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ABSTRACT 
We present a system-level design and programming method for 
embedded multiprocessor systems. The aim of the method is to 
improve the design time and design quality by providing a 
structured approach for implementing process networks. We use 
process networks as re-usable and architecture-independent 
functional specifications. The method facilitates the cost-driven 
and constraint-driven source code transformation of process 
networks into architecture-specific implementations in the form of 
communicating tasks. We apply the method to implement a JPEG 
decoding process network in software on a set of MIPS 
processors. We apply three transformations to optimize 
synchronization rates and data transfers and to exploit data 
parallelism for this target architecture. We evaluate the impact of 
the source code transformations and the performance of the 
resulting implementations in terms of design time, execution time, 
and code size. The results show that process networks can be 
implemented quickly and efficiently on embedded multiprocessor 
systems. 

Categories and Subject Descriptors 
C.1.4 [Processor Architectures]: Parallel Architectures. C.3 
[Special-Purpose and Application-Based Systems]: Real-time 
and embedded systems, signal processing systems. C.4 
[Performance of Systems]: Design studies. D.1.3 [Programming 
Techniques]: Concurrent Programming – parallel programming. 
D.2.13 [Software Engineering]: Reusable Software. D.3.4 
[Programming Languages]: Processors – optimization. J.7 
[Computers in Other Systems]: Consumer products. 

General Terms 
Algorithms, performance, design, standardization, languages. 

Keywords 
Multiprocessor mapping, process network, code transformation, 
system design method, data parallelism, task-level parallelism.  

1. INTRODUCTION 
The complexity of designing and programming embedded 
multimedia systems is growing rapidly. In order to reduce the 

complexity and, hence, manage the design effort and the time-to-
market, the system’s function and architecture need to be 
separated [9] in the design process. The separation allows the re-
use of functions for implementation on different architectures as 
well as the re-use of architectures for implementation of different 
functions. We address the re-use of functions for implementation 
on different architectures.  

A key issue of our design method is that application designers 
model system functions in terms of process networks [8] and not 
in terms of a platform interface. Consequently, they are not 
bothered with implementation decisions concerning the 
architecture costs and architecture constraints. Subsequently, 
system designers can transform the functions for a specific 
architecture taking into account its costs and constraints, such that 
the functions can be implemented efficiently in hardware and 
software. Since the functions are free of implementation 
decisions, system designers do not have to perform reverse 
engineering to obtain a suitable functional specification that can 
be implemented on a specific architecture. This saves valuable 
design effort and design time. After transformation the networks 
consist of tasks which inter-operate through a platform interface 
using concepts such as described in [2], [7], [12], and [14]. We 
apply these transformations on source code such that the resulting 
code can be used as input for existing silicon and software 
compilers.  

The transformations encode system-level design decisions in 
the source code. Typical design decisions concern task-level and 
data parallelism such as the minimization of the number of run-
time tasks [5][13], task concurrency management [11], and data 
transfer and storage [3][4]. A survey of data and memory 
optimization techniques for embedded systems is given in [10]. 
Our method differs from those mentioned above by the fact that 
we start from an inherently parallel functional model in the form 
of a process network and by the fact that we target multiprocessor 
implementations. The advantage of using process networks is that 
task-level parallelism is already made available in the function. 
Unlike procedural programs, process networks do not contain 
global data structures that have to be broken down to obtain a 
parallel program, which usually is a hard problem. The fact that 
we target multiprocessor implementations implies that minimizing 
the number of run-time tasks is not necessarily the best solution 
because we need to consider the binding of tasks to processors 
and the resulting communication between the processors. 

In this paper we apply the proposed method in order to 
implement JPEG decoding on a multiprocessor architecture. In 
Section 2 we model JPEG decoding as a process network. In 
Section 3 we present the multiprocessor architecture. In Section 4 
we discuss the design decisions and present the corresponding 
code transformations. In Section 5 we show the results of these 
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transformations. In Section 6 we conclude with some remarks and 
discuss future work. 

2. JPEG DECODING NETWORK 
We have modeled JPEG decoding functionality as described in 
[15] as a process network using the Y-chart Applications 
Programmers Interface (YAPI) [6]. The process network is shown 
in Figure 1. It consists of 26 processes that communicate using 
FIFO channels.  
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Figure 1. JPEG decoding process network. 
The frontend process reads a file in JPEG File Interchange Format 
(JFIF) from disk and writes it as a byte stream to the DMX 
process. The DMX process de-multiplexes the byte stream into 
the DHT, DQT, SOF and SOS segments of JFIF. The SOF 
process parses the frame headers that are contained in the SOF 
segment and writes the frame header data to its outputs. The SOS 
process parses the scan headers that are contained in the SOS 
segment and writes the scan header data to its outputs. The 
variable length decoding (VLD) process decodes the run length 
and Huffman encoded minimum coding units using the Huffman 
tables that are contained in the DHT segment. It writes the 
decoded pixel blocks (8x8 matrices) as a pixel stream to the 
inverse quantization (IQ) process. The IQ process multiplies the 
pixels by the quantization factors that are contained in the DQT 
segment. Subsequently, the pixel blocks undergo inverse zigzag 
(IZZ), and two-dimensional inverse discrete cosine transformation 
(IDCT). The two-dimensional IDCT operation is modeled using 
two one-dimensional IDCT processes and two matrix 
transposition (transpose) processes. The IDCT operation contains 
two bit-scaling processes (upscale and downscale) to increase and 
decrease the bit precision from 8 to 11 bits and back. Next, the 
raster process reorders the pixels from their order in pixel blocks, 
minimum coding units, and stripes into scan order in pixels, lines, 
and frames. The raster process de-multiplexes the pixel stream 
with the interleaved luminance (Y) and chrominance (Cb and Cr) 
pixels into three separate streams for Y, Cb, and Cr pixels. 
Subsequently, the vertical (VS) and horizontal scaling (HS) 
processes duplicate pixels such that each stream contains the 
number of pixels that has been specified in the frame header data. 
Hence, the resulting streams are in 4:4:4 format. The image-to-
line (i2l) processes glue the frame-based output interfaces of the 
vertical scaling processes to the line-based input interfaces of the 
horizontal scaling processes. The color matrix process converts 
the Y, Cb, and Cr streams to R, G, and B streams. Finally, the 

backend process reads the R, G, and B streams and writes them in 
sun raster file format to disk. 
Each process has an input/output relation such that its latency, 
i.e., the number of pixels that is read before the first pixel is 
written, is minimal. The minimum latency minimizes the memory 
requirements of the process. Furthermore, the minimum latency of 
each process minimizes the communication constraints with its 
environment and, therefore, maximizes the re-usability of the 
process. For example, the horizontal scaling processes have a 
latency of one pixel. If we re-use them in another process network 
in which we only need to scale the luminance pixels, then one 
pixel delay suffices to delay the chrominance pixels accordingly. 
If the horizontal scaling on luminance pixels would have a latency 
of one frame of pixels, then this would impose significant frame 
memory requirements in order to match the delay in the 
chrominance pixels. Similar arguments apply for feedback loops. 

3. MULTIPROCESSOR ARCHITECTURE 
We have implemented the JPEG decoding process network on a 
single tile of the CAKE multiprocessor architecture [14]. A tile 
consists of a heterogeneous set of processors and memories that 
communicate through a snooping interconnection network. Each 
processor has its own cache. The snooping protocol ensures that 
the caches have a coherent view on the single uniform shared 
memory space. In our tile configuration we have used a 
homogeneous set of MIPS processors and four memory banks to 
implement the memory space. All processors in the tile operate on 
a single queue of runable tasks. A small operating system, called 
tile run-time system, dynamically assigns tasks to processors. If 
one processor suspends a task, then another processor can resume 
this task. The YAPI process network library has been 
implemented in software on top of the tile run-time system. In this 
library, each process is implemented as a separate task.  

4. MAPPING 
In order to efficiently implement the JPEG decoding process 
network on the CAKE multiprocessor architecture we have 
exploited three observations. The first observation is that pixel-
based communications, i.e., read and write calls that are used to 
communicate single pixels, are expensive in software due to the 
large number of synchronization actions. The second observation 
is that fine-grain tasks, i.e., tasks that perform little computation 
compared to communication, are expensive in software due to the 
relatively large overhead of data transfer between the tasks. The 
third observation is that RISC processors such as MIPS 
processors cannot exploit data parallelism unlike, for instance, 
VLIW processors. To exploit data parallelism, we use multiple 
RISC processors and we transform data parallelism into task-level 
parallelism. Based on these observations we apply three types of 
transformations that we call data packaging, task fusion, and task 
unrolling.  
We do not focus on context switching. Context switching can only 
occur during execution of read and write calls because the tile 
run-time system schedules its tasks non-preemptively. We do not 
exploit the tradeoff between the buffer capacity of the FIFO 
channels between the tasks and the amount of context switching 
as discussed in [1]. To minimize the amount of context switching, 
we allocate a large buffer of 8K per FIFO channel. Hence, context 
switching only occurs during execution of read calls on empty 
FIFO channels. 
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4.1 Data Packaging 
In the first transformation, called data packaging, we decrease the 
number of read and write calls of a process by increasing the 
number of communicated pixels per call. As a consequence we 
have to increase both the internal memory requirements of the 
process and the latency of the process, which decreases its re-
usability. An example of data packaging is shown in Figure 2 and 
Figure 3, where we have increased the maximum packet size in 
the IQ process from 1 pixel before transformation to 64 pixels 
after transformation. We furthermore applied data packaging in 
the variable length decoding, upscale, downscale, horizontal 
scaling, color matrix, and backend processes. 
 
void IQ::main() { 
  ... 
  for(int i=0; i<nrOfScanComponents; i++) { 
    int hi = H[scanComponentId[i]]; 
    int vi = V[scanComponentId[i]]; 
    int ti = tid[scanComponentId[i]]; 
    for(int j=0; j<vi; j++) { 
      for(int k=0; k<hi; k++) { 
        for(int l=0; l<64; l++) { 
          VYApixel Cin; 
          VYApixel Cout; 
          read(CinP, Cin); 
          Cout = QTable[ti][l]*Cin; 
          write(CoutP, Cout); 
        } 
      } 
    } 
  } 
  ... 
} 

Figure 2. Pixel-based inverse quantization process. 
 
void IQ::main() { 
  ... 
  for(int i=0; i<nrOfScanComponents; i++) { 
    int hi = H[scanComponentId[i]]; 
    int vi = V[scanComponentId[i]]; 
    int ti = tid[scanComponentId[i]]; 
    for(int j=0; j<vi; j++) { 
      for(int k=0; k<hi; k++) { 
        VYApixel Cin[64]; 
        VYApixel Cout[64];    
        read(CinP, Cin, 64); 
        for(int l=0; l<64; l++) { 
          Cout[l] = QTable[ti][l]*Cin[l]; 
        } 
        write(CoutP, Cout, 64); 
      } 
    } 
  } 
  ... 
} 

Figure 3. Block-based inverse quantization process. 
The advantage of data packaging is that the system can transfer 
the data in larger packets if the FIFO channels between the 
processes have sufficient buffer capacity. This reduces the number 
of synchronization actions. 

4.2 Task Fusion 
In the second transformation, called task fusion, we combine two 
or more processes in one process in order to avoid the data 

transfer overhead of fine-grain tasks. As an example we show the 
inverse zigzag process in Figure 4 that we have combined with the 
block-based IQ process shown in Figure 3. The resulting process 
is shown in Figure 5.  
 
void IZZ::main() { 
  while (true) { 
    VYApixel Cin[64]; 
    VYApixel Cout[64]; 
    read(CinP, Cin, 64); 
    for (unsigned int i=0; i<64; i++) { 
      Cout[zigzag[i]] = Cin[i]; 
    } 
    write(CoutP, Cout, 64); 
  } 
} 

Figure 4. Inverse zigzag process. 
 

void IQ_IZZ::main() {  
  ... 
  for(int i=0; i<nrOfScanComponents; i++) { 
    int hi = H[scanComponentId[i]]; 
    int vi = V[scanComponentId[i]]; 
    int ti = tid[scanComponentId[i]]; 
    for(int j=0; j<vi; j++) { 
      for(int k=0; k<hi; k++) { 
        VYApixel Cin[64]; 
        VYApixel Cout[64]; 
        read(CinP, Cin, 64); 
        for(int l=0; l<64; l++) { 
          Cout[zigzag[l]] = QTable[ti][l]*Cin[l]; 
        } 
        write(CoutP, Cout, 64); 
      } 
    } 
  } 
  ... 
} 

Figure 5. Inverse quantization and zigzag process. 
The advantage of task fusion is that the system has to transfer less 
data if the data can be kept locally in registers and caches. This 
can improve the performance since the processors sequentially 
perform the computation and the communication of a process. If 
computation and communication can be done in parallel, then task 
fusion can be used to balance the computation and 
communication load. Furthermore, task fusion reduces the amount 
of context switching. 
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Figure 6. Coarse-grain process network. 

We repeatedly apply task fusion until we obtain the coarse-grain 
process network shown in Figure 6. In Figure 6, the frontend 
process contains the original frontend, DMX, SOF, SOS, VLD, 
IQ, IZZ, and upscale processes. Each IDCT process is a 
combination of the original IDCT process and its subsequent 
transpose process. The raster process contains the original 
downscale, raster, vertical scaling, image-to-line, and horizontal 
scaling processes. The backend process contains the original 
backend and color matrix processes. 
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4.3 Task Unrolling 
Next we have optimized the coarse-grain process network shown 
in Figure 6 both for execution on a single processor and for 
execution on multiple processors. In order to optimize for 
execution on a single processor, we apply task fusion to combine 
the five coarse-grain processes into a single process. This removes 
all multi-tasking overhead, since the resulting process is executed 
as a single task by the tile run-time system. To optimize the 
execution on multiple processors, we have made the available data 
parallelism explicit as task-level parallelism by unrolling the 
IDCT and raster processes; see Figure 7. Each of the resulting 
IDCT and raster processes handles only one of the color 
components Y, Cb, and Cr, whereas the original processes 
handled all color components. 
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Figure 7. Data parallel process network. 

The advantage of task unrolling is that the system can process data 
in parallel without the overhead of additional data transfers 
associated with pipelining.  

5. RESULTS 
We compare the implementations of the JPEG decoding process 
network with an implementation of JPEG decoding in the form of 
a C program that has been developed in a procedural 
programming style. We have labeled the different JPEG programs 
in Table I such that we can easily refer to them.  
Table I. The characteristics of the JPEG decoding programs. 

Program Style #T DP TF TU 

JPEG 1 C 1    

JPEG 2 PN 26 No No No 

JPEG 3 PN 26 Yes No No 

JPEG 4 PN 5 Yes Yes No 

JPEG 5 PN 11 Yes Yes Yes 

JPEG 6 PN 1 Yes Yes No 
 
The procedural program has label JPEG 1. The functional process 
network shown in Figure 1 has label JPEG 2. The process 
network that results from applying data packaging has label JPEG 
3. The coarse-grain process network that results from task fusion 
and that is shown in Figure 6 has label JPEG 4. The data parallel 
process network that is shown in Figure 7 has label JPEG 5. 
Finally, the single process that is the result of combining the five 
processes of Figure 6 has label JPEG 6. Table I provides an 

overview of the programs and their characteristics in terms of 
design style (procedural C or process networks), number of run-
time tasks (#T), and applied transformations (data packaging 
(DP), task fusion (TF), and task unrolling (TU)). We have 
compared these six JPEG programs in terms of design time, 
execution time, and code size. 
Both the design of the procedural program (JPEG 1) and the 
design of the functional process network (JPEG 2) have taken 
three person weeks. Two different persons have developed the 
programs using the same data structures and implementations for 
the basic functionality such as VLD and IDCT. They were not 
familiar with JPEG. The transformations of JPEG 2 into JPEG 3 
up to JPEG 6 have taken two weeks and have been done by the 
designer of JPEG 2. 

 
Figure 8. The execution times of the JPEG programs. 

Figure 8 shows the execution times of the different programs in 
number of cycles per pixel. We have executed JPEG 1 and JPEG 
6 on only one processor because they consist of only one process. 
We have executed the other programs also on 2, 3, 4, and 8 
processors. We express the execution times in the number of 
cycles per pixel in the input file. The JPEG picture “shuttle.jpg” 
has a dimension of 669x1004 pixels in 4:2:0 format, which results 
in a resolution of 1,007,514 pixels. To obtain the number of 
cycles per pixel we divide the execution time in cycles by the 
resolution in pixels.  

 
Figure 9. The impact of synchronization rate reduction. 

Figure 9 shows the execution time in cycles per process for JPEG 
2 and JPEG 3 on one processor. The transformation to reduce the 
synchronization rate for the variable length decoding, upscale, 
downscale, horizontal scaling, color matrix, and backend 
processes accelerates the execution of these processes. 
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Figure 10. The impact of data transfer reduction. 

Figure 10 shows the execution time in cycles per process for 
JPEG 4 on one processor. We have compared the execution time 
of each process with the sum of the execution times of the 
corresponding processes of JPEG 3 and JPEG 5. For instance, the 
backend process in JPEG 4 is a combination of the color matrix 
process and the backend process in JPEG 3. Similarly, the 
idctRow process in JPEG 4 is a combination of the idctRowY, 
idctRowCb, and idctRowCr processes in JPEG 5. The comparison 
between JPEG 3 and JPEG 4 shows that the removal of fine-grain 
tasks accelerates the execution. The acceleration is due to less 
data transfer overhead since more data can be kept locally in 
registers and caches of the processors. The comparison between 
JPEG 4 and JPEG 5 shows that the acceleration is not due to less 
context switching since they have similar execution times while 
JPEG 4 contains only half of the number of processes of JPEG 5. 
Note that we have allocated a large buffer of 8K for each FIFO 
channel to minimize the amount of context switching due to full 
FIFO channels. 

 
Figure 11. The impact of data parallelism. 

Figure 11 shows the execution time in cycles per process for 
JPEG 5 on tiles with multiple processors. Furthermore, it shows 
the total execution time of JPEG 5 on these tiles. We note that the 
execution times of the processes are largely independent of the 
number of processors. We also note that we can fully exploit the 
data parallelism of JPEG 5 with three or more processors because 
the execution of the frontend process determines the total 
execution time. In the frontend process, the variable length 
decoding takes most of the execution time as shown in Figure 9. 
The reading of the JPEG file from disk, which was done in the 
frontend process of JPEG 2, is not a bottleneck. 

Figure 12.  Code sizes of the JPEG programs. 
Figure 12 shows the size in number of bytes of the object code 
and source code of the JPEG programs. We have compiled the 
programs with a gcc 2.8.1 based cross-compiler for MIPS using 
the -O3 option. The size of the object code of the process network 
programs is large compared to the size of the object code of the 
single process programs JPEG 1 and JPEG 6. This is due to the 
fact that all code in the YAPI process network software library is 
inline code in order to improve the execution times of the 
programs. The disadvantage is that there is a lot of duplicate code 
in the object code. In order to execute the programs, we link them 
to the tile run-time system and other system libraries such as the 
C++ library. The size of the combined system libraries is 530K. 

6. CONCLUSION 
We have presented a system design method to implement process 
networks on multiprocessor architectures. There are two 
advantages of using process networks as functional specifications. 
Firstly, it shields application designers from implementation 
details and, hence, it improves the re-usability of functional 
specifications. Secondly, it reduces the design complexity because 
system designers start from clean functional specifications that do 
not contain architecture-specific implementation decisions. 
The JPEG decoding case study shows that process networks can 
be implemented efficiently on multiprocessor architectures in a 
systematic way by reasoning on costs and constraints. The 
transformation of the functional process network accelerates the 
execution with almost a factor of three both on a single processor 
as well as on a tile of three processors. Furthermore, we have 
shown that the transformations on process networks are relatively 
simple. Our experience is that transformations on procedural 
programs that achieve similar results are much harder to perform. 
Future work includes transformations to efficiently implement 
process network communication on multiprocessor systems with 
shared memory architectures. These architectures typically have 
platform instances such as described in [7] which have separate 
synchronization and data transfer primitives. This separation 
allows the reduction of synchronization rates without additional 
memory requirements. Furthermore, this separation can reduce the 
amount of data transfer between communicating tasks if these 
tasks have access to the same memory space. Future work 
furthermore includes the development of tools to automate the 
presented code transformations. 
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