Philips Nexperia[24], the
ARM PrimeXsys[2] and the Xilinx Virtex-II Pro[32].

Platforms obtain a high performance at a low energy cost
through the exploitation of different types of parallelism [18,
1]. In the context of this paper we will mainly focus on the
task-level concurrency but also the instruction and data-
level parallelism should be exploited in the mapping envi-
ronment. In this way we can keep the power consumption
lower by exploiting Vdd and frequency scaling in the pro-
cessing cores. We will assume that only a limited set of
Vdd’s can be supported with a not too large range because
future process technologies (see ITRS roadmap) will demand
that. Large memories even do not allow any Vdd scaling but
in that case the power consumption can be controlled by an
efficient mapping on a distributed memory architecture [12].

A multiprocessor platform simulator was used to test the
effectivity of our methodology and to answer “what-if” ques-
tions to explore the platform architecture design space. For
the experiments in this paper, we will focus on the pro-
cessing modules. In order to demonstrate the impact of
our MATADOR-TCM approach, we will assume that either
several StrongARM cores are available each with a different
Vdd or a single StrongARM core with a few discrete Vdds.
The ranges of the Vdd’s will vary from 1.2 to 2.4V, which is
motivated by the data sheet information. The power models
are based on these data sheets too and are based on instruc-
tion counts obtained from profiling. The cycle counts of the
thread nodes are also obtained by profiling, based on an
ARMulator environment. A clock frequency of 266 MHz is
assumed at 2.4V to obtain the execution times.

5. TASK CONCURRENCY MANAGEMENT
This approach addresses the dynamic and concurrent task

scheduling problem on a multiprocessor platform for real-
time embedded systems, where energy consumption is a
major concern. Here we propose a two-phase scheduling
method, which is a part of our overall design methodology
and can provide the required flexibility at a low run-time
overhead. The global methodology is briefly introduced in
the next section, and then the scheduling method is ex-
plained. More information can be found in [25] and espe-
cially [33]. Finally we demonstrate how the platform simu-
lator is used to support and verify this methodology.

5.1 Global TCM Methodology
The TCM methodology comprises of three stages (see

Fig.3). The first is concurrency extraction. In this stage,
we extract and explicitly model the potential parallelism
and dynamic behavior of the application. An embedded
system can be specified at a gray box abstraction level in a
combined MTG-CDFG model [28, 30], where MTG is the
acronym for multi-task graph. With MTG, the application
can be represented as a set of concurrent thread frames 2

2Please refer [33] for terminologies.

114



(TF) that exhibit a single thread of control. Each of these
TFs consists of many thread nodes (TN) that can be looked
at as a more or less independent section of the code. In the
second stage, we apply concurrency improving transforma-
tions on the gray-box model. The third stage mainly consists
of a two-phase scheduling approach. First the design-time
scheduling step is applied to each of the identified TFs in
the system. Different from traditional design-time schedul-
ing, it does not generate a single solution but a set of pos-
sible solutions, each of which represents a different possible
cost-performance trade-off point. Finally, we integrate an
application-specific run-time scheduler in the RTOS of the
application. The run-time scheduler dynamically selects one
of these trade-off points for each running TF to find a global
energy efficient solution.

Concurrency
improving

transformations

Design-time
scheduling of 

tasks

Run-time
scheduler

C++/C-code
specification
of the system

Initial
grey-box
model

Improved
grey-box
model

time-budget

cost

Task1

time-budget

cost

Task2

time-budget

cost

Task3

Extraction
of the grey-box

model

Platform

RT 
constraints

Platform

RT 
constraints

Processor1

time

Processor2

Processor3

Mapping of all the tasks
 on the platform

Figure 3: Task Concurrency Management

5.2 Two-phase scheduling stage
The design of concurrent real-time embedded systems,

and embedded software in particular, is a difficult prob-
lem, which is hard to perform manually due to the com-
plex consumer-producer relationships, the presence of vari-
ous timing constraints, the non-determinism in the specifica-
tion and the sometimes tight interaction with the underlying
hardware. Here we present a new cost-oriented approach to
the problem of concurrent task scheduling on multiple pro-
cessors.

The design-time scheduling is applied on the thread nodes
inside each thread frame at compile time, including a pro-
cessor assignment decision of the TNs in the case of multiple
processing elements. On different types of processors on the
heterogeneous platform, the same TN will be executed at
different speeds and with different costs, i.e., energy con-
sumption in this paper. These differences provide the possi-
bility of exploring a cost-performance tradeoff at the system
level. The idea of our two phase scheduling is illustrated
in Fig. 4. Given a thread frame, our design-time scheduler
will try to explore different assignment and ordering possi-
bility, and generate a Pareto-optimal set, where every point
is better than any other one in at least one way, i.e., either
it consumes less energy or it executes faster. The Pareto-
optimal set is usually represented by a continuous Pareto
curve. Since the design-time scheduling is done at compile
time, computation efforts can be paid as much as necessary,

1
2

3

thread 1

A B

thread 2

Static
Scheduling

Dynamic

Scheduling

Static
Scheduling

1

2

Proc 1

Proc 2

3

1 2Proc 1

3Proc 2

A

B

Proc 1

Proc 2

A

BProc 1

Proc 2
.
.
.

.

.

.

A

BProc 1

Proc 2

1

2

3Time Budget

Cost selected
operation

point

Time Budget

Cost selected
operation

point

Figure 4: A two phase scheduling method.

provided that it can give a better scheduling result and re-
duce the computation efforts of run-time scheduling in the
later stage.

At run time, the run-time scheduler will then work at the
granularity of thread frames. Whenever new TFs are ini-
tiated, the run-time scheduler will try to schedule them to
satisfy their time constraints and minimize the system en-
ergy consumption as well. The details inside a thread frame,
like the execution time or data dependency of each thread
node, can remain invisible to the run-time scheduler and
this reduces its complexity significantly. Only some essential
features of the points on the Pareto curve will be passed to
the run-time scheduler by the design-time scheduling results,
and be used to find a reasonable cycle budget distribution
for all the running thread frames.

In summary, we separate the task scheduling into two sep-
arate phases, namely design-time and run-time scheduling,
for three reasons. First, it lends more run time flexibility
to the whole system. We can indeed accommodate more
unforeseen demands for more execution time by any TF,
by “stealing” time from other TFs, based on their available
Pareto set. Secondly, we can minimize energy for a given
timing constraint that usually spans several TFs by selecting
the right combination of points. This will be illustrated in
the realistic application of section7. Finally, it minimizes the
run time computation complexity. The design-time sched-
uler works at the gray box level but still sees quite a lot of
information from the global specification. The end result
hides all the unnecessary details and the run-time scheduler
only operates on the granularity of TFs, not single TNs.

5.3 Simulation environment
We have integrated this run-time manager on the plat-

form with the help of an existing RTOS[31]. More in partic-
ular, the run-time manager uses the services of this RTOS
to distribute the tasks/TFs in the application across the
processors and to activate them in the correct order.

A simulation environment is used in this methodology to
collect the necessary energy and performance profiling infor-
mation for the design-time scheduling phase. The tasks/TFs
are precharacterized with the execution times and their cor-
responding energy consumption for different configurations
of the platform similar to [19] and [9]. In this context, the
TF execution times and their energy consumption are mea-
sured on different single processor configurations. The in-
teraction with other processors can be safely ignored in this
case, which has been substantiated by measurements on the

115



ARMulator.
Secondly, the simulation environment is used to verify the

functional correctness of the TCM approach. It also helps
to quantify the effective energy reduction and performance
gains which can be obtained with the TCM approach, in-
cluding the overhead of the run-time scheduling phase.

We have applied our TCM approach on a part of a real-life
application, the QoS kernel of the 3D rendering algorithm
that is developed in the context of a MPEG21 project. We
have simulated it on our platform. The application and
experimental result are discussed in the following sections.

6. 3D RENDERING QOS APPLICATION
To test the effectiveness of our approach, a real-life ap-

plication, the QoS (Quality of Service) control part of a 3D
rendering algorithm, is used.

Fig. 5 shows how 3D decoding/rendering is typically per-
formed: a 2D texture and a 3D mesh are first decoded and
then mapped together to give the illusion of a scene with
3D objects. This kind of 3D rendering requires that each
frame of the rendering process is recalculated completely.
The required computation power depends significantly on its

Figure 5: 3D rendering consists of 2D texture and

3D mesh decoding.

number of triangles. When the available resources are not
enough to render the object, instead of letting the system
break down (totally stop the decoding and rendering dur-
ing a period of time), the corresponding mesh of the object
can be gracefully degraded to decrease resouse consumption,
while maintaining the maximal possible quality.

The number of triangles that are used to describe a mesh
can be scaled up or down. This can be achieved by perform-
ing edge collapses and vertex splits respectively, as shown in
Fig. 6.

Figure 6: Edge collapse and vertex split.

To perform an edge collapse, and thus remove the edge

Figure 7: The gray-box model of quality adjust

thread frame.

(Vs, Vt), we first remove the triangles which Vs and Vt have in
common, and we replace Vt with Vs in the triangles adjacent
to Vt. We then recenter Vs, to keep the appearance of the
new set of triangles as close as possible to the former one.
The new set of triangles represents the same object with less
detail but also with less triangles. The same principle but in
a reversed way is used to perform a vertex split. The edge
collapse and vertex split approaches can be used repeatedly
till a desired number of triangles are achieved.

For a 3D object, the more triangles that are used to repre-
sent a mesh, the more precise the description of the object.
This increases the perceived quality. However, it slows down
the geometry and rasterizing stages because more computa-
tion power is needed there. Consequently it decreases the
number of frames that can be generated each second(FPS,
frame per second), while most videos or 3D games appli-
cations desire a fixed FPS. Another thing that we have to
consider here is that the same application can be run at dif-
ferent platforms, e.g., a desktop PC or a PDA, which pro-
vides completely different computation ability and power
consumption feature. Hence different qualities of the same
service have to be supplied to achieve a similar FPS. For a
given computation platform and a desired FPS, the num-
ber of triangles it can handle in one frame is almost fixed.
Based on the number of objects in the current frame and
what these objects are, the QoS controller will assign the
triangles to each object so that the user can get the best-of-
effort visual quality at a fixed frame rate.

7. EXPERIMENT RESULTS
In the QoS kernel of the considered 3D application, for

each visible object on the scene, a separate thread frame will
be triggered, in which the number of triangles is adjusted to
the number specified by the QoS algorithm. The gray-box
model of that thread frame is shown in Fig. 7, where all
the internal TNs are numbered as well. Table 1 gives the
profiled execution time and energy consumption of each TN
on a 2.4V StrongARM processor.

From the gray-box model, we can see that based on whether
each object is the first time visible, which can be true only
once during the whole stream, a branch will be taken. If

116



Thread Ex. Time En. Cons.
Node (us) (mJ)

1 47 1.9667

2 1387.9 54.5519

3 3740.4 157.401

4 5726.4 306.2996

5 9305.3 497.5459

6 1655.2 96.0004

7 4.5 0.1682

8 778.5 36.6076

9 815.7 39.9994

10 82.4 4.1479

11 441.1 21.5862

12 0.2 0.0062

13 89 4.4328

14 718.8 35.3593

15 0.2 0.0056

Table 1: Execution time and energy consumption of

TNs of the quality adjust TF.

it is the first time visible, the mesh and texture have to be
parsed, generated and bounded (TNs 1 to 9). If it is not,
the current number of faces will be compared to the desired
number of faces to decide whether to collapse edges (TNs
10, 11 and 12) or to split more vertices (TNs 13, 14 and 15).

The edge collapse and vertex split are done in a progres-
sive and iterative way to avoid abrupt changes of the object
shape with a while loop over TN 10 or 13. The iteration
number of this loop depends on the difference between the
current and desired number of faces of that object, and it
varies from 2 to 1000 based on the profiling data. Only one
Pareto curve is not enough to represent these highly dy-
namic features. We have to distinguish first-time-visible or
not-first-time-visible and the while loop iteration numbers.
For the latter, if we would not make a difference in imple-
mentation of the while loop body, we would have to consider
the implemetation for the worst case, which is 1000 itera-
tions and much bigger than the average case. To avoid that,
we have introduced the concept of “scenario selection” where
different Pareto curves are assigned (in an analysis step at
design time) to run-time cases that motivate a set of different
implementations. Based on this analysis, we have decided to
use 9 different Pareto curves in the QoS application to rep-
resent the run-time behavior of one object: the first one is
when it is first time visible; the others are when it is not and
has to be collapsed or split. For “collapse” and “split”, each
are assigned four curves with different implementations, cor-
responding to different iteration sub-ranges. For example,
the first curve of “collapse” will be selected if the actual it-
eration number falls between 2 and 12. Therefore, we only
have to consider the worst case of that sub-range, which is
12 in this example, not the worst case of the whole range,
which is 1000. Extra code has been inserted to enable this.
We have selected these ranges based on the profiling data
from the application and they are illustrated in Table 2.

first time collapse range
visible or split

scenario 0 yes
scenario 1 no collapse 2-12
scenario 2 no collapse 13-30
scenario 3 no collapse 31-180
scenario 4 no collapse 181-1000
scenario 5 no split 2-4
scenario 6 no split 5-12
scenario 7 no split 13-60
scenario 8 no split 61-1000

Table 2: Scenario selection.

In the QoS kernel, which is typical for future object-based
multi-media applications, we know at the beginning of each
frame the characteristics of its content. In this case we know

how many objects we have to render and also (in our ap-
proach) the best matched scenario of each object. Each sce-
nario is represented by a Pareto curve computed at design
time. From these, the run-time scheduler uses a heuristic
algorithm to select an operating point from each curve and
activates it with the help of the RTOS. We have run the
application for 1000 scenes and collected the data as a rep-
resentative experiment. For comparison reasons, we have
also generated a reference case, REF2, to show how well a
state-of-the-art DVS scheduler can do. We assume it has full
access to the available application parameters at run-time
too, but it does not exploit the scenario selection concept so
only one common implementation (schedule + assignment
on the multi-processor) is available for any execution of the
while loop body. For REF2, we assume it knows the number
of objects it is going to schedule in that frame, but it does
not exploit the scenarios. Therefore, it has to take an im-
plementation that matches the worst case (TN 13 loops for
1000 times and the execution time is 89ms) for each object.
However when one object finishes, the slack time (the dif-
ference between the real execution time and the worst case)
will be reclaimed and reused by the scheduler for the subse-
quent tasks (i.e. slack stealing [29] is exploited). Whenever
the estimated remaining execution time is smaller than the
desired deadline, a continuous DVS method is used to save
energy. Another reference case, REF1, is also generated,
where all code is executed on the highest voltage processor.
This is also the outcome if no information of the application
is passed to the run-time manager, i.e. neither the number
nor the kinds of the objects are known. Since we have a very
dynamic application (the number of objects varies from 2 to
20), to handle the worst case and still meet the stringent
deadline, the code has to be run completely on the high
voltage processor. The majority of earlier techniques (see
e.g. [18] for an overview) that use pre-characterized task
data in terms of WCET times and corresponding energy,
would lead also to the REF1 result for this type of appli-
cations with a very dynamic behaviour. Only a few would
come close to REF2, as currently none of them combines all
of the ingredients that were used to compose REF2.

REF1 REF2 TCM TCM
(1 CPU, 1 V

dd
) (1 CPU, 2 V

dd
) (1 CPU, 2 V

dd
) (4 CPU, 4 V

dd
)

fps=5 627 577 257 162

fps=10 627 621 364 183

Table 3: Energy consumption

REF1 REF2 TCM TCM
(1 CPU, 1 V

dd
) (1 CPU, 2 V

dd
) (1 CPU, 2 V

dd
) (4 CPU, 4 V

dd
)

fps=5 5 5 5 0

fps=10 26 26 26 1

Table 4: Deadline miss

The energy consumptions for all cases are shown in Tab. 3
and the number of deadline misses are shown in Tab. 4.
All results are collected after the application has been run
for 1000 sequential scenes and for different frame per sec-
ond (FPS) requirements. The voltages we have used here
are Vdd=1.2 and 2.4V for the two voltage case and Vdd=1.2,
1.6, 2.0 and 2.4V for the four processor case. Normally, with
a higher FPS, to satisfy a more stringent time constraint,
parts of the code that are executed at lower voltages have
to be moved to a higher voltage, resulting in the increase of
the energy consumption. Also, the chance that a deadline is

117



Figure 8: The distribution of the scenarios activa-

tion

Figure 9: The distribution of the Pareto points ac-

tivation in scenario 6

missed increases correspondently. Compared to REF1, for
the single processor situation, the TCM approach consumes
much less energy (saving of 58% when fps is 5 and 40%
when fps is 10), while the deadline miss ratio remains the
same. The latter is easy to understand because when the
time constraint is really stringent, the TCM method will au-
tomatically schedule all thread nodes to the highest possible
voltage processor, which is just what REF1 does. When the
time constraint is less tight, a much cheaper solution will be
found by the TCM method. Comparing REF2 and REF1
you will find that for this type of dynamic multi-media ap-
plications, state-of-the-art DVS cannot gain much because
it does not exploit different combinations of TF realisations.
This is especially so for a heterogeneous multi-processor con-
text where all the prestored implementations of TN sched-
ules and processor assignments cannot be computed at run-
time any more without too much run-time overhead. Only
the Vdd selection can be performed at run-time in some ap-
proaches but then not per processor. From the result we
can also see that by increasing the number of processors,
we can reduce the energy consumption even more while now
meeting nearly all the deadlines.

The distribution of the scenario selection is given in Fig. 8,
while Fig. 9 gives the distribution of the selected Pareto
points in scenario 6, both when fps is 5. From the figures we
can see that the TCM scheduler activates different scenarios
dynamically and selects the optimal Pareto point from the
activated scenario depending on the run-time situations, i.e.
the resource available and the number of competitors. Most
of the time, scenario 1 and 5, which are the least time con-
suming ones, will be selected. Therefore, we avoid the worst
case estimation and have more opportunities to scale down
the voltage, compared to REF2. In scenario 6, the least en-
ergy consuming solution, Pareto point 5, is selected as long

as it is possible; otherwise a more expensive one is chosen
to meet the time constraint. The combination of scenario
and Pareto point selection gives us the advantage of heavily
exploring the design space at design time and finding the
most energy efficient solution exactly for that situation at
run time.

8. CONCLUSION
In this paper we presented a unique approach to manage

concurrent tasks of dynamic real-time applications. We ex-
plained an methodology to map the applications in a cost
(especially power) efficient way onto a heterogeneous em-
bedded multiprocessor platform. This approach is based on
a design time exploration, which result in a set of schedules
and assignments for each task, represented by Pareto curves.
At run time, a low complexity scheduler selects an optimal
combination of working points, exploiting the dynamic and
non-deterministic behavior of the system.

This approach leads to significant power saving compared
to state of the art voltage scaling techniques because of two
major contributions. First, we effectively combine an intra-
task detailed design-time exploration, giving high scheduling
quality, and a low overhead run-time scheduler. Second, by
considering the run-time application provided information,
we use a scenario approach to avoid the worst case execution
time estimation. In the future, we will extend this work to
provide tool support for code synthesis, concurrency trans-
formation and RTOS integration.

9. REFERENCES
[1] S. Adve et al. The Interaction of Architecture and

Compilation Technology for High-performance Processor
Design. IEEE Computer Magazine, 30(12):51–58, Dec.
1997.

[2] ARM. www.arm.com.
[3] A. Azevedo et al. Profile-based dynamic voltage scheduling

using program checkpoints. In Proceedings of the Design
Automation and Test in Europe, pages 168–75, 2002.

[4] T. D. Burd, T. A. Pering, A. J. Stratakos, and R. W.
Brodersen. A Dynamic Voltage Scaled Microprocessor
System. IEEE J. Solid-State Circuits, 35(11):1571–80, Nov.
2000.

[5] A. Chandrakasan, V. Gutnik, and T. Xanthopoulos. Data
Driven Signal Processing: An Approach for Energy Efficient
Computing. In Proceedings of International Symposium on
Low Power Electronic Device, pages 347–52, 1996.

[6] J.-M. Chang and M. Pedram. Codex-dp: Co-design of
Communicating Systems Using Dynamic programming. In
Proceedings of the Design Automation and Test in Europe,
pages 568–73, Mar. 1999.

[7] T. Claasen. High Speed: Not the Only Way to Exploit the
Intrinsic Computational Power of Silicon. In Proc. Int.
Solid-State Circuits Conf., pages 22–25, San Fransisco, CA,
Feb. 1999.

[8] http://www.crusoe.com.
[9] B. P. Dave, G. Lakshminarayana, and N. K. Jha. COSYN:

Hardware-Software Co-Synthesis of heterogeneous
Distributed Embedded Systems. IEEE Transactions on
Very Large Scale Integration(VLSI) Systems, 7(1):92–104,
Mar. 1999.

[10] H. De Man. System Design Challenges in the Post-pc Era.
In Proceedings of the 37th Design Automation Conference,
Los Angels, 2000.

[11] H. El-Rewini, H. H. Ali, and T. Lewis. Task Scheduling in
Multiprocessing Systems. IEEE Computer, 28(12):27–37,
Dec. 1995.

118



[12] F.Catthoor, K.Danckaert, C.Kulkarni, E.Brockmeyer,
P.G.Kjeldsberg, T. Achteren, and T.Omnes. Data Access
and Storage Management for Embedded Programmable
Processors. Kluwer Academic Publishers, Boston, 2002.

[13] F. Gruian and K. Kuchcinski. Low-Energy Directed
Architecture Selection and Task Scheduling. In
EUROMICRO’99, pages 296–302, 1999.

[14] P. D. Hoang and J. M. Rabaey. Scheduling of DSP
Programs onto Multiprocessors for Maximum Throughput.
IEEE Transactions on Signal Processing, 41(6):2225–2235,
June 1993.

[15] I. Hong, D. Kirovski, G. Qu, M. Potkonjak, and M. B.
Srivastava. Power Optimization of Variable Voltage
Core-Based Systems. In Proceedings of the 35th Design
Automation Conference, pages 176–81, San Francisco, CA,
1998.

[16] I. Hong, M. Potkonjak, and M. B. Srivastava. On-Line
Scheduling of Hard Real-Time Tasks on Variable Voltage
Processor. In IEEE/ACM International Conference on
Computer-Aided Design, pages 653–656, San Jose, CA,
1998.

[17] T. Instruments. www.ti.com.
[18] N. K. Jha. Low Power System Scheduling and Synthesis. In

IEEE/ACM International Conference on Computer-Aided
Design, pages 259–63, 2001.

[19] D. Kirkovski and M. Potkonjak. System-level Synthesis of
low-power Hard Real-time Systems. In Proceedings of the
34th Design Automation Conference, pages 697–702, Jun.
1997.

[20] J. Luo and N. Jha. Power-consious Joint Scheduling of
Periodic Task Graphs and Aperiodic Tasks in Distributed
Real-time Embedded Systems. In IEEE/ACM
International Conference on Computer-Aided Design,
pages 357–364, San Jose, USA, Nov. 2000.

[21] J. Luo and N. Jha. Static and Dynamic Variable Voltage
Scheduling Algorithms for Real-Time Heterogeneous
Distributed Embedded Systems. In 7th ASPDAC and 15th
Int’l Conf. on VLSI Design, pages 719–26, Jan. 2002.

[22] P. Marchal, C. Wong, A. Prayati, N. Cossement,
F. Catthoor, R. Lauwereins, D. Verkest, and H. De Man.
Dynamic Memory Oriented Transformations in the MPEG4
IM1-player on a Low Power Platform. In Proc. Intnl. Wsh.
on Power Aware Computing Systems(PACS), Cambridge
MA, Nov. 2000.

[23] T. Okuma, T. Ishihara, and H. Yasuura. Real-Time Task
Scheduling for a Variable Voltage Processor. In Proceedings
of International Symposium on System Synthesis, pages
24–29, 1999.

[24] Philips.
www.semiconductors.philips.com/platforms/nexperia.

[25] A. Prayati, C. Wong, P. Marchal, et al. Task Concurrency
Management Experiment for Power-efficient Speed-up of
Embedded MPEG4 IM1 Player. In International
Conference on Parallel Processing, 2000.

[26] G. Quan and X. Hu. Energy Efficient Fixed-Priority
Scheduling for Real-Time Systems on Variable Voltage
Processors. In Proceedings of the 38th Design Automation
Conference, 2001.

[27] K. Ramamritham and J. A. Stankovic. Scheduling
Algorithms and Operation Systems Support for Real-Time
Systems. Proceedings of the IEEE, 82(1):55–67, Jan. 1994.

[28] S.Himpe, G.Deconinck, F.Catthoor, and J.Meerbergen.
MTG* and Grey-Box: modeling dynamic multimedia
applications with concurrency and non-determinism. In
Proc. Forum on Design Languages(FDL), Marseille,
France, Sept. 2002.

[29] Y. Shin, K. Choi, and T. Sakurai. Power Optimization of
Real-Time Embedded Systems on Variable Speed
Processors. In Proceedings of the 37th Design Automation
Conference, pages 365–8, 1999.

[30] F. Thoen and F. Catthoor. Modeling, Verification and
Exploration of Task-level Concurrency in Real-Time
Embedded Systems. Kluwer Academic Publishers, 1999.

[31] Windriver. www.windriver.com.
[32] Xilinx. www.xilinx.com.
[33] P. Yang, C. Wong, P. Marchal, F. Catthoor, D. Desmet,

D. Verkest, and R. Lauwereins. Energy-aware Runtime
Scheduling for Embedded Multiprocessor SoCs. IEEE
Design & Test of Computers, 19(3), Sept. 2001.

[34] T.-Y. Yen and W. Wolf. Communication Synthesis for
Distributed Embedded Systems. In IEEE/ACM
International Conference on Computer-Aided Design,
pages 288–94, 1995.

[35] T.-Y. Yen and W. Wolf. Sensitivity-Driven Co-Synthesis of
Distributed Embedded Systems. In Proceedings of
International Symposium on System Synthesis, pages 4–9,
Sept. 1995.

[36] Y. Zhang, X. S. Hu, and D. Z. Chen. Task Scheduling and
Voltage Selection for Energy Minimization. In Proceedings
of the 39th Design Automation Conference, 2002.

119


	Main
	ISSS02
	Front Matter
	Table of Contents
	Author Index





