

System-Level Modeling of a Network Switch SoC

JoAnn M. Paul, Christopher P. Andrews, Andrew S. Cassidy, Donald E. Thomas

Electrical and Computer Engineering Department
Carnegie Mellon University
Pittsburgh, PA 15213 USA

{jpaul, cpa, acassidy, thomas} @ ece.cmu.edu

Abstract

We present the modeling of the high-level design of a next
generation network switch from the perspective of a Computer-
Aided Design (CAD) team within the larger context of a design
team consisting of an experienced network switch designer and an
experienced VLSI hardware designer. After facilitating the design
process, the CAD team observed how designers approach high-
level designs, beyond RTL. We motivate the need for CAD support
that allows designers to effectively manipulate what we refer to as
Memory Visualization Level (MVL) design.

Categories and Subject Descriptors

C.4 [

Computer Systems Organization

]: Performance of Systems
—

Modeling techniques, Design studies, Performance attributes.

I.6 [

Computing Methodologies

]: Simulation and Modeling.

General Terms

Performance, Design, Experimentation.

Keywords

Computer-Aided Design, Network Switch, Performance Modeling,
System Modeling, Memory Visualization Level Design.

1. Introduction

A primary goal of system level modeling has been to formulate a
near-universal modeling representation within which a broad class
of designs can be developed. Ultimately, this allows designers to
efficiently implement instances of systems within a single modeling
style as supported by common design tools and methodologies. Of
course, hardware design has been quite successful at this. Register-
transfer level (RTL) design is based upon the premise that all
designs that can be specified in the RTL formulation can be
synthesized and simulated in the same way. Clearly the RTL
representation imposes some restrictions on the broader class of
systems that might be represented by gate-level hardware design.
But the restrictions are minor compared to the benefits of the tools
and methodologies that support RTL-based designs. A primary
reason for RTL design becoming popular was that an elegant
formalism fit the modeling already being done by designers.

Interestingly, convergence on a near-universal representation of
digital systems beyond RTL is still elusive. Function/architecture or
computation/communication orthogonalization [4], and the
description of all systems by uniting specific models of
computation [5] are perhaps the most conspicuous research efforts
toward system representation. These carry a premise that certain
approaches to design are inherently more formal than others, and so
are better for designers to follow than others. For instance, the

notion that all computation systems can be distilled to reactive
models, or that shared memory is a poor modeling practice, are
strong sentiments within some parts of the CAD community related
to these and other efforts.

The authors of the paper were a part of a system design team. The
goal was to explore the design of a Tera-bit/sec switch-on-a-chip
with Quality of Service (QoS), taking advantage of technology
predicted by the SIA roadmap [13] to be available in the year 2008.
The team included an experienced network switch architect and an
experienced VLSI architect. The goal of the authors was to develop
CAD tool support for the team and thus to better understand the
important modeling issues of next generation designs from the
perspective of system designers.

In this paper, we discuss the network switch being designed and
present our observations on the design process and the modeling
needed to support it. We observe that these designers conceive
systems at higher levels of abstraction than those currently
promoted in research or commercial tools, and break many of their
premises. We agree with [6] that the memory architecture of
embedded designs can be chosen more or less freely. Indeed, in
concurrent computation, memory organization has the greatest
impact on overall performance [9]. The shift from computer
systems as discrete components to SoCs with on-chip memories
requires memory-based organizing principles for design tools. We
illustrate the design space these next generation tools must capture.

The most significant challenges the team’s designers faced in
performance-oriented design were ones that pertained to effective
visualization and manipulation of memory access, which we refer
to as Memory Visualization Level (MVL) design. At this level, the
issue is concurrently evolving, from their earliest conception, the
functionality, the architecture and the access to shared information
based on technological limitations. None of these is known first;
they evolve together.

We start with a brief background in network switching and
proceed to describe the network switch architecture we developed
and its simulation model. Results from the simulation are presented
to illustrate the level of abstraction used and the types of questions
that needed to be answered. We conclude with our observations on
the design process and the modeling needed to support it.

2. Networking Background

Following is a very brief background of networking principles so
that a reader unfamiliar with the networking industry will be able to
understand our design scenario and experiments. For a more
complete background, see [10]. The basic function of a network
packet switch is to route packets received on a set of input ports to a
set of output ports. The correct output port is determined by the
address contained in the header of the packet.

The design complexity of the switch increases when trying to
maximize the number of packets per second routed by the switch or
when the traffic is not well behaved. Research into the general
characteristic of packet traffic on local area networks and wide area
networks has revealed a fundamentally bursty nature [1]. Typical
network applications such as email, file transfer, and web page
downloading result in data transfers of a burst or stream of back-to-

Permission to make digital or hard copies of all or part of this work for
personal or classroom use is granted without fee provided that copies are
not made or distributed for profit or commercial advantage and that copies
bear this notice and the full citation on the first page. To copy otherwise,
or republish, to post on servers or to redistribute to lists, requires prior
specific permission and/or a fee.
ISSS’02, October 2-4, 2002, Kyoto, Japan.
Copyright 2002 ACM 1-58113-562-9/02/0010…$5.00.

62

back packets, followed by long periods of inactivity [2]. The
aggregation of many of such sessions intensifies the bursty traffic
model [1]. Given the extreme behavior of such traffic models, the
true test of a network switch is the ability to handle these cases.

Bursts of packets are typically handled by buffering the excess
packets until the burst dies away. The result of this buffering is a
smoothing function on the traffic, but it can also lead to an increase
in packet latency as the packets must wait in buffers until they can
be sent. If the traffic burst is too large, the buffers will overflow,
and some packets will be discarded or dropped.

Network engineers realized it would be commercially beneficial
to make distinctions between packets such that a customer paying
a premium would be offered a service with lower latency and
lower drop rate. In order to implement this, the notion of

priority
class

 was created. Packets with a higher priority class are
guaranteed lower latency and a lower drop probability by the
network switch — the QoS. Thus, a major metric for evaluating the
performance and quality of a network switch architecture has
become the measure of QoS offered and delivered by the
architecture.

3. Proposed Network Switch Architecture

From the goals of the project, the architects determined a
number of technological constraints and proposed a baseline
architecture to model. The baseline architecture was still quite
broad. Thus, it was not possible to consider any single aspect of the
model synthesizable, unlike [6]. Given the complexity of the
design, a wide range of architectural modeling was necessary to
support design exploration.

A primary goal was to maximize the bandwidth of the switch
within the limits of a single chip design. A 128x128 port switch,
i.e. a switch with 128 input ports (or inports) and 128 output ports
(or outports) was proposed by the architects. A full crossbar that
provided a single connection between every inport and outport was
deemed impractical as well as a scheme based on a central shared
memory. The team investigated an on-chip routing fabric based
upon simple, autonomous routing nodes.

The nodal-based design forms a
hierarchical network as a connection
fabric between ports as in Figure 1,
which shows a 2-D mesh at the top
and expanded node view at the
bottom. Each node has a primary
external input and a primary external
output; thus it is both a potential off-
chip source and destination for
packets. Each node also has several
internal inputs and outputs; these
connect to neighboring on-chip
nodes. A packet can travel across the
switch, as shown by the gray line, by
hopping from node to node until it
reaches its destination.

For a 128 node switch, the
memory available to buffer data was
the greatest resource limitation. To
compensate, a variation on virtual
cut-through routing [9] was used to
route packets across the fabric. This
method breaks the packet up into a
number of smaller units called

flits,

typically a 32-bit piece. The first flit in the packet opens a path
across the switch which is dedicated to the packet until the tail is
streamed down the path, freeing the path. If the path is blocked, the

flits start to be buffered in place in the node’s transit buffer (these
buffer flits in transit between on-chip nodes). If the node at the
head of the path runs out of room, the back-pressure causes
previous nodes in the path to begin to use their transit buffer space
as well. This method allows a blocked packet to be buffered across
multiple nodes, creating a form of shared memory that distributes
memory usage more evenly across the fabric. (This is unlike a
store-and-forward scheme that stores a complete packet at each
node in the path.) If this back-pressure reaches a primary input, the
packet in the inport is lost; it is dropped.

Another goal was to keep the functionality of the nodes simple
with local decision making. Nodes only know the conditions of
neighboring nodes by the back-pressure of packets. This desire for
simplicity also affected the QoS implementation (described in
more detail in section 4.1). Every time there is contention for a
resource, it would be optimal for a QoS scheduler to differentiate
between priority classes to resolve the contention. However, due to
the limited resources available, it was decided that it would be
sufficient to place QoS schedulers at the site of the most contention
— the output ports. Essentially, this requires an assumption that
the switching fabric on the chip appears ideal to the QoS — that
the fabric’s limitations do not interfere with effective QoS.

While the above architecture is fairly detailed, it also leaves a
great deal unspecified. For instance, how are the nodes connected
together? a 2-D mesh? a 2-D or 3-D torus? How much of the
available memory should be used for transit buffers? output
buffers? All of these questions are a part of the larger design space
remaining after the definition of the nodes.

4. Simulation Model

The simulation model was built using our frequency interleaved
simulation environment [7]. SystemC [11] and Superlog [12] were
considered. Since they have aspects of an unconstrained
programming language, each could have been used to construct
our (or any) simulation by using the general programming
constructs as opposed to the specific design principles supported
by the languages. Since they are extensions of RTL-level
modeling, they tend to constrain state access to port-like models
consistent with RTL, which would have limited the definition of
the modeling style and its parameterization.

Conceptually, the model
resembles Figure 2. A set of
parameters is applied to the
model to explore numerous
aspects of the unspecified
design space implied by the
baseline architecture. A traffic
pattern stimulates the design allowing the designer to examine how
this particular instance of the architecture performs.

Structure in the model was implied by modeling each
component as a periodically-activated thread. One advantage of
this style of specification is that the communication channels act as
a buffer between neighboring nodes, preserving the notion of
concurrent execution of the nodes without having to utilize a
discrete event scheduler to maintain variable update order. This has
the further advantage that the model can be distributed on a multi-
processor machine to decrease simulation time.

4.1 The Node

A routing function included in each node directs all of the
traffic. Along with the inport and outport, the node also contains a
number of internal inputs and outputs that connect it to its
neighbors. The number of neighbors that the node has is
determined by the topology of the routing fabric; neighboring

Routing
Function

...

...

Internal
Outputs

In
te

rn
a
l

In
p
u
ts

Inport

QoS

Output
Buffers

Outport

S

D

Figure 1 Baseline
Architecture

Parameters

Performance
Results

Baseline
Architecture

 Figure 2 Simulation Model

Traffic
Model

63

nodes can have any number of channels connecting them. The QoS
scheduler [3] resides on the primary output and decides the order
in which packets leave the node. All of the inputs and outputs have
buffers that are modeled using FIFO queues that allow the packets
to be buffered in order as the flits from the packet each arrive
separately. The memory of each node is split between transit
buffers, which hold flits transiting across the node, and an output
buffer for the output port.

The main loop of the node cycles through each of the primary
and internal inputs. If a connection exists, the main loop attempts
to move a single flit from the current input to its destination. If
there is no connection and a packet is waiting in the buffer, the
routing function uses the packet address to either route the packet
to the output buffer or forward it to the appropriate internal output.
The connections are circuit switched; they are dedicated to the
packet until the tail arrives and closes the connection.

Once all of the inputs have been serviced, the primary outport is
examined. Here, the QoS scheduler gives priority to the more
important packets. As each packet arrives in the output buffer it is
given a unique timestamp that is a function of the current
timestamp of the scheduler, the class of the packet and the packet’s
length. Whenever the outport is free, the QoS scheduler merely has
to pick the packet in the buffer that has the smallest timestamp.

4.2 Parameterization

The model has several categories of parameterization (see Table
1). One determines the actual physical structure of the switch,
including the number of nodes, the topology of the interconnect,
and the connection strength (number of connections) between
neighbors. The second category deals with the node’s memory
architecture — the size and how it is distributed. Other parameters
allow the designer to see the effects of running the model without a
QoS scheduler in place and the difference that changing the size of
a flit makes to the model. Even though the core architecture model
remains fixed, the parameters allow switches with radically
different performance characteristics to be modeled.

The parameters are not completely independent; they capture
interacting design concerns. The most obvious example of this
interaction is the two parameters governing the transit buffers. One
parameter limits the length that individual transit buffers can reach.
The other limits the total overall space allowed for all transit
buffers. These two parameters allow the model to capture a number
of different memory architectures depending on their ratio. If the
two numbers are the same, this models a single piece of memory
that is shared between all of the node’s internal ports. At the other
end of the spectrum, if the individual buffers are only allowed one
N

th

 of the total memory available for N buffers, this models an
architecture that uses completely separate memories for each port.
The space between these two extremes captures a number of
intermediate architectures, including individual memories, a
memory arbiter or even virtual channels with shared buffers.

4.3 Traffic Models

At high levels of design, the model of a design’s testbench — in
this case network traffic — must be parameterizable so that
designs may be evaluated against specific scenarios. Further, there

are few publicly available traces of actual network traffic. Thus, we
built a traffic generator that allowed the designer to simulate the
two major aspects of network traffic: the arrival characteristics, and
the destination distribution. The first is a measure of the burstiness
of the traffic. A lack of burstiness results in traffic that arrives
according to a Poisson process. One extreme of the second aspect
is hotspot traffic — where the majority of the network traffic is
directed to a single output, overwhelming it. The other extreme is a
completely uniform traffic model with an even load on all outputs.
Our generator allows the designer to create traffic that combines
these attributes in varying amounts and overlay them with an
average load on the entire switch.

5. Simulation Results

The research team used simulation to explore the proposed
switch architecture. In this section we show a subset of the
experiments, pertaining to a 2-D torus, developed to show the
implications and trade-offs of coarse grain design decisions. Other
results can be found in [8]. The model used there was derived from
the one described here. Further, it only included the fabric; QoS
was not included. Thus, QoS-fabric interactions could not be
modeled. By contrast, the results in this paper show the impact of
the fabric on the effectiveness of QoS.

The limitations and design questions posed are: Can we
implement a simplified QoS algorithm and save node resources?
Can the experimental fabric approximate an ideal one? (An ideal
fabric is an unrealizable one with complete connectivity — as
would be the case for a 128x128 crossbar — and unlimited
memory to buffer packets.) What is an adequate connection
strength to approximate ideal performance? Given a finite amount
of memory per node, how should it be distributed to maximize
performance?

From these high level design questions, we created four
experiments to test these hypotheses. The switch performance is
evaluated using two primary metrics, packet latency and drop rate.

5.1 QoS Algorithm Complexity

The first experiment investigated the trade-off of reducing QoS
functionality in order to reduce the node resources taken up by the
QoS logic. We varied the number of sessions (streams) that the
QoS scheduler had to choose from to make scheduling decisions.
This is intended to simulate QoS algorithms of varying complexity.
A session is a logical connection across the switch formed by
multiple packets associated with a particular application. Each
session is assigned a traffic class priority — multiple sessions may
be assigned the same class. We compared the latency of the overall
traffic on a per class basis of these cases to the cases of no QoS
scheduler, and a QoS scheduler with access to all of the sessions.
These are shown in Figure 3. The traffic was Poisson distributed
with a 97% load, 128 sessions, and eight traffic priority classes.

Table 1 Parameters of Switch Simulation Model

Architecture Topology - 2-D mesh, 2-D or 3-D torus, hypercubes, etc...;
Conn.Strength - number of connections between neighbors;
Number of Nodes - actual number of nodes in the fabric

Memory Sizes Inport; Outport; Total transit; Individual transit

Other Flit Size - physical size of flit (usually 32 bits);
QoS / FIFO - choice of scheduler on outport

QoS : # Output Queue Access Streams

0

1000

2000

3000

4000

5000

6000

0 1 2 3 4 5 6 7 8

Class #

A
ve

ra
g

e
L

at
en

cy

No QoS

1 Stream

2 Streams

4 Streams

8 Streams

16 Streams

All Streams

 Figure 3 QoS Classes: Latency Distribution

64

When there is no QoS scheduler, the average latencies of the
classes are roughly constant, no packet has priority over another. If
the scheduler has access to all of the sessions, the average latencies
are distributed in a smooth curve. The highest priority traffic has
the lowest latency, and the lower the priority of traffic, the greater
the latency. The results show that the greater the number of
sessions, the more effective the QoS scheduler, and the greater the
latency distinction between classes. Also, the results show that it
may be possible to use a reduced complexity QoS scheduler and
have performance close to that of the full implementation. For our
particular design, under the given traffic conditions, the graph in
Figure 3 shows 16 sessions to be close to the best case.

5.2 Experimental Fabric

The next three experiments explore two parameters of the
experimental fabric architecture, the connection strength, and the
memory allocation. For QoS to work properly on the output ports,
the fabric should appear as ideal as possible.

5.2.1 Fabric Connection Strength

The connection strength between nodes is a design trade-off
between performance and implementation complexity. The greater
the connection strength, the closer the torus would be to the ideal
fabric in terms of performance. On the other hand, the smaller the
connection strength, the simpler the node logic and the easier the
implementation. The traffic latency is compared between
experimental switch fabrics of varying connection strength, and
the ideal fabric. The connection strength of the experimental fabric
is varied from one to sixteen. The experiments were run using
Poisson Traffic with a 85% load and two traffic priority classes,
where class 1 has higher priority than class 0.

The general trend we found was that for low connection
strengths, overall traffic latency increases as the connection
strength decreases. For connection strengths above a certain point,
the overall traffic latency was approximately the same as the ideal
fabric. Further, looking at the traffic on a class by class basis, we
found that the differentiation between the latency of the high and
low priority classes decreased as the connection strength
decreases. The results in Table 2 show this occurring for our design
at connection strengths below four.

This effect occurs because decreasing the connection strength
decreases the shared data paths on the fabric. As a result, packets
are blocked on the fabric. Since blocking on the fabric occurs
without differentiation between class, the ability of the QoS
scheduler at the output port of the node is compromised by the
latencies already incurred while the packets were on the fabric.
This implies that for low connection strengths, the experimental
fabric performance no longer resembles that of the ideal fabric.

5.2.2 Fabric Memory Allocation

Similarly, given the finite amount of memory per node, its
distribution should optimize the performance of the experimental
fabric to as close to the performance of the ideal fabric as possible.
Holding the total fixed memory size constant, we varied the
percent of memory allocated to the output queue, allocating the
remainder of the memory to the internal transit buffers. The switch
configurations were tested using a 10x hotspot traffic model of
finite duration and two QoS classes of traffic. The results look at
both classes of traffic at the output port that is the target of the
hotspot congestion.

First we found that larger output queues have a lower percentage
of dropped packets. This result is reasonable given that larger
buffers are better able to absorb bursts of traffic, and the output
queues do not block internal traffic traveling to other nodes.
Secondly, we found that QoS scheduling requires a minimum
output queue size in order to effectively differentiate between
classes of traffic. The results in Table 3 show that for our design,
output queue sizes of greater than 35% of the total memory
perform the same as the ideal fabric.

For a finite duration hotspot, the QoS scheduler should transmit
the traffic for the higher priority class before the lower priority
class. For a short duration and high congestion, it is expected that
only high priority traffic will be transmitted. This is verified by the
ideal fabric where 100% of the traffic transmitted out of the port is
from the high priority class.

For the experimental fabric the results show that for small output
queue sizes the performance of the QoS scheduler degrades. For
our design, output queue sizes below 20% are too small to always
have a high priority packet for the scheduler to transmit, so a lower
priority packet is sent instead. As the output queue size decreases,
the number of low priority packets that are sent increases. This
implies the transmitted packet distribution can only be shaped by
QoS if the output queue size is sufficiently large.

5.2.3 Fabric Packet Dropping

A fourth experiment demonstrates the limits of approximating
the experimental torus fabric as an ideal fabric. Instead of a finite
duration hotspot, packet statistics were measured after the hotspot
traffic had saturated the switch. We again varied the percentage of
memory allocated to the output queue versus the transit buffers and
tested using a 10x hotspot traffic model and two QoS classes of
traffic. Table 4 shows the number of dropped packets for two
classes and overall as the percentage of memory modeled in the
output queues varies.

As the distribution of memory is varied, the total number of
dropped packets does not change appreciably. Furthermore, there
is little distinction between the number of class 0 or class 1 packets
dropped. The effects of QoS have been lost in this design under
these traffic conditions.

5.3 Results Summary

The breakdown of the model in this final experiment caused us
to pose new high level design questions: Should the internal nodes
of the fabric have a notion of QoS and not just the output queues?
Alternatively, should the packet drop function have a notion of
QoS? Or, should our design have fewer than 128 ports allowing
more memory per node and the possibility for a cross-bar
interconnect to improve QoS?

These questions were not investigated, but are indicative of the
broad range of high level questions appropriate for system level
design and simulation. In summary, from the second and third
experiments, we drew the conclusion that it may be possible to

Table 2 Avg. Latency Ratio vs Connection Strength

Conn. Strength 1 2 4 8 16 Ideal

Avg. Latency: (class 0 / class 1) 2.0 3.0 3.8 3.8 3.8 3.9

Table 3 QoS Performance vs. Output Queue Size

% Output Queue Memory 2 18 36 51 69 (Ideal)

% Class1 packets Tx 50 67 100 100 100 100

Table 4 Experimental Fabric: Dropped Packets

% Output Queue Memory 10% 50% 90%

Packet
Class

class 0 115 115 128

class 1 (higher) 107 108 120

total 222 223 248

65

approximate an ideal fabric with a torus fabric with certain
architectural parameters. However, the fourth experiment showed a
point at which the model broke down and the experimental fabric
could not approximate the ideal fabric. Thus when QoS is
implemented only at the node outputs of the proposed
experimental fabric design, it becomes ineffective due to dropping
decisions that are made upstream, in the fabric.

6. Observations

These experiments answer design questions that cannot be
answered by pure analytical methods or by designer’s intuition. In
this section we make some observations about the model. Our goal
is to point out characteristics of modeling at this level that support
the creative process in the context of design space exploration and
yet may be inconsistent with traditional views.

6.1 Level of Design

Performance modeling in high level design is enabled by a level
in between the purely functional and the physical. The network
switch model exists at such a mid-level; we call it

 flit accurate.

At
a purely functional level, a model could capture a very large design
space. But since the model is completely functional, there is no
way to examine the physical implications of the implied design
space; these models are too high level for automatic synthesis. At a
lower level, the actual physical structure of the design or a
particular implementation could be modeled. However, system
alternatives are difficult to explore at this level; it is useful mainly
for detailed timing and verification.

For the network switch, neither the whole function, the
architecture, the model of computation, nor the boundary between
computation and communication were obvious. The model has
structure and a number of implied design decisions built into it, but
much of the model still exists at a more functional level. This
combined with the parameterizable aspects of the model’s
structure and function allow a designer to explore the physical
consequences of a fairly large design space without having to
commit to other attributes of the design.

The important issue at the system level of design is having a
model that is just accurate enough to allow the designer to define
and manipulate how the significant system features will interact to
have the most impact on overall system balance. Clearly, for
performance modeling to take place, some notion of timing must
be included in the specification. Implicitly, the level of time
granularity of the model dictates the types of concurrent
architectural elements that are manipulated by the designer as well
as the functionally atomic actions that happen between them. For
instance, the assumption made for all of the node threads was that
a simulation cycle was just enough time to process and move a
single flit. The communication between the testbench and the
fabric was done at one fifth of this rate to simulate an off-chip/on-
chip communications ratio, enabling consideration of on/off chip
trade-offs without requiring excessive physical detail.

6.2 Accommodation

At the system level, designers prioritize the physical
implementation of one set of behaviors over others. The less
prioritized behavior is not ruled out, but is implemented in a less
optimal manner than the common case. However, traditional,
automatic synthesis begins with a representation of the required
behavior of the system which is a specification of what the system
does. In this specification, there is no notion of meeting some
portions of the behavior better than others. All of the behavior in
the specification is met. By contrast, the network switch started
with a notion of what an ideal behavior might be, for instance, that

no packets are dropped under any circumstances, and that latencies
are always guaranteed to be met. However, switch designers
realize that this ideal will be met only under some situations, but
not all. Thus, in some cases the switch model might be considered
imperfect or less than ideal.

Imperfection in the design process is recognition that a broad
class of ideal behaviors might be implemented very effectively,
while less-ideal ones must be

accommodated

. In other parts of the
system

compensation

 is used to handle the less ideal behaviors.
Because performance is a primary factor, function and architecture
are affected, together, in such designs. Often this is far superior to
designing for the true worst case. For instance, the network switch
is designed to optimize most operating conditions, but to drop
packets or increase latency in others. Dropped packets are
compensated for by higher levels of network protocols that will
resend the packets — this solution is implemented in a completely
separate part of the system. A wholly different example is where
software memory is ideally modeled as infinite. But, it is
accommodated for being finite in other parts of the model such as
memory allocation schemes.

Compensation is not automatically synthesizable — a synthesis
tool would not decide, in general, when it is appropriate to
consider some design cases rare, or how to most effectively
accommodate them. Rather, these are creative decisions of a
designer which, only after being invented and set down in
behavior, can be synthesized. Significantly, the acceptability of
accommodation of rare design cases is an example of how function
and architecture interact; design representations and
methodologies must support the interaction.

6.3 Design Elements

System level designers conceptualize both the design elements
of a system as well as how they can be manipulated so that their
interactions can be understood. In the case of the switch, the
design elements were the nodes (which coupled output and transit
buffer memory) which were manipulated by the model parameters,
some of which were interdependent. Other designs might have
utilized different design elements; some were considered in the
early parts of the design process. Importantly, the phase in which
the design elements were defined had the greatest impact on the
overall nature of the design. Limiting the designer’s ability to think
about the design elements of the system would have hampered the
ability of the designers to reach a potentially elegant solution.

For instance, some have proposed all computation can be
distilled to a reactive system, thus forming a basis for system level
CAD. From a formal point of view, it is hard to argue with such
approaches; after all, all computation can also be modeled as a
collection of interconnected NAND gates. All physical systems are
really structural and finite. But, from that point of view all other
modeling constructs are superfluous.

A network switch is an embedded system — but not a reactive
system. The fact that packets can be dropped by the interaction of
the particular traffic situation is a singular notion not well
supported by a reactive model. A reactive model is similar to a
hardware model in that signals are processed by interconnected
elements. The notion that some signals may not be processed —
they might be dropped due to complex interactions between the
inputs and the architecture — is difficult to conceive in a hardware
model. And yet, the fact that a packet can be dropped and
accommodated at higher levels of design — higher layers of the
network stack protocol — is a powerful notion in networking. At
the system level, the most elegant formalisms are often
inconsistent with the most elegant designs — those from a
designer who effectively manipulates the physical design space

66

with an understanding of how functionality interacts with the most
significant architectural features to form an elegant result.

6.4 Shared Memory

The method of implementation of shared memory illustrates the
way functionality and architecture as well as computation and
communication are strongly interrelated in such a design; they are
not independent at this higher level.

Network switch designers seek two goals simultaneously — a
completely connected topology to minimize latency, and an ideally
shared, multiport memory to reduce bursty and hotspot traffic
effects. Architecturally, these two goals are opposites. One is about
complete connectivity while the other is about the need to develop
central arbitration for a conceptually global memory space. Since
memory was at a premium on the switch and a 128-port memory
was out of the question, a memory sharing scheme was important
to investigate. The modeling issue is not simply a question of the
presence or absence of a shared memory behavior in the switch.
Rather, its method of implementation had an impact on virtually all
other aspects of the design; alternatives had to be considered.

6.5 Unbounded Models of Hardware

An unbounded model allows the designer to explore
architectures without having to build each case. Designers of the
switch needed to consider the size of the architecture as driven by
the way the system is utilized, such as how often a resource is
needed. Thus, while the network switch is a hardware model, it
was important to include the ability to consider computation,
communication and state within the model unbounded at various
times so that the designers could understand how rare design cases
might actually affect the amount of hardware required.

Some test cases used traffic models that placed heavy demand
on one or more output nodes, and measuring the amount of
memory that would be required for

no

 packets to be dropped. The
amount of memory was significant enough so as to prohibit the
possibility of more than a few nodes on the switch, if that traffic
case had to be met under all possible circumstances. Similarly, the
designers ran the model with an unbounded connection strength
between nodes on the switch. Even under normal traffic models, as
many as 80 channels were utilized at one time in support of little or
no dropping of packets, but the times that many channels were
required was so rare it was possible to easily rule out the need for
excessive interconnect on the switch.

7. Conclusions

The experience described in this paper motivates the need to
develop system modeling strategies around higher level concepts.
At the early stages of the switch design, there was no notion of
function, architecture nor how information (state) in the system
would be shared. Although none of these were initially known,
they evolved concurrently in response to technological limitations,
a set of application data against which to model performance,
creativity, and technical intuition. The issue is how to support this
important phase of the system design process.

We observed that the system designers were carrying out two
separate steps in the design process: defining design elements,
resulting in a modeling style, and exploring how performance is
impacted by manipulation of designs within that style. Unlike RTL
designs where computation, communication and state are well
defined

a priori

, high level system designs do not start with a
premise of what the design elements of the system are. In the
switch design, the designers initially thought in terms of a node
that processes information in packets where some behavior is
implied by the node definition. It remains an open question if the

node was the best design element around which to organize the
design; however, the fact that optimal design elements are not
always obvious suggests the need for the CAD community to
support designers in discovering them.

We observed that this level of design can be thought of as
Memory Visualization Level design. MVL is pre-behavior design.
The behavior must be discovered in light of how the system is
going to be used. State in any computation system includes that
used to construct the system’s behavior and that used to store
application data. The primary organizing principle of most system-
level design is that of application state — memory. Thus, in MVL
design, the design elements are formed around how application
data is effectively organized for performance-optimized behavior.

Designers must effectively manipulate memory access on two
levels: by defining design elements, and by defining the way the
elements interact. With MVL design, boundaries of shared
memory must be easily movable, allowing for alternate
partitionings of function (even accommodation). Levels (speeds)
of memory access must be easily changeable, allowing for easy
consideration of alternate functional partitioning. The result of
MVL design is then a behavior which represents how the overall
system computation, communication and state will form the
system. At that point, many design decisions have been made,
facilitated by this higher level of exploration. Divide-and-conquer
can then be applied to implementing each part.

8. Acknowledgments

This work was supported in part by the Pittsburgh Digital
Greenhouse, NSF Award EIA-0103706, the General Motors
Collaborative Research Lab at CMU, and ST Microelectronics. We
thank the other members of the Switch on a Chip design team at
CMU: Hyong Kim, Herman Schmit, Ece Guran and Dave
Whelihan. We also thank Chris Eatedali for his suggestions.

9. References

[1] W. Leland, M. Taqqu, W. Willinger, D. Wilson. “On the self-
similar nature of Ethernet traffic,”

ACM/SIGCOMM '93

, pp
183-193.

[2] M. Crovella, A. Bestavros. “Self-Similarity in World Wide
Web Traffic Evidence and Possible Causes,”

ACM SIGMET-
RICS Int. Conf. on Measurement and Modeling of Computer
Systems

, pp. 160-169, May 1996.
[3] D. Stephens, J. Bennett, H. Zhang. “Implementing scheduling

algorithms in high-speed networks,” IEEE Journal on
Selected Areas in Communications, pp. 1145-1158, 1999.

[4] K. Keutzer, S. Malik, A. R. Newton, et. al. “System-Level
Design: Orthogonalization of Concerns and Platform-Based
Design,”

IEEE Trans. CAD

, pp. 1523-1543, Dec. 2000.
[5] E. Lee, A. Sangiovanni-Vincentelli. “A Framework for Com-

paring Models of Computation,”

IEEE Trans. CAD.

Vol. 17,
pp. 1217-1229. December 1998.

[6] S. Meftali, F. Gharsalli, F. Rousseau, A. Jerraya. “An optimal
Memory Allocation for Application-Specific Multiprocessor
System-on-Chip,”

ISSS 2001

, pp. 19-24.
[7] J.M. Paul, A.J. Suppé, D.E. Thomas. “Modeling and Simula-

tion of Steady State and Transient Behaviors for Emergent
SoCs,”

ISSS 2001

, pp. 262-267.
[8] D. Whelihan, H.Schmit. “Memory Optimization in Single

Chip Network Switch Fabrics,”

DAC 2002,

 pp. 530-535.
[9] Culler and Singh.

Parallel Computer Architecture: A Hard-
ware/Software Approach

. Morgan Kaufmann. 1999.
[10] J. Walrand.

Communication Networks: A First Course

McGraw-Hill. 1991.
[11] http://:www.systemc.org
[12] http://www.co-design.com/
[13] http://public.itrs.net/files/1999_SIA_Roadmap/Home.htm

67

	Main
	ISSS02
	Front Matter
	Table of Contents
	Author Index

