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ABSTRACT 
We have fabricated a Chip Multiprocessor prototype code-named 
Merlot to proof our novel speculative multithreading architecture. 
On Merlot, multiple threads provide wider issue window beyond 
ordinal instruction level parallel (ILP) processors like superscalar 
or VLIW. With the architecture, we estimate 3.0 times speedup 
against single processing elements (PE) on speech recognition 
code and IDCT code with four PEs. Merlot integrates on-chip 
devices, PCI interface, and SDRAM interfaces. We have 
encountered design issues of chip multiprocessor and SoC design. 
We have successfully run parallelized mpeg3 decoder on the first 
silicon with several software workarounds, thanks to functional 
verification environment including system modeling on RTL. 
However, bugs found in later stage of design have required larger 
manpower or delay of project. In this paper, we also discuss the 
methodology to improve functional verification coverage, and 
expect the solution in formal approaches.  

Categories and Subject Descriptors 
B.6.3 [Logic Design]: Design Aids – Simulation, Verification 
B.7.1 [Integrated Circuits]:  Types and Design Styles – 
Microprocessors and microcomputers 
B.m  [Logic Design]:Miscellaneous – Design management 
C.1.2 [Processor Architectures]: Multiple Data Stream 
Architectures (Multiprocessors) – Multiple-instruction-stream, 
multiple-data-stream processors (MIMD);  
C.1.4 [Processor Architectures]: Parallel Architectures – Mobile 
processors 

General Terms: Design, Verification. 

Keywords: Speculative multithreading, Chip Multiprocessor, 
CMP, Deign Experience, Functional verification 

1. INTRODUCTION 
The rapid progress of LSI technology has realized system on 

chip (SoC) with embedded processors, devices, and memories. 
SoC enables us small, low cost, and low power consumer 
equipments. LSI designers, however, now encounter design and 
verification problems because of the complexity with the system 
level integration and shorter design time requirement.  

We have been researching a chip-multiprocessor architecture 
targeting at higher performance with lower power consumption. 
We have proposed FOPE (Fork Once Parallel Execution) 
architecture, and fabricated a prototype chip code-named Merlot. 
In section 2, the target of Merlot and its architecture is briefly 
described.  In section 3, design issues of Merlot and our solutions 
are referred. Finally, in section 4, we focus on the coverage 
improvement of functional verification since we think it is crucial 
for complex system design.  

  Table 1: Specifications of Merlot 

Technology: 0.15 mm CMOS, 5-Metal 

Supply Voltage: 1.2 - 1.8 V (Internal), 3.3 V (I/O) 
Clock Speed: 125 MHz (at 1.3V) 
Number of Trs.: 14M (Logic 6M, Memory 8M) 
Area:                      10.5 mm x 10.5 mm (110 mm2) 
Number of Pins: 300 (Signal), 500 (Total) 
Power:                    1 W (at 1.3 V) 
Performance: 1 GIPS (at 1.3 V) 
I-Cache:                  64 kB (4 Set Associative, 32 B Line) 
D-Cache:                 64 kB (Divided into 8 Banks, 32 B Line)  
Base Instruction Set: V800 series(NEC Proprietary), 16,32bit width. 
Instruction Issue: 2-issue (in-order)  x   4 Multi-processor 
  Non-blocking load: 3 load/ifetch miss per PE 
Data:                       32 bit, 16 bit x 2 Media, (8 bit x 4 Media)  
Bus Interface: SDRAM: 64 bit + ECC (1 or 2 Channel(s)) 
                                   PCI 2.1: 32 bit, 33 MHz 
  Up to 8 outstanding requests 
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2. MERLOT ARCHITECTURE 
SMP (Symmetrical Multiprocessor) has been widely used in 

high-end computer systems. In SMP systems, processors are 
connected to a shared memory through a coherent cache system. 
Thread libraries for application programming on a monolithic 
SMP operating system relieve burden of parallel programming. 
Even with them, however, multithread programming is not easy 
due to racing condition in shared data caused by erroneous 
synchronization, etc. Performance tuning is another burden. 
Speculative multithreading has been proposed to remove this 
burden by automatic parallelization with compiler or object code 
conversion [1][2][3].  

Merlot[4][5][6] is a tightly coupled chip-multiprocessor (CMP) 
as a research prototype to proof our novel speculative multi-
threading architecture named FOPE  (Fork Once Parallel 
Execution). With FOPE architecture, a compiler realizes 
automatic parallelization with the assistance of directives inserted 
into compiler source code. 

 Parallelization scheme is depicted in Figure 1. Figure 1-A shows 
a sample program structure. Program 1-A’s dynamic execution 
flow in sequential processor is shown in Figure 1-B. In FOPE, 
instructions executed in future of thread i (basic block B2, D2) are 
hoisted and executed in neighbor processor in parallel in thread 
i+1. The thread generation is controlled by fork instructions 
inserted by parallelizing compiler. 

Architectural keys are: 
1. Static thread scheduling (ordered threads) controlled by 

several additional instructions (fork, term, thcomt, thabort, 
etc). 

2. Speculative execution of threads beyond control flow 
determination and data disambiguation. 

A statically defined thread order eliminates thread-scheduling 
hardware. With the constraint that a thread generates another 
thread only once throughout the thread’s life, unique thread order 
is defined among all threads. Under this constraint, data 
communication and synchronization are unidirectional, and 

deadlock freeness is guaranteed with static scheduling. In 
addition, this constraint enables sequential emulation of 
parallelized code in a single processor by just neglecting thread 
control instructions. Therefore, we can verify parallelized code 
with sequential emulation. 
Speculative execution enables us to exploit larger parallelism, 

though we have to pay the cost for tentative storages of register 
and memory value. The storages also resolve hazards (Read-
After-Write, Write-After-Read, Write-After-Write) which are 
derived from parallel execution of threads.  
Chip specifications are shown in Table 1. Die plot and block 
diagram of Merlot are shown in Figure 2 and Figure 3 
respectively.   

  

 
Figure 2 Merlot Die Plot 
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Figure 1: Fork Once Parallel Execution 
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Figure 3 Block Diagram of Merlot 
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 On Merlot, each processing element shares an instruction fetch 
unit, a register file, and a data cache with store reservation buffers 
(SRBs) for faster thread creation and data communication. We 
have designed the whole logic from the scratch including the 
processing element because of those sharing resources. 

Performance estimation is shown in Figure 4.  

3. DESIGN AND VERIFICATION OF MERLOT 
   Design difficulty of Merlot is shown in Table 2. With much 
effort spent on functional verification, we could successfully run 
mpeg2 decoder with simple OS on the first silicon with several 
software workaround and a bug fix with FIB. However, we still 
think the verification is the biggest issue in complex 
microprocessor design. Before discussing this issue in section 4, 
we would like to summarize the design and verification of Merlot 
focusing mainly on verification. 

3.1 Criteria for Design Environment 
   For the design environment, we considered the following 
aspects: 1) Repeatability or Automation in order to remove human 
errors, 2) Controllability and Convergence to design target, 3) 
Expandability of the tool, and 4) Information for management aids.  

3.2 Design Environment 
For logic design and verification of Merlot, we have provided 

following environments. Detailed descriptions are in [7]:   
1. Online Documentations: used Web for ease of update and 

accessibility.  
2. Strict design rules: Signal and module naming rules 

predefined for a globally unique and standardized identifier. 
3. Design Entry Tools: verilog enhancement with perl based 

macro expressions, and terse description of design parts like 
FF, MUX, etc. The size of source is reduced to 40% of final 
verilog RTL (Register Transfer Level) description in words 
in 168 source files. Non-leaf level connecting RTL 

generator reduced the source to 10% in words in 53 files. 
The tool also works for the front-end for RTL timing tools. 

4. System Level Modeling and reference for simulation. 
5. Planned Test Pattern Generation: aimed at balanced mixture 

of random and directed patterns. 
6. Regression Test Tools: automated nightly regression test 

and visualization of the results. 
7. RTL version management with modified CVS. 
8. Bug Tracking based on GNATS. 
9. RTL Timing Tools with budget visualization and automatic 

generation of synthesis constraint  
10. ECO Design Tools: Formal Equivalence Checking between 

modified RTL and manually modified Gate Level Netlist. 

3.2 System Level Modeling 
We combined Merlot RTL to a commercial PCI modeler and a 

memory modeler. The PCI modeler originally required 
handwritten test scenarios for master operation. We modified the 
modeler to be triggered by program counter in RTL, so that PCI 
stimulus can be specified in assembly code of the tests. To match 
the RTL and ILsim (Instruction Level simulator), we extracted the 
positions of events, which are required to be clock accurate, from 
RTL simulation first, and inserted them into ILsim. However, it 
was difficult to remove false mismatches because of simplified 
modeling in ILsim (no cache, sequential emulation of thread 
execution, etc) or visibility of cycles in system registers. To run 
applications on RTL or ILsim, we provided OS stubs for the 
delegation of system calls to the host OS. 
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Figure 4 Performance Estimation of Merlot 

  

Table 2: Design Difficulty of Merlot 

1. Chip Multi-Processor (2issue PE x 4PE on a Chip) 
-  Difficulty to provide reference simulator  
- Difficulty to improve test coverage 

2. System on Chip 
-  Multiple clock domains: core, SDRAM, PCI (async.) 
-  System modeling: (PCI, SDRAM) 

3. Debugging Support 
- Debug modes, Test bus for memory and register file 
observation. 
-  Partial scan, Spare cells for FIB 
4. Low Power Design 
-  Clock gating 
- Three power domains with on-chip power switches for 
leak current reduction 
-  Custom Blocks: Cache, PLL, Power Switch, Register 
File: functional verification issue for custom blocks arose. 
5. Physical Design Issue 
- Signal Integrity issues: Closstalk, Electro migration, 

Maximum current, Antenna-Effects. 
- Optical Shrink: Compensation of timing and layout 
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For early debugging of a bus interface unit (BIU) including 
SDRAM and PCI interfaces, we isolated BIU and tested. 
Command and status code are defined for the communication 
between BIU and core, so we manually provided the command 
sequences, and verified the log files. 

3.3 Test Pattern Generation 
We had a review of test pattern design. According to the review, 

we provided a mixture of directed (manually written) tests and 
random tests in assemble instruction sequence, as seen in [8]. For 
random testing, 11 generation algorithms have been finally 
implemented. We provided parallel OS prototypes for regression 
tests, where we verified OS boot through character I/O operation 
by application programs. Real applications with reduced data set 
are also executed on RTL.  Four handled test sets are executed as 
regression tests every night on Mentor Modelsim on 6 sun 
workstations (Table 3). 

3.4 Design Managements 
  Processor design is achieved as collaboration in a big team. We 
think success lies in 1) timely and proper recognition of problems, 
and 2) the information sharing in the team. In another word, when 
these two things are achieved, problems are almost resolved. We 
have found visualization is quite useful to accomplish the 
recognition and sharing, and provided visualization tools.  

Followings are some examples: Figure 5 is a graph 
automatically updated by the result of nightly regression tests. 
Figure 6 shows the timing slack in each synthesis block. RTL 

timing tools automatically generate synthesis constraints 
considering the estimated delay of global wire and optical shrink 
effect, then analyze synthesis reports, and draw the slack graphs in 
several aspects; block local or accumulated ones. Figure 7 is a bug 
curve automatically generated from GNATS (GNU bug 
management tool) database. 

4. EXPECTATION TO VERIFICATION 
As seen in the bug curve (Figure 7), it took long time for 

functional verification, even though we ran random tests every 
night. Furthermore, bug detection leaps are observed in the bug 
curve. The leap occurred after we introduced new random 
generation algorithms. This shows that bug detection ability of 
random tests rapidly saturates because we limits the randomness 
for both generating meaningful instruction sequence and aiming at 
a specific corner case defined in the test plan. If we can improve 
bug detection, chip design time would be dramatically improved. 

 
 
 
 
 
 
 
 
 
 
 
 
 

Figure 7: Bug Curve 

 

 
 
 
 
 
 
 
 
 
 
 
 
 

Figure 6: Timing Improvement History of Merlot, Generated 
from RTL Timing Tools. 
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Figure 5: History of Passing Sets  in Nightly Regression 

Table 3: Components of Nightly Regression Test 
Directed Test (Including           
 2 Benchmark, 4 application, 
 4 OS kernel) 

310 sets (1M cycles total) 
Runs only after revised 
RTL released to CVS . 

Random  Test (Everyday           
  Generated with new seed) 

65 sets (500K cycles 
total) Runs every Night. 

System level Test activating      
  PCI bus, SDRAM models 

53 sets (150K cycles 
total) Runs only after new 
RTL released. 
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With this motivation, we would like to discuss the coverage 
improvement of functional verification in this section.  

4.1 Microprocessor Design Flow 
Before discussing functional verification, we would like to 

review the design phases of microprocessor. This is helpful to 
understand reference model and target model of design: 
1. Instruction set Level (architectural or behavior) design. 
2. Pipeline Level (micro-architectural) design. 
3. Register Transfer Level (RTL) design 
4. Gate Level design 
 Pipeline design adds the perception of clock or pipeline. In RTL 
design, logic implementation is considered, and behavior is 
modified for simplification of control logic or data paths. Gate 
level design is manually generated or synthesized from RTL, 
where actual gate mapping and fan-out trimming are performed. 
Logical behavior of gate level design slightly differs from that of 
RTL in the implementation of redundant states and initial states.  

4.2 Functional Verification Methodologies 
Considering design flow, functional verification methodologies 

are categorized as follows: 
1. Full Chip Verification 

i. Running Self-checking instructions (Vector Based). 
ii. Comparison between Instruction Simulator and RTL 

simulator. (Vector Based) 
iii. Dynamic Verification [9] [10] (Vector Based) 

2. Sub-block Verification 
i. Property Checking [11][12] (Formal) 

ii. Test Bed Generation Libraries [13] (Vector Based) 
iii. Formal Equivalence-checking  (Formal) 
Since the definition of instruction is fundamental and 

instruction boundary is well preserved through all the design 
phases, method (1-i, 1-ii) is commonly used. In 1-ii discrepancies 
are observed for some instructions, where clock cycle is 
observable such as clock/performance counter, interrupt, etc. The 
discrepancy makes comparison in actual system configuration, 
which sometimes includes OS and asynchronous I/O events, very 
difficult. The discrepancy in Merlot design is observable in Figure 
5. In dynamic verification (1-iii), simple RTL models of each 
pipeline stage are used for reference. Since input of reference 
model can be acquired from target, reference model can be simple 
and fast enough. In the approach, when the discrepancy is 
observed, reference machine rewinds the state of target machine, 
and corrects the target machine. As the result, we can run a test 
vector beyond detected bugs for detection of other bugs. Property 
checking is effective in both coverage and simulation time. In (2-
ii), pattern generation libraries or device modeling is useful for 
quick generation of test bed, however, it is not easy to provide 
reference vector. For the reference, preserved logs after checking 
the behavior by hand is recommended as golden vector[13]. 
Formal equivalent checker (2-iii) is useful to verify gate level 
design against RTL when ECO (engineering change order) is 
manually applied to gate level design.  

If we have a tool to generate good vectors, functional 
verification problems are improved even with vector based 
solutions; (1-i) to (1-iii). Definitions of good vector are: 
A) Coverage of functional bugs 
B) Repeatability of a specific bug: timing condition of the 

specific bug is satisfied after modification of irrelevant logic. 
C) Concentration on detection of a specific bug: a vector 

focuses on a single bug in a short simulation time. This 
feature makes bug analysis easier. 

The feature B) and C) are useful for design quality management. 

4.3 Current Vector Generation Methods 
Considering easy preparation of reference vector in MPU 

verification, we focus on the method using assembly instruction 
sequence as test vector.  

Table 4: Vector Generation Methods 

Name Generation Pros Cons 

Directed, 
Selfchecking 

Manual or 
customized- 

Scripts 
B) C) A) 

Random Tools A) B)   C) 
Property 
Checker Tools A) B)?  C) 

Real Program Run on real 
condition. A)? Quite low B), 

C) 
 

Table 4 summarizes current vector generation methods and 
their pros and cons of referring item number of good vector in the 
previous section. For the design where multiple autonomous 
entities interact, unexpected racing conditions are created with 
multiple asynchronous events. So it is quite difficult to write test 
vectors with good coverage. Random vector generation is 
commonly used for detecting such cases. However, it is still 
difficult to achieve good coverage. Furthermore, an error detected 
by random vector is hard to debug due to (C), and hard to manage 
due to (B). In the random test generation of MPU, constraints or 
heuristics have been considered in the scripts for random pattern 
generation to improve effectiveness of bug detection (C) or 
adding selfchecking feature. Though the method was mostly ad-
hoc, recently a verification suites, Specman[14], has been applied 
for some SoC designs. Specman reduces the verification cost with 
a test bench description language and verification IPs including 
constraint driven random generation, functional coverage analysis, 
and protocol checking. For MPU testing, integrated approach is 
also seen in a commercial tool Raven[15].  

With the emulator on FPGAs, simulation speed has become fast 
enough to run real programs with I/O devices and real OS. The 
approach still encounters the coverage problem if we cannot get 
realistic test sequences. In addition, visibility of logic status for 
the error is a key for debugging. In newer approaches, we finalize 
design at behavior level (C/C++ level) and automatically convert 
the design to real chip with high-level synthesis tool and IP 
libraries[16]. At behavioral simulation, we can expect much better 
performance for system level simulation by software.  
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4.4 Architecture Level Design Checking 
In multiprocessor design, racing condition of mutual 

interactions of processors sometimes create bugs. It is a good idea 
to remove such a racing condition at instruction (architecture) 
level definition. We think it is useful if we can apply formal 
method at this level.  

In IP based design, specification is given at architecture level, 
and the architecture level racing check is useful for such an IP 
based SoC design. 

4.5 RTL Level Coverage Improvement 
It is not difficult to write property for basic logic components 

such as sequencer, FIFO, arbiter, etc. Property checking is useful 
to test these basic components. However, even when we assemble 
verified components to a system, the system will not be bug free, 
and such bugs are difficult to detect in simulation.  

We expect a tool that analyzes both specification of instruction 
and RTL description, and generates instruction sequences that 
may create effective condition for bug detection. It is a big 
challenge because a lot of logic interacts for executing single 
instruction isolated from other instructions. In real multiprocessor 
system, a lot of events interact in the sequence of instructions on 
multiple processors.  

5. CONCLUSIONS 
In this paper, we presented our design experience of a 

speculative multithreading processor code-named Merlot. We 
have recognized the difficulty of functional verification 
considering asynchronous interaction of processing elements and 
embedded devices, so we tried to establish strategic verification 
environment. However, we still spent too much time and 
manpower on functional verification since our verification 
approach was still brute force. In this paper, we tried to examine 
the functional verification of multiprocessor system, and cast 
expectations to theoretical approach in the test vector generation. 
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