
OpenMP: Parallel programming API for shared memory
multiprocessors and on-chip multiprocessors

(Extended abstract)
Mitsuhisa Sato

University of Tsukuba
1-1-1 Tenou-dai,Tsukuba,
 Ibaraki 305-8577 Japan

msato@is.tsukuba.ac.jp�

�

�

�

�

�

Categories & Subject Descriptors: D.3.3
[Programming Languages]: Language Contructs and Features –
Concurrent programming structures. D.1.3 [Software]: Concurrent
Programming – Parallel Programming

General Terms: Languages, Performance

1. INTRODUCTION
The OpenMP Application Programming Interface is an emerging
standard for parallel programming on shared-memory
multiprocessors. Recently, OpenMP is attracting widespread interest
because of its easy-to-use portable parallel programming model.

OpenMP is not a new language. It extends existing languages such
as FORTRAN and C/C++ with a set of directives. The OpenMP
API [1] defines a set of directives that augment standard C/C++ and
Fortran 77/90. In contract to previous API such as POSIX threads
and MPI, OpenMP facilitates an incremental approach to the
parallelization of sequential program. The programmer may add
parallelization directives to loops or statements in the program.

OpenMP is currently used for high performance computing
applications running on shared memory multiprocessors. It is also of
interest to the cluster computing community, because many recent
clusters are built from shared memory nodes. OpenMP API can be
used to exploit parallelism on a node while a message passing API is
used between nodes.

As more transistors are integrated onto bigger die, an on-chip
multiprocessor will become a promising alternative to the complex
superscalar microprocessor that is commonly used today. While a
trend seems to be toward CPUs with wider instruction issues and
support for larger amount of speculative execution, an on-chip
multiprocessor composed of simpler processors may exploit thread-
level parallelism efficiently. For such on-chip multiprocessor,

parallel (or multi-threaded) programming is required. OpenMP will
offer an every ease-to-use simple parallel programming environment
to make use of an on-chip multiprocessor.

The Omni OpenMP compiler [2] is a production-level research
prototype compiler for OpenMP, which supports C and Fortran 77.
One of our project objectives of the Omni OpenMP compiler project
is providing a portable implementation of OpenMP for SMPs and
several native and experimental thread libraries.

In this paper, we describe a brief introduction of OpenMP API and
its parallel programming in the next section. In section 3, we present
our Omni OpenMP complier and performance of some applications
on a shared memory multiprocessor. In section 4, a role of OpenMP
for modern on-chip multiprocessors is discussed.

2. PROGRAMMING IN OPENMP
OpenMP provides three kinds of directives: parallelism/work
sharing, data environment, and synchronization. We only describe a
brief introduction of OpenMP here. Refer to the OpenMP standard
for the full specification [1].

OpenMP uses the fork-join model of parallel execution. An
OpenMP program begins execution as a single process, called the
master thread of execution. The fundamental directive for
expressing parallelism is the parallel directive. It defines a parallel
region of the program, which is executed by multiple threads. When
the master threads enters a parallel region, it forks a team of t
threads (one of them being the master thread), and work is
continued in parallel among these threads. Upon exiting the parallel
construct, the threads in the team synchronize (join the master), and
only the master continues execution. The statements in the parallel
region, including functions called from within the enclosed
statements, are executed in parallel by each thread in the team. The
statements enclosed lexically within a construct define the static
extent of the construct. The dynamic extent further includes the
functions called from within the construct.

Permission to make digital or hard copies of all or part of this work for
personal or classroom use is granted without fee provided that copies are
not made or distributed for profit or commercial advantage and that
copies bear this notice and the full citation on the first page. To copy
otherwise, or republish, to post on servers or to redistribute to lists,
requires prior specific permission and/or a fee.
ISSS’02, October 2–4, 2002, Kyoto, Japan.
Copyright 2002 ACM 1-58113-562-9/02/0010…$5.00.

109

All threads replicate the execution of the same code, unless a work
sharing directives is specified within the parallel region. Work
sharing directives, such as for divide the computation among
threads. For example, “for” directive (DO directive in FORTRAN)
specifies that the iterations of the associated loop should be divided
among threads so that each iteration is performed by a single thread.
The data environment directives control the sharing of program
variables defined outside of a parallel region. Variables default to
shared, which means shared among all threads in a parallel region. A
private variable has a copy per thread. The reduction directive
identifies reduction variables. In the example shown in Figure 2, the
most outer loop for sparse matrix-vector multiplication is
parallelized by “for” directives. The temporary variables such as “j”,
“t”, “start”, “end” are specified as private variables in the parallel
region.

3. OMNI OPENMP COMPILER AND
PERFORMANCE ON SMP
The Omni OpenMP compiler is a translator which takes OpenMP
programs as input to generate the multithreaded C program with
runtime library calls.

To translate a sequential program annotated with OpenMP parallel
directives into a fork-join parallel program, the compiler
encapsulates each parallel region into a separate function. The
master thread calls the runtime library to invoke the slave threads
which are executed this function in parallel. Pointers to shared
variables with auto storage class are passed to slaves at the fork.
Private variables are re-declared in the functions generated by
compiler. The work sharing and synchronization constructs are

translated into codes that contain the corresponding runtime library
calls.

This transformation pass is written in Java using the Exc Java
toolkit. The generated program is compiled by the native back-end
C compiler linked with the Omni OpenMP runtime library.

For SMP platforms, the runtime library includes microtasking and
synchronization primitives on top of the different thread libraries
including POSIX threads and Solaris thread, “sproc” of SGI IRIX,
StackThreads/MP. StackThreads/MP [5] is a thread library,
developed by the University of Tokyo, which supports fine-grain
multithreading in GCC/G++. It tolerates a large number of threads
far beyond the number of processors, and imposes a very small
overhead for creating and terminating a thread. The runtime library
using the StackThreads supports the nested and irregular parallelism
efficiently.

Table 1 and 2 show the performance of the SPECClimate
benchmark from SPEC HPC suites on COMPAQ ES40,
ProLiant6500 respectively, using our Omni OpenMP compiler.
This program is known as the climate simulation program MM5,
which is parallelized by using OpenMP. The detail of the
performance of Omni OpenMP compiler is reported in [3].

4. A ROLE OF OPENMP FOR ON-CHIP
MULTIPROCESSORS APPLICATION
An on-chip multi-processor with simple processors is a promising
approach to exploit thread-level coarse-grain parallelism. In [3],
Olukotun et. al. discussed the design trade-offs between wide-issue
processors and on-chip multiprocessors in the same dai-area. They
found that for applications with large amount of parallelism on-chip
multiprocessor architecture outperforms the superscalar architecture.
On-chip multiprocessors offer localized implementation of high-
clock rate and low latency communication. To exploit thread-level
parallelism, OpenMP can serve as programming environment to
write multithreaded applications.

Another opportunity to use OpenMP is modern multi-threaded
architecture. For instance, HyperThreading, Intel's simultaneous
multithreading technique yields thread-level parallelism on a single

Table 1. Performance of SPEC Climate on COMPAQ ES40
(Alpha EV67 666MHz, L2 8M, 1GB memory, Linux2.2.14-

6.0smp)

#threads 1 2 4

Small 405 213 (1.90) 130 (3.11)

Medium 4972 2568 (1.94) 1380 (3.60)

Large 40984 21216 (1.93) 11598 (3.53)

Table 2. Performance of SPECClimate on COMPAQ
ProLiant6500 (Pentium II Xeon 450MHz, 4CPU, 1GB

memory, Linux2.2.16)

#threads 1 2 4

Small 1203 657 (1.83) 375 (3.20)

Medium 14691 7816 (1.88) 4239 (3.47)

Large 121462 63058 (1.93) 34708 (3.50)

Figure 2. Example of OpenMP programming:
Sparse matrix-vector routine parallelized by OpenMP

Figure 1. OpenMP for-Execution Model

Matvec(double a[],int row_start,int col_idx[],
double x[],double y[],int n)
{

int i,j,start,end; double t;
#pragma omp parallel for private(j,t,start,end)

for(i=0; i<n;i++){
start=row_start[i];
end=row_start[i+1];
t = 0.0;
for(j=start;j<end;j++)

t += a[j]*x[col_idx[j]];
y[i]=t;

}
}

… A ...
#pragma omp parallel
{

foo(); /* ..B... */
}
… C ….
#pragma omp parallel
{
… D …
}
… E ...

Call foo() Call foo()Call foo()Call foo()

A

B

C

D

E

fork

join

Call foo()Call foo() Call foo()Call foo()Call foo()Call foo()Call foo()Call foo()

A

B

C

D

E

fork

join

110

processor. The availability of the HyperThreading feature within the
Intel Xeon MP (Prestonia) server/workstation chip should aid in
threaded desktop application software development. Intel was also
promoting the OpenMP API, which supports writing multithreaded
applications.

The current most OpenMP compilers and runtime system are
designed for shared memory multiprocessors. For on-chip
multiprocessors and multithreaded microprocessors, an OpenMP
implementation could be re-designed to make use of fast
synchronization and low latency communications between thread in
run-time system and compiler. Flexible thread runtime scheduling is
also an interesting design issue of OpenMP to exploit nested
dynamic parallelism using fast synchronization of on-chip
multiprocessor.

OpenMP can be used as a backend of some automatic parallelizing
compiler. The automatic paralleling compiler translates sequential
code into multi-threaded code with OpenMP directives. It helps
users to port an existing application on on-chip multiprocessors.

5. CONCLUDING REMARKS
The OpenMP Application Programming Interface is an emerging
standard for parallel programming on shared-memory
multiprocessors. On-chip multiprocessor architecture will be easier
to implement with a high clock rate and low latency communication.
For such on-chip multiprocessors, OpenMP offers an easy-to-use
parallel programming environment to develop multi-threaded

applications on on-chip multiprocessors. We are developing a
portable OpenMP compiler, called Omni OpenMP compiler system.
While the current OpenMP compiler and runtime system are
designed for shared memory multiprocessors, OpenMP should be
re-designed for on-chip multiprocessors to make use of fast
synchronization and low latency communication and to support
flexible thread scheduling for nested dynamic parallelism.

6. REFERENCES
[1] OpenMP ARB, “OpenMP API”, http://www.openmp.org/

[2] Omni OpenMP Compiler Project, http://www.hpcc.jp/Omni/
[3] Kunle Oluktun, Basem A. Nayfeh, Lance Hammond, Ken

Wilson and Kunyung Chang, “The Case for a Single-Chip
Multiprocessor”, ASLOPS VII, 1996.

[4] Kazuhiro Kusano, Shigehisa Satoh and Mitsuhisa Sato,
“Performance Evaluation of the Omni OpenMP Compiler”,
WOMPEI (part of ISHPC2K), LNCS 1940, pp. 403-414,
Tokyo, Oct, 2000.

[5] Yoshizumi Tanaka, Kenjiro Taura, Mitsuhisa Sato, Akinori
Yonezawa, “Performance Evaluation of OpenMP Applications
with Nested Parallelism”. LCR 2000, pp. 100-112.

�

111

	Main
	ISSS02
	Front Matter
	Table of Contents
	Author Index

