
Design Experience of a Chip Multiprocessor Merlot
and Expectation to Functional Verification

Satoshi Matsushita
 NEC Corporation

1120 Shimokuzawa, Sagamihara,
Kanagawa, 229-1198, JAPAN
s-matsushita@bx.jp.nec.com�

�

�

�

��

��

ABSTRACT
We have fabricated a Chip Multiprocessor prototype code-named
Merlot to proof our novel speculative multithreading architecture.
On Merlot, multiple threads provide wider issue window beyond
ordinal instruction level parallel (ILP) processors like superscalar
or VLIW. With the architecture, we estimate 3.0 times speedup
against single processing elements (PE) on speech recognition
code and IDCT code with four PEs. Merlot integrates on-chip
devices, PCI interface, and SDRAM interfaces. We have
encountered design issues of chip multiprocessor and SoC design.
We have successfully run parallelized mpeg3 decoder on the first
silicon with several software workarounds, thanks to functional
verification environment including system modeling on RTL.
However, bugs found in later stage of design have required larger
manpower or delay of project. In this paper, we also discuss the
methodology to improve functional verification coverage, and
expect the solution in formal approaches.

Categories and Subject Descriptors
B.6.3 [Logic Design]: Design Aids – Simulation, Verification
B.7.1 [Integrated Circuits]: Types and Design Styles –
Microprocessors and microcomputers
B.m [Logic Design]:Miscellaneous – Design management
C.1.2 [Processor Architectures]: Multiple Data Stream
Architectures (Multiprocessors) – Multiple-instruction-stream,
multiple-data-stream processors (MIMD);
C.1.4 [Processor Architectures]: Parallel Architectures – Mobile
processors

General Terms: Design, Verification.

Keywords: Speculative multithreading, Chip Multiprocessor,
CMP, Deign Experience, Functional verification

1. INTRODUCTION
The rapid progress of LSI technology has realized system on

chip (SoC) with embedded processors, devices, and memories.
SoC enables us small, low cost, and low power consumer
equipments. LSI designers, however, now encounter design and
verification problems because of the complexity with the system
level integration and shorter design time requirement.

We have been researching a chip-multiprocessor architecture
targeting at higher performance with lower power consumption.
We have proposed FOPE (Fork Once Parallel Execution)
architecture, and fabricated a prototype chip code-named Merlot.
In section 2, the target of Merlot and its architecture is briefly
described. In section 3, design issues of Merlot and our solutions
are referred. Finally, in section 4, we focus on the coverage
improvement of functional verification since we think it is crucial
for complex system design.

 Table 1: Specifications of Merlot

Technology: 0.15 mm CMOS, 5-Metal

Supply Voltage: 1.2 - 1.8 V (Internal), 3.3 V (I/O)
Clock Speed: 125 MHz (at 1.3V)
Number of Trs.: 14M (Logic 6M, Memory 8M)
Area: 10.5 mm x 10.5 mm (110 mm2)
Number of Pins: 300 (Signal), 500 (Total)
Power: 1 W (at 1.3 V)
Performance: 1 GIPS (at 1.3 V)
I-Cache: 64 kB (4 Set Associative, 32 B Line)
D-Cache: 64 kB (Divided into 8 Banks, 32 B Line)
Base Instruction Set: V800 series(NEC Proprietary), 16,32bit width.
Instruction Issue: 2-issue (in-order) x 4 Multi-processor
 Non-blocking load: 3 load/ifetch miss per PE
Data: 32 bit, 16 bit x 2 Media, (8 bit x 4 Media)
Bus Interface: SDRAM: 64 bit + ECC (1 or 2 Channel(s))
 PCI 2.1: 32 bit, 33 MHz
 Up to 8 outstanding requests

Permission to make digital or hard copies of all or part of this work for
personal or classroom use is granted without fee provided that copies
are not made or distributed for profit or commercial advantage and that
copies bear this notice and the full citation on the first page. To copy
otherwise, or republish, to post on servers or to redistribute to lists,
requires prior specific permission and/or a fee.
ISSS’02, October 2–4, 2002, Kyoto, Japan.
Copyright 2002 ACM 1-58113-562-9/02/0010…$5.00.

103

2. MERLOT ARCHITECTURE
SMP (Symmetrical Multiprocessor) has been widely used in

high-end computer systems. In SMP systems, processors are
connected to a shared memory through a coherent cache system.
Thread libraries for application programming on a monolithic
SMP operating system relieve burden of parallel programming.
Even with them, however, multithread programming is not easy
due to racing condition in shared data caused by erroneous
synchronization, etc. Performance tuning is another burden.
Speculative multithreading has been proposed to remove this
burden by automatic parallelization with compiler or object code
conversion [1][2][3].

Merlot[4][5][6] is a tightly coupled chip-multiprocessor (CMP)
as a research prototype to proof our novel speculative multi-
threading architecture named FOPE (Fork Once Parallel
Execution). With FOPE architecture, a compiler realizes
automatic parallelization with the assistance of directives inserted
into compiler source code.

 Parallelization scheme is depicted in Figure 1. Figure 1-A shows
a sample program structure. Program 1-A’s dynamic execution
flow in sequential processor is shown in Figure 1-B. In FOPE,
instructions executed in future of thread i (basic block B2, D2) are
hoisted and executed in neighbor processor in parallel in thread
i+1. The thread generation is controlled by fork instructions
inserted by parallelizing compiler.

Architectural keys are:
1. Static thread scheduling (ordered threads) controlled by

several additional instructions (fork, term, thcomt, thabort,
etc).

2. Speculative execution of threads beyond control flow
determination and data disambiguation.

A statically defined thread order eliminates thread-scheduling
hardware. With the constraint that a thread generates another
thread only once throughout the thread’s life, unique thread order
is defined among all threads. Under this constraint, data
communication and synchronization are unidirectional, and

deadlock freeness is guaranteed with static scheduling. In
addition, this constraint enables sequential emulation of
parallelized code in a single processor by just neglecting thread
control instructions. Therefore, we can verify parallelized code
with sequential emulation.
Speculative execution enables us to exploit larger parallelism,

though we have to pay the cost for tentative storages of register
and memory value. The storages also resolve hazards (Read-
After-Write, Write-After-Read, Write-After-Write) which are
derived from parallel execution of threads.
Chip specifications are shown in Table 1. Die plot and block
diagram of Merlot are shown in Figure 2 and Figure 3
respectively.

Figure 2 Merlot Die Plot

Ti
m

e
Fork.s

PE#0 PE#1 PE#2

C) Fork Once
Parallel Execution

A

B1

C1

D1

A

B1

C1

D1

B2

D2

B2

D2
B3

C3

D3

E

B3

C3

D3

E

Thread
i i+1 i+2 Basic blocks

A) Program
Structure

A

B

C

D

E

B) Sequential
Execution

Lo
op

A

B1

C1

D1

B2

D2

B3

A

B1

C1

D1

B2

D2

A

B1

C1

D1

B2

D2

B3
Figure 1: Fork Once Parallel Execution

64 KB Instruction Cache
(4-way set associative, 32 Byte line)

Inst. Buffer
(64 Byte)

2-Way Issue &
Comp. Unit

Shared Register File

(4 Read + 2 Write)
x 4PE

(32-bit x 32word x 2set)
x 4PE

Integer &
Media Unit

64 KB Data Cache
(8 single port banks:

4-way set
associative, 32 Byte line)

Store Reservation
Buffers (SRBs)

MMU
and

Cache
Control

Bus
Interface

Unit

Branch
History Buffer

PCI
Control

Power
Manage-

ment

Test Bus
& Scan

Clock PLL

PE #1 PE #2 PE #3

PE#0

Fslot S slot

Cache Subsystem Domain

MPU Core Logic Domain Timer
Intr. Ctrl

SD
R

AM
PC

I
In

te
rru

pt

64 KB Instruction Cache
(4-way set associative, 32 Byte line)

Inst. Buffer
(64 Byte)

2-Way Issue &
Comp. Unit

Shared Register File

(4 Read + 2 Write)
x 4PE

(32-bit x 32word x 2set)
x 4PE

Integer &
Media Unit

64 KB Data Cache
(8 single port banks:

4-way set
associative, 32 Byte line)

Store Reservation
Buffers (SRBs)

MMU
and

Cache
Control

Bus
Interface

Unit

Branch
History Buffer

PCI
Control

Power
Manage-

ment

Test Bus
& Scan

Clock PLL

PE #1 PE #2 PE #3

PE#0

Fslot S slot

Cache Subsystem Domain

MPU Core Logic Domain Timer
Intr. Ctrl

SD
R

AM
PC

I
In

te
rru

pt

Figure 3 Block Diagram of Merlot

104

 On Merlot, each processing element shares an instruction fetch
unit, a register file, and a data cache with store reservation buffers
(SRBs) for faster thread creation and data communication. We
have designed the whole logic from the scratch including the
processing element because of those sharing resources.

Performance estimation is shown in Figure 4.

3. DESIGN AND VERIFICATION OF MERLOT
 Design difficulty of Merlot is shown in Table 2. With much
effort spent on functional verification, we could successfully run
mpeg2 decoder with simple OS on the first silicon with several
software workaround and a bug fix with FIB. However, we still
think the verification is the biggest issue in complex
microprocessor design. Before discussing this issue in section 4,
we would like to summarize the design and verification of Merlot
focusing mainly on verification.

3.1 Criteria for Design Environment
 For the design environment, we considered the following
aspects: 1) Repeatability or Automation in order to remove human
errors, 2) Controllability and Convergence to design target, 3)
Expandability of the tool, and 4) Information for management aids.

3.2 Design Environment
For logic design and verification of Merlot, we have provided

following environments. Detailed descriptions are in [7]:
1. Online Documentations: used Web for ease of update and

accessibility.
2. Strict design rules: Signal and module naming rules

predefined for a globally unique and standardized identifier.
3. Design Entry Tools: verilog enhancement with perl based

macro expressions, and terse description of design parts like
FF, MUX, etc. The size of source is reduced to 40% of final
verilog RTL (Register Transfer Level) description in words
in 168 source files. Non-leaf level connecting RTL

generator reduced the source to 10% in words in 53 files.
The tool also works for the front-end for RTL timing tools.

4. System Level Modeling and reference for simulation.
5. Planned Test Pattern Generation: aimed at balanced mixture

of random and directed patterns.
6. Regression Test Tools: automated nightly regression test

and visualization of the results.
7. RTL version management with modified CVS.
8. Bug Tracking based on GNATS.
9. RTL Timing Tools with budget visualization and automatic

generation of synthesis constraint
10. ECO Design Tools: Formal Equivalence Checking between

modified RTL and manually modified Gate Level Netlist.

3.2 System Level Modeling
We combined Merlot RTL to a commercial PCI modeler and a

memory modeler. The PCI modeler originally required
handwritten test scenarios for master operation. We modified the
modeler to be triggered by program counter in RTL, so that PCI
stimulus can be specified in assembly code of the tests. To match
the RTL and ILsim (Instruction Level simulator), we extracted the
positions of events, which are required to be clock accurate, from
RTL simulation first, and inserted them into ILsim. However, it
was difficult to remove false mismatches because of simplified
modeling in ILsim (no cache, sequential emulation of thread
execution, etc) or visibility of cycles in system registers. To run
applications on RTL or ILsim, we provided OS stubs for the
delegation of system calls to the host OS.

0 5 10 15 20

Single PE

4 PEs (Auto-parallelizable)

4 PEs (Manually-restructured)

4PEs (Infinity Cache)

Pentium II (330MHz)

Speech Recognition, 100k Word Dictionary

Faster

Typical

340 MIPS, 1.1W

206 MIPS
114 MIPS

Distance Calc. HMM Trans.

Probability
Calc.

(≅ 5W)

0 0.5 1 1.5 2 2.5 3Faster (Relative)
(Real Time Decode Capable = 1)

Single PE

4PEs (Auto-parallelizable)

IDCT (MPEG-2 MP@ML Decode Kernel)

134 MIPS
400 MIPS, 0.92W

Single PE

4PEs (Auto-parallelizable)

IDCT (MPEG-2 MP@ML Decode Kernel)

134 MIPS
400 MIPS, 0.92W

IPC=2.8 2.6 2.0

0.9 0.8IPC=0.9

IPC=4.9 3.6 4.0

IPC=2.8 0.9 2.0

ms

IPC=2.72

IPC=1.65

IPC=4.30

Figure 4 Performance Estimation of Merlot

Table 2: Design Difficulty of Merlot

1. Chip Multi-Processor (2issue PE x 4PE on a Chip)
- Difficulty to provide reference simulator
- Difficulty to improve test coverage

2. System on Chip
- Multiple clock domains: core, SDRAM, PCI (async.)
- System modeling: (PCI, SDRAM)

3. Debugging Support
- Debug modes, Test bus for memory and register file
observation.
- Partial scan, Spare cells for FIB
4. Low Power Design
- Clock gating
- Three power domains with on-chip power switches for
leak current reduction
- Custom Blocks: Cache, PLL, Power Switch, Register
File: functional verification issue for custom blocks arose.
5. Physical Design Issue
- Signal Integrity issues: Closstalk, Electro migration,

Maximum current, Antenna-Effects.
- Optical Shrink: Compensation of timing and layout

105

For early debugging of a bus interface unit (BIU) including
SDRAM and PCI interfaces, we isolated BIU and tested.
Command and status code are defined for the communication
between BIU and core, so we manually provided the command
sequences, and verified the log files.

3.3 Test Pattern Generation
We had a review of test pattern design. According to the review,

we provided a mixture of directed (manually written) tests and
random tests in assemble instruction sequence, as seen in [8]. For
random testing, 11 generation algorithms have been finally
implemented. We provided parallel OS prototypes for regression
tests, where we verified OS boot through character I/O operation
by application programs. Real applications with reduced data set
are also executed on RTL. Four handled test sets are executed as
regression tests every night on Mentor Modelsim on 6 sun
workstations (Table 3).

3.4 Design Managements
 Processor design is achieved as collaboration in a big team. We
think success lies in 1) timely and proper recognition of problems,
and 2) the information sharing in the team. In another word, when
these two things are achieved, problems are almost resolved. We
have found visualization is quite useful to accomplish the
recognition and sharing, and provided visualization tools.

Followings are some examples: Figure 5 is a graph
automatically updated by the result of nightly regression tests.
Figure 6 shows the timing slack in each synthesis block. RTL

timing tools automatically generate synthesis constraints
considering the estimated delay of global wire and optical shrink
effect, then analyze synthesis reports, and draw the slack graphs in
several aspects; block local or accumulated ones. Figure 7 is a bug
curve automatically generated from GNATS (GNU bug
management tool) database.

4. EXPECTATION TO VERIFICATION
As seen in the bug curve (Figure 7), it took long time for

functional verification, even though we ran random tests every
night. Furthermore, bug detection leaps are observed in the bug
curve. The leap occurred after we introduced new random
generation algorithms. This shows that bug detection ability of
random tests rapidly saturates because we limits the randomness
for both generating meaningful instruction sequence and aiming at
a specific corner case defined in the test plan. If we can improve
bug detection, chip design time would be dramatically improved.

Figure 7: Bug Curve

Figure 6: Timing Improvement History of Merlot, Generated
from RTL Timing Tools.

RTL Revision Number

Date

Total Test Sets

Pass on
Standalone

RTL

RTL/ILsim
Trace Match

RTL
Synchronized

ILsim Pass

Final Memory
Comparison

Pass

Independent
ILsim Pass

of Test Sets RTL Revision Number

Date

Total Test Sets

Pass on
Standalone

RTL

RTL/ILsim
Trace Match

RTL
Synchronized

ILsim Pass

Final Memory
Comparison

Pass

Independent
ILsim Pass

of Test Sets

Figure 5: History of Passing Sets in Nightly Regression

Table 3: Components of Nightly Regression Test
Directed Test (Including
 2 Benchmark, 4 application,
 4 OS kernel)

310 sets (1M cycles total)
Runs only after revised
RTL released to CVS .

Random Test (Everyday
 Generated with new seed)

65 sets (500K cycles
total) Runs every Night.

System level Test activating
 PCI bus, SDRAM models

53 sets (150K cycles
total) Runs only after new
RTL released.

Jan. Jan. Jan. Jan.

Metal Rework
Tapedout

Silicon
Returned

Tapedout

mpeg2dec
passed on board.

1.5 years for
Functional Verification on RTL

Bugs found on Silicon

Bug detection Leap
with The Random
Algorithm Changes.

Jan. Jan. Jan. Jan.

Metal Rework
Tapedout

Silicon
Returned

Tapedout

mpeg2dec
passed on board.

1.5 years for
Functional Verification on RTL

Bugs found on Silicon

Bug detection Leap
with The Random
Algorithm Changes.

106

With this motivation, we would like to discuss the coverage
improvement of functional verification in this section.

4.1 Microprocessor Design Flow
Before discussing functional verification, we would like to

review the design phases of microprocessor. This is helpful to
understand reference model and target model of design:
1. Instruction set Level (architectural or behavior) design.
2. Pipeline Level (micro-architectural) design.
3. Register Transfer Level (RTL) design
4. Gate Level design
 Pipeline design adds the perception of clock or pipeline. In RTL
design, logic implementation is considered, and behavior is
modified for simplification of control logic or data paths. Gate
level design is manually generated or synthesized from RTL,
where actual gate mapping and fan-out trimming are performed.
Logical behavior of gate level design slightly differs from that of
RTL in the implementation of redundant states and initial states.

4.2 Functional Verification Methodologies
Considering design flow, functional verification methodologies

are categorized as follows:
1. Full Chip Verification

i. Running Self-checking instructions (Vector Based).
ii. Comparison between Instruction Simulator and RTL

simulator. (Vector Based)
iii. Dynamic Verification [9] [10] (Vector Based)

2. Sub-block Verification
i. Property Checking [11][12] (Formal)

ii. Test Bed Generation Libraries [13] (Vector Based)
iii. Formal Equivalence-checking (Formal)
Since the definition of instruction is fundamental and

instruction boundary is well preserved through all the design
phases, method (1-i, 1-ii) is commonly used. In 1-ii discrepancies
are observed for some instructions, where clock cycle is
observable such as clock/performance counter, interrupt, etc. The
discrepancy makes comparison in actual system configuration,
which sometimes includes OS and asynchronous I/O events, very
difficult. The discrepancy in Merlot design is observable in Figure
5. In dynamic verification (1-iii), simple RTL models of each
pipeline stage are used for reference. Since input of reference
model can be acquired from target, reference model can be simple
and fast enough. In the approach, when the discrepancy is
observed, reference machine rewinds the state of target machine,
and corrects the target machine. As the result, we can run a test
vector beyond detected bugs for detection of other bugs. Property
checking is effective in both coverage and simulation time. In (2-
ii), pattern generation libraries or device modeling is useful for
quick generation of test bed, however, it is not easy to provide
reference vector. For the reference, preserved logs after checking
the behavior by hand is recommended as golden vector[13].
Formal equivalent checker (2-iii) is useful to verify gate level
design against RTL when ECO (engineering change order) is
manually applied to gate level design.

If we have a tool to generate good vectors, functional
verification problems are improved even with vector based
solutions; (1-i) to (1-iii). Definitions of good vector are:
A) Coverage of functional bugs
B) Repeatability of a specific bug: timing condition of the

specific bug is satisfied after modification of irrelevant logic.
C) Concentration on detection of a specific bug: a vector

focuses on a single bug in a short simulation time. This
feature makes bug analysis easier.

The feature B) and C) are useful for design quality management.

4.3 Current Vector Generation Methods
Considering easy preparation of reference vector in MPU

verification, we focus on the method using assembly instruction
sequence as test vector.

Table 4: Vector Generation Methods

Name Generation Pros Cons

Directed,
Selfchecking

Manual or
customized-

Scripts
B) C) A)

Random Tools A) B) C)
Property
Checker Tools A) B)? C)

Real Program Run on real
condition. A)? Quite low B),

C)

Table 4 summarizes current vector generation methods and
their pros and cons of referring item number of good vector in the
previous section. For the design where multiple autonomous
entities interact, unexpected racing conditions are created with
multiple asynchronous events. So it is quite difficult to write test
vectors with good coverage. Random vector generation is
commonly used for detecting such cases. However, it is still
difficult to achieve good coverage. Furthermore, an error detected
by random vector is hard to debug due to (C), and hard to manage
due to (B). In the random test generation of MPU, constraints or
heuristics have been considered in the scripts for random pattern
generation to improve effectiveness of bug detection (C) or
adding selfchecking feature. Though the method was mostly ad-
hoc, recently a verification suites, Specman[14], has been applied
for some SoC designs. Specman reduces the verification cost with
a test bench description language and verification IPs including
constraint driven random generation, functional coverage analysis,
and protocol checking. For MPU testing, integrated approach is
also seen in a commercial tool Raven[15].

With the emulator on FPGAs, simulation speed has become fast
enough to run real programs with I/O devices and real OS. The
approach still encounters the coverage problem if we cannot get
realistic test sequences. In addition, visibility of logic status for
the error is a key for debugging. In newer approaches, we finalize
design at behavior level (C/C++ level) and automatically convert
the design to real chip with high-level synthesis tool and IP
libraries[16]. At behavioral simulation, we can expect much better
performance for system level simulation by software.

107

4.4 Architecture Level Design Checking
In multiprocessor design, racing condition of mutual

interactions of processors sometimes create bugs. It is a good idea
to remove such a racing condition at instruction (architecture)
level definition. We think it is useful if we can apply formal
method at this level.

In IP based design, specification is given at architecture level,
and the architecture level racing check is useful for such an IP
based SoC design.

4.5 RTL Level Coverage Improvement
It is not difficult to write property for basic logic components

such as sequencer, FIFO, arbiter, etc. Property checking is useful
to test these basic components. However, even when we assemble
verified components to a system, the system will not be bug free,
and such bugs are difficult to detect in simulation.

We expect a tool that analyzes both specification of instruction
and RTL description, and generates instruction sequences that
may create effective condition for bug detection. It is a big
challenge because a lot of logic interacts for executing single
instruction isolated from other instructions. In real multiprocessor
system, a lot of events interact in the sequence of instructions on
multiple processors.

5. CONCLUSIONS
In this paper, we presented our design experience of a

speculative multithreading processor code-named Merlot. We
have recognized the difficulty of functional verification
considering asynchronous interaction of processing elements and
embedded devices, so we tried to establish strategic verification
environment. However, we still spent too much time and
manpower on functional verification since our verification
approach was still brute force. In this paper, we tried to examine
the functional verification of multiprocessor system, and cast
expectations to theoretical approach in the test vector generation.

6. REFERENCES
[1] Sohi,G., Breach,S. and Vijaykumar,T.N.: Multiscalar

Processor, Proc.22nd ISCA, 1995, 414-425

[2] Tsai,J., Huang,J., and Amlo,C.: The Superthreaded Processor
Architecture, IEEE Trans. Comput., Vol.48, No.9,1999,881-
902

[3] Hammond,L., Hubbert,B., Siu,M., Prabhu,M., Chen,M., and
Olukotun,K.: The Stanford Hydra CMP, IEEE MICRO,
Vol.20, No.2, 2000, 71-84

[4] Nishi, N., et al: A 1 GIPS 1W Single-Chip Tightly Coupled
Four-Way Multiprocessor with Architectural Support for
Multiple Control Flow Execution, ISSCC, , 2000, 418-419
(WP25.5)

[5] Matsushita, S., et al.: Merlot: A Single Chip Tightly Coupled
Four-Way Multi-Thread Processor, Cool Chips III, 2000

[6] Latest information of mp98:

 www.labs.nec.co.jp/MP98/

[7] Matsushita,S.; The Logic Design Environment of Chip
Multiprocessr Merlot, (In Japanese), Journal of IPSJ, Vol.42,
No.4, 2001, 922-929

[8] Hosseini,A.,Mavroidis,D.,and Konas,P.: Code Generation
and Analysis for the Functional Verification of
Microprocessors, 33rd DAC, ACM, 1996, 305-310(23.1)

[9] Austin,T.M: DIVA: A Dynamic Approach to Microprocessor
Verification, Journal of Instruction-Level Parallelism 2, 2000

[10] Mneimneh, M. et.al.: Scalable Hybrid Verification of
Complex Microprocessors, DAC, 2001

[11] IBM Sugar:
 www.haifa.il.ibm.com/projects/verification/sugar/
 standard.html

[12] Synopsys Open Vera2.0: www.open-vera.com/

[13] Boyd,S.: Using Vera to Test a DMA Engine:
 www.open-vera.com/technical/boyd.pdf

[14] Verisity Design Inc., Specman Elite:
 www.verisity.com/products/specman.html

[15] OBSIDIAN RAVEN: www.obsidiansoft.com/

[16] Wakabayashi,K. and Okamoto,T: C-Based SoC Design Flow
and EDA Tools: An ASIC and System Vendor Perspective,
IEEE Trans. CAD of Integrated Circuit and Systems, Vol.19,
No. 12, 2000

108

	Main
	ISSS02
	Front Matter
	Table of Contents
	Author Index

