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ABSTRACT 
Nowadays, new DSP applications are offering combined and 
flexible multimedia and telecom services. VLIW processor 
architectures, which include dedicated but inflexible functional 
units, are usually tuned to a single specific application. In order to 
accelerate a wide range of applications, we propose a VLIW 
processor containing a novel run-time reconfigurable functional 
unit (RC-FU). Only a few hundred bits and few cycles are 
necessary to configure a new coarse-grain operation on the RC-
FU unit. After reconfiguring its internal datapath and micro-
program, the RC-FU can execute a number of look-alike DSP 
functions, such as 8-point DCT or 4-point FFT. The RC-FU itself 
is a VLIW processor and the configuration contexts are generated 
using a high-level synthesis tool. The proposed RC-FU provides 
high processing power and can be efficiently tuned to the 
requirements of a variety of DSP applications. 

Categories and Subject Descriptors 
C.1.2 [Processor Architectures]: Single Data Stream 
Architectures – RISC/CISC, VLIW architectures. 

General Terms 
Algorithms, Performance, Design 

Keywords 
Reconfigurable logic, VLIW processors, Architectural Synthesis 

 

1. INTRODUCTION 
Each day, new DSP applications are developed offering yet 

more features and support for multiple and emerging standards. 
Currently, we are witnessing the convergence of different sorts of 
video, audio and telecom application on a single, often portable, 
device. Hence, in order to efficiently perform the required 
applications, such devices must be equipped with dedicated and 
computationally powerful processing hardware. Paradoxically, the 

designed hardware must also be highly configurable and 
programmable [1]. 

 Three sorts of processor’s architectures are currently used in 
order to execute the current DSP applications, namely, 
Application Specific Architectures (ASA), RISC-like 
architectures, and VLIW architectures (see Figure 1).  

Application Specific Architectures are highly optimized and 
tailored for a specific functionality [2]. A large number of 
dedicated computational resources are deployed in the 
architecture, providing very high computational power. On the 
other hand, such architectures are often not programmable and 
cannot be easily adapted for the execution of other applications.  

RISC-like processor architectures, on the other hand, are 
highly programmable and can cope with a broad range of 
(irregular) DSP applications, but usually deliver modest or low 
performance. 

VLIW architectures are located in between these two extreme 
architectural solutions [3]. Many commercially available DSP 
processors can be placed in this category. The demanded 
computational performance can be achieved by including in the 
datapath one or more dedicated ASUs (Application Specific 
Functional Units). Those ASUs are capable of executing complex 
coarse-grain operations, characterized by an instruction latency of 
tens of cycles, and processing blocks of data as single atomic 
operations. Typical coarse-grain operations are, for instance, 4-
points FFTs, 8-point FIR filters. Coarse-grain ASUs contain 
internally a large number of internal fine-grain resources such as 
adders and multipliers [4]. 

Figure 1. Performance vs Flexibility tradeoff 
When the coarse-grain operations are implemented in a 

dedicated, non-configurable ASU’s internal architecture, only a 
limited set of applications can benefit from the computational 
acceleration the ASU provide. Modern DSP applications are 
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continuously evolving in terms of provided standards and 
services. While the insertion of fixed custom ASUs in a VLIW 
datapath increases the processor performance for a given 
application, at the same time it reduces the flexibility and the 
programmability of the VLIW processor. If the application 
changes, then the processor’s performance drops considerably [1]. 
Therefore, such a Fixed Coarse-Grain VLIW Architecture (FCA) 
would deliver very low performance while moving away from the 
original application domain (see Figure 1). 

In order to overcome this flexibility-performance dilemma 
[5], we propose a novel VLIW architecture containing a Run-
Time Word-Level Reconfigurable Coarse Grain Functional Unit 
(RC-FU). Various coarse-grain operations can be reconfigured on 
the proposed RC-FU, in order to accelerate cycle budget critical 
DSP loops. In this way, a Reconfigurable Coarse Grain VLIW 
Architecture (RCA) would provide high processing power for a 
wide domain of DSP applications with dissimilar computational 
requirements (see Figure 1). The coarse-grain operation will be 
available after a run-time configuration step of a few cycles. 
During this time, the RC-FU’s internal resources, such as the 
controller, the datapath network and the data memories, will be 
re-programmed using a few hundreds configuration bits. In this 
way, the RC-FU’s instruction set can be adjusted and tailored at 
run-time to the requirements of the application code, which is 
about to be executed. By reconfiguring the RC-FU coarse grain 
instructions, hence the VLIW Instruction Set, the processor will 
execute fewer and more compact instructions. 

The paper is organized as follows. Section 2 depicts the 
current state and the available results on re-configurable VLIW 
architectures. In Section 3, advantages and drawbacks of fixed 
coarse-grain VLIW architectures will be examined.  In Section 4 
and 5, the characteristics of the RC-FU will be introduced 
together with the integration of functional unit in a hierarchical 
VLIW processor architecture. Section 6, describes the 
programming paradigm, which has been adopted for the run-time 
reconfiguration of the RC-FU instruction set. The experimental 
results are reported in Section 7, followed by some conclusions. 

2. RELATED WORK 
Mihai Sima et. al. [3] have designed a Reconfigurable 

Functional Unit (RFU) for a  Trimedia/CPU64 VLIW datapath. A 
16-cycle coarse-grain 8-point IDCT operation has been 
configured on the above-mentioned RFU. The coarse-grain 
operation is configured at bit-level and mapped on an ACEX 
EP1K100 FPGA from Altera, which is embedded in the VLIW 
processor’s datapath. In this way, adders and multipliers bit-level 
architectures are re-configured any time a new coarse-grain 
operation is configured. Usually, those basic FUs can be re-used 
and the reconfiguration of their bit-level architectures is not 
strictly necessary. 

In the VLIW processor template Lx [1], word-level re-
configuration is possible by customizing the functionality 
provided by processing clusters. However, when the application 
domain is identified, the provided flexibility is removed and the 
hardware is frozen for the final implementation. 

The Concise RFU [6], is word and bit level reconfigurable at 
run-time. Anyhow, the RFU coarse-grain operations cannot be 
executed in parallel with other operations because the RFU is 
embedded in a RISC-like architecture. In this case, the ILP is 
limited to the acceleration provided by the RFU itself. 

In the Chimaera architecture [7], the RFU’s configuration 
context is quite big (32x1674 bits). Furthermore, the RFU could 
negatively influence the timing of the whole processor, because of 
possible long signal propagation paths in the logic circuits 
configured in the RFU. 

Each of the above-mentioned frameworks has some 
similarities with the proposed architecture [5]. Nevertheless, none 
of them offers, at the same time, a mixed coarse/fine grained 
VLIW Instruction Level Parallelism, small reconfiguration 
context (less then 500 bits), low run-time reconfiguration latency. 

3. FIXED COARSE GRAIN ASUs 
Coarse-Grain ASUs are characterized by an instruction 

latency of tens of cycles. They can process blocks of several data 
words as single atomic operations and manifest complex 
Input/Output activity patterns [4]. 

In terms of code size, the introduction of fixed coarse-grain 
ASUs in a VLIW datapath can be very beneficial. In order to 
control an ASU, only a few bits wide command must be encoded 
in the VLIW instruction word. On the other hand, the ASU steers 
a large amount of fine-grain internal FUs. The program code 
compiled for a VLIW architecture containing coarse-grain ASUs 
is denser, both in terms of code length and code width, when 
compared to a VLIW architecture containing only fine-grain FUs. 
The length of the code is shorter because of the higher instruction 
level parallelism provided by the ASUs and the code width is 
small because the control of the ASU’s internal hardware 
resources is not encoded in the VLIW instruction word (compare 
architecture and microcode aspect ratio of case a and b in Figure 
4). Nevertheless, such a fixed coarse-grain ASU has some 
limitations, which could lead to an inefficient hardware utilization 
of its internal resources. 

The ASU's hardware is fixed, because it is tuned and tailored 
for a specific application. Each day, new DSP applications are 
developed. This could imply that the coarse-grain operations 
provided by the available ASUs do not match any more with the 
requirements of a new DSP application. In this case, no dedicated 
hardware is exploited to accelerate the application, and the VLIW 
processor delivers poor performance [1]. If the coarse-grain 
operations are not performed, then a large portion of the datapath 
resources could remain idle for long periods during the execution 
of the DSP application. Furthermore, those hardware resources 
are hidden in the ASU and they are not accessible directly from 
VLIW controller.  

Once silicon is produced, a modification in the DSP 
application may require the design of new coarse-grain ASUs. 
Therefore, either new silicon must be produced or the 
application's performance decay.  

A last, but not least, limitation of inflexible coarse-grain 
ASUs comes as a direct consequence of the Amdahl's law [8]. 
Once that the critical loops are accelerated thanks to the 
specialized coarse-grain operations provided by the ASU, other 
portions of the code become the bottleneck of the application and 
other loops become critical.   

4. A RECONFIGURABLE RC-FU 
The RC-FU (Run-Time Word-Level Reconfigurable Coarse 

Grain Functional Unit) is itself a VLIW processor. The 
reconfigurable coarse-grain operations are stored in the RC-FU 
microcode memory. The datapath consists of many fine-grain FUs 
such as adders and multipliers as well as medium-grain units such 
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as complex multipliers, complex rotators, and butterfly units as 
depicted in the bottom layer of Figure 2. Those internal FUs are 
partially reconfigurable, for instance, in terms of processing 
precision and word-level functionality.  

We define a RC-FU reconfiguration context as the total 
amount of data (microcode, interconnect, constants) needed to 
configure a new coarse-grain operation. The reconfigured 
resources are shaded in gray in the RC-FU diagram of Figure 2. 
According to which RC-FU internal resource is actually 
reconfigured, the configuration process can be divided in the 
following steps: 

 
• Controller Microcode: When a new microcode is 

downloaded in the RC-FU’s controller instruction memory, 
a new coarse-grain operation is available.  

• Datapath Interconnect Network: The datapath busses, which 
convey data among the internal RC-FU computational 
resources, can be re-arranged. 

• Internal Data ROMs: According to the configured coarse-
grain operation a number of constants could be programmed 
into the internal RC-FU memories. 

 
In order to gain the best performance results, a careful 

analysis of the application critical loops must be performed.  Once 
identified the right functions to be accelerated, the routines are 
removed from the application program code and then mapped on 
the RC-FU word-level reconfigurable hardware. As a result of this 
last step, a number of RC-FU configuration contexts are 
generated. They are downloaded at run-time to the RC-FU 
architecture. From that moment on, a new coarse-grain operation 
is available in the VLIW Instruction Set.   

Figure 2. Hierarchical VLIW Processor architecture, 
including a RC-FU  

In the proposed setup, a new configuration context is 
generated by exporting the controller microcode ROM of the 
VLIW RC-FU as generated by the high-level synthesis tool A|RT 
Designer [9]. The tool can compile a new microcode, given the C 
code of a new coarse-grain function, for a VLIW architecture 
where the datapath resources have been frozen (the RC-FU 
datapath cannot be bit-level reconfigured, nor can the type and the 
number of the RC-FU’s internal resources change at run-time). 

5.  A HIERARCHICAL VLIW TEMPLATE 
The VLIW architecture is composed of three layers as 

depicted in Figure 2. It is a hierarchical template because the RC-
FU, which is a re-configurable coarse-grain ASU of the top VLIW 
processor, is itself a VLIW processor. In this way, given a DSP 
application, the traditional HW-SW partitioning problem can be 
revisited into a HW-SW mapping problem. The problem is now 
defined as how to identify the right hardware layer at which the 
software routines are executed.  

In the proposed template, the hardware hierarchical 
components (see Figure 2) are related to the following software 
programming entities: 

 
• Application: the top VLIW processor executes the DSP 

application. Irregular code and non-critical loops of the 
application are executed by the standard FUs of this 
processor, while the critical DSP routines are accelerated by 
the RC-FU. The top VLIW processor is responsible for the 
correct configuration of the RC-FU.  

• Function: the RC-FU VLIW processor executes dedicated 
and application specific DSP routines such as 8-point DCTs 
or 4-points FFTs.  

• Operation: At this level the medium-grain operations are 
processed in terms of fine-grain simple additions and 
multiplications.  

6. RC-FU PROGRAMMING PARADIGM 
The instruction set of the RC-FU is relatively simple and 

consists of only five different commands. This is a consequence of 
the fact that, for the top-level VLIW processor, the RC-FU 
internal functionality is not visible and any coarse-grain operation 
is encoded with the very same command (see below 
“RFU_RUN”). 
 

• RFU_CONFIG: By executing this command, a 
configuration word is stored internally in the RC-FU. The 
word could be stored either in the microcode memory of the 
RC-FU controller or in separate configuration registers, in 
order to define the datapath interconnect network and the 
content of the RC-FU internal memories.  

• RFU_RESET: It resets the RC-FU to a known state.  

• RFU_RUN: By executing this command, the last configured 
RC-FU coarse grain operation is actually executed. The 
latency of the RFU_Run command is, in fact, the latency of 
the coarse-grain operation. 

• RFU_WRITE / RFU_READ: Input/Output data blocks for 
the coarse-grain operation are provided and retrieved using 
these two RC-FU commands. 
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An example of code showing how the top layer VLIW 
processor steers the RC-FU is given in Figure 3. Once the RC-FU 
is configured and initialized, it can be used as a normal coarse-
grained operation, for instance, to accelerate the innermost loop of 
a FFT function. Once the cycle budget critical DSP function is 
performed, the RC-FU can be configured for the next 
computational intensive DSP loop. In order to execute a RC-FU 
operation, the input data is transferred to the unit, the coarse-grain 
operation is executed and then the output data is read back. A data 
dependency exists between these three operations, which lengthen 
the execution latency of the innermost loop. Anyhow, the latency 
of the loop can be reduced to the latency of the “RFU_Run” 
operation, by applying loop folding/unrolling techniques [10]. 

In order to obtain the required computing acceleration, a 
sufficient data bandwidth must be available between the RC-FU 
and the Top Level VLIW processor. In this case, a VLIW 
architecture with multiple Load/Store FUs would be the best 
match for such a data greedy RFU. 

Figure 3. Segment of code configuring and executing a RC-FU 
coarse-grain operation 

7. EXPERIMENTAL RESULTS 
A VLIW processor containing a RC-FU (architecture (e) in 

Figure 4) has been compared with other 6 VLIW architectures. 
The various VLIW processors have been tested according to run-
time performance, code size and silicon utilization. 

The architectures pictured in Figure 4 are built using the 
following functional resources. The VLIW datapaths (b), and (c), 
contain, respectively, a 4-point FFT and an 8-point DCT fixed 
coarse-grain ASU, while datapath (d) contain both the two ASUs. 
The datapath (e) contains a RC-FU, while (a) is a RISC-like 
datapath (1 adder, 1 multiplier). Finally, template (f) is a flattened 
VLIW   architecture, provided in two flavors: (f ′) medium-grain 
(2 CMULTs, 3 BTFs) and  (f ″) fine-grain (10 adders, 8 
multipliers). The architectures (b), (c), (e), and (f), contain the 
same amount of computational resources, even though differently 
clustered. Contrarily, architecture (d) contains twice as many FUs, 
and the VLIW processor (a) is a stripped down template with no 
extra hardware to accelerate the application code. 

Two different application kernels have been compiled for the 
above-mentioned architectures, namely a 1024-point FFT, and a 
SQCIF (128x96 pixels) 2D-FDCT. Finally, both kernels are 
combined in the third application. When the two kernels are 
combined, the advantages of the VLIW processor containing a 
RC-FU are substantial, as shown in Figure 4 and Tables 4 and 5. 

Together with the diagrams of the various VLIW 
architectures, Figure 4 shows the aspect ratio of a microcode 
containing two critical loops demanding different dedicated 
coarse-grain operations. The best architecture, for what code 
density is concerned, is the one with the smallest microcode. 
Architecture (a) does not have to control many FUs and its 
microcode is narrow, but none of the two critical loops is 
accelerated. Architecture (b) and (c) have a wider microcode but 
they can both accelerate only one of the two loops. 

Figure 4. The compared VLIW datapaths, and their relative 
controller’s microcodes, as compiled for an application 

containing two different DSP loops  
 
On the other hand, architectures (d), (e) and (f) can 

accelerate both critical loops. Additionally, only architecture (e) 
has a compact microcode while the other two require a large 
microcode instruction width. Furthermore, architecture (d) 
achieves high execution performance by deploying twice as many 
hardware resources in the VLIW datapath.  

In the architecture (f) the very large instruction set is 
constantly available during the whole application, but it is 
effectively exploited only during the small portion of code of the 
two critical loops. On the contrary, in architecture (e), the 
instruction set is tuned at run-time, in order to temporarily match 
the requirement of critical loop, which is about to be executed. 
The black stripes in the microcode (e) in Figure 4 represent the 
code overhead due to the run-time reconfiguration of the RC-FU 
and, hence, of the VLIW instruction set.   

In the proposed experiment, the RC-FU’s internal datapath 
consists of two Complex Multipliers (CMULTs) and three 
Butterfly Units (BTFs). The CMULT unit itself consists of four 
multipliers and three ALUs. It can be word-level reconfigured in 

// Download FFT Radix4 microcode to the RFU 
   

int RFU_ContextBaseAddr=FFT_UCODE_BASEADDR; 
int RFU_ContextLength  =FFT_UCODE_LENGTH; 
 

for(addr=0;addr<RFU_ContextLength;addr++){ 
   ucode_addr = addr+ RFU_ContextBaseAddr;  
   ucode_instr= RFU_CONTEXT[ucode_addr]; 
   RFU_Config(addr, ucode_instr); 
} 
 

RFU_Reset();  
 

// FFT 1K main loop  
   

for(s=0; s<stages; s++) 
 for(c=0; c<clusters; c++) 
  for(r=0; r<radixstep; r++)  
      ... 
      // The 4-point FFT coarse-grain op. 
      RFU_Write(RADIX4_INPUT[8]);           
      RFU_Write(TWIDDLE_COEFF[8]);          
      RFU_Run(); 
      RFU_Read(RADIX4_OUTPUT[8]); 
      ...      
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order to perform either a complex multiplication or four MAC 
operations. The CMULT is a 3-cycle pipelined unit. The BTF unit 
consists of two ALUs. It can be used in order to perform single-
cycle butterfly operations as well as 4-input addition/subtraction 
operations. For the given experiment, four different configuration 
contexts have been generated. Therefore, the following four 
different coarse-grain operations can be configured on the RC-FU, 
as reported in Table 1. 

 
Table 1. Some RC-FU’s coarse-grain operations 
RC-FU 

Coarse-Grain Ops. 
Operation 

Latency (cycles) 
RC-FU 

Controller area (bits) 
4-point FFT 23 475 
8-point DCT 15 275 
8-point IDCT 17 325 
8-taps FIR Filter 12 225 

 
The RC-FU has eight 16-bit wide input and output ports. The 

controller microcode for this particular experiment consists of a 
RAM of 20 instructions by 25 bits. The configuration latency, for 
the above-reported coarse-grain operations varies from 2 to 4 
cycles. Usually, for typical DSP applications, the overhead due to 
the RC-FU reconfiguration latency can be neglected. Anyway, if 
this is not the case, the critical loops must be restructured, in order 
to reduce/hide the run-time reconfiguration latency overhead. This 
can be done, for instance, by clustering those critical DSP loops, 
which are using the same coarse-grain operation, hence the same 
RC-FU configuration [11]. The controller microcode as well as 
the RTL VHDL for the RC-FU have been generated using the 
architectural synthesis tool A|RT Designer [9].  

Before testing the various architectural solutions on the 
combined application (FFT + DCT kernels), the FFT and the 
FDCT kernels have been tested separately. Both kernels have 
been compiled for the proposed seven architectures, and then 
benchmarked according to run-time performance and code 
density. 

When the application is so well defined, as in the proposed 
1024-Point FFT kernel (see Table 2), a RC-FU cannot be 
exploited adequately. On the contrary, a fixed coarse-grain 4-
point ASU offers the best performance - code density tradeoff. A 
flattened architecture is nonetheless the fastest solution, even 
though not code-efficient at all. 

 
Table 2. Results for a 1024-point FFT kernel 
 Performance (cycles) Microcode 

Area (bits) 
 4-point FFT Application Area 
(e) RC-FU 23 33’589 7420 
(b) 4-point FFT 20 29’749 4685 
(f ’) CMULTs, BTFs 20 29’749 7395 
(f ’’) ALUs, MULTs 18 27’290 8712 
(a) No acceleration 55 91’213 7384 

 
The same considerations, as already mentioned for the 1024-

Points FFT, can be derived for the FDCT application kernel (see 
Table 3). The coarse-grain fixed 8-point forward DCT (c) is the 

best tradeoff, while (f ″) is the fastest. Still, the RC-FU is not 
successfully exploited. 

 
Table 3. Results for the SQCIF 2D-FDCT kernel 

 Performance  
(cycles) 

Microcode 
area 
 (bits) 

 8-point DCT Application Area 
(e) RC-FU 15 53’952 7334 
(c) 8-point DCT 12 44’736 6713 
(f ’) CMULTs, BTFs 12 44’736 10875 
(f ’’) ALUs, MULTs 10 38’592 12887 
(a) No acceleration 31 103’104 6780 

 
Conversely to what said above, when the two kernels are 

combined in a single application code (see Figure 4 and Table 4 
and 5), then the architecture including a RC-FU offers the best 
performance  - code tradeoff. It is almost as fast as the flattened 
architectures (f ′) and (f ″) but its application code is much more 
compact.  

The architectures (b) and (c) cannot speed up both loop 
kernels, hence delivering poor performance. Architecture (d) 
delivers good performance but deploys twice as many resources as 
in the RC-FU and exploits them poorly (only one of the two 
ASUs is active at a time).   

 
Table 4. FFT + 2D FDCT kernels: combined performance 

 Performance (cycles) 
 4-point 

FFT 
8-point 
DCT Application 

(e) RFU 23 15 87’568 
(b) 4-point FFT 20 31 132’853 
(c) 8-point DCT 55 12 135’949 
(f ’) CMULTs, BTFs 20 12 74’485 
(f ’’) ALUs, MULTs 18 10 65’882 
(d) RADIX4 + 1DFDCT 20 12 74’485 
(a) No acceleration 55 31 194’317 

 
 

Table 5. FFT + 2D FDCT kernels: code density 
 Microcode Area (bits) 
 Width Length Area 
(e) RFU 86 173 15246 
(b) 4-point FFT 85 164 14233 
(c) 8-point DCT 85 198 17106 
(f ’) CMULTs, BTFs 145 126 18270 
(f ’’) ALUs, MULTs 182 119 21599 
(d) RADIX4 + 1D-FDCT 109 126 15234 
(a) No acceleration 60 236 14160 

 
The microcode width of architectures (e), (b), and (c) is 

almost the same, but the VLIW architecture containing   an RC-
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FU delivers a much higher performance. In general, the higher the 
number of critical loops requiring different coarse-grain 
operations and the more advantageous will be to include an RC-
FU in the VLIW processor’s datapath.  

 

8. CONCLUSIONS 
A novel coarse-grain run-time reconfigurable FU (RC-FU) 

for a VLIW template has been proposed. The RC-FU can be 
configured to implement a number of DSP functions, typically 
used in multimedia and telecom applications. The configuration 
context needed to configure the RC-FU is very modest and can be 
downloaded in few cycles. Yet, a variety of DSP functions can be 
implemented only acting on the word-level configuration and on 
the interconnection of the RC-FU’s internal resources. The novel 
RC-FU is itself a VLIW architecture, whose configuration context 
can be generated using an architectural synthesis tool. 

The proposed processor architecture combines some of the 
characteristics typical of RISC and CISC architectures, for what 
Instruction Set design is concerned. 

Formerly CISC (Complex Instruction Set Computer) 
processors were designed to provide an extended set of complex 
operations that were internally translated in a micro-program 
made of yet simpler operations. This approach revealed soon its 
advantages but also its drawbacks. Many of the complex 
operations added in the instruction set were rarely used, 
increasing with no actual benefit the complexity of the processor's 
control unit. On the other hand, the fast and simpler RISC 
(Reduced Instruction Set Computer) processors are lacking 
efficient hardware support for telecom and multimedia 
applications, loosing in code density and performance.  

The proposed hierarchical VLIW processor architecture 
could combine the advantages given by the two above-mentioned 
classic approaches. A VLIW machine with modest instruction 
level parallelism (RISC-like architecture) is enhanced with a 
complex RC-FU (Run-time reconfigurable coarse-grain 
Functional Unit). The complex coarse-grain operations executed 
by the RC-FU are described by means of micro-programs, just 
like in CISC architectures. But, the RC-FU micro-program as well 
as some characteristics of the RC-FU internal hardware 
architecture are run-time reconfigurable, allowing a high 

exploitation of the RC-FU internal hardware resources while 
executing a large variety of telecom and multimedia applications.  
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