
A Run-Time Word-Level Reconfigurable
Coarse-Grain Functional Unit for a VLIW Processor

Natalino G. Busa’
Philips Research Laboratories

High Tech Campus, Prof. Holstlaan 4, 5656AA
Eindhoven, The Netherlands

Natalino.Busa@philips.com

Carles Rodoreda Sala
Sony España S.A. Design Division

Poligono Industrial Can Mitjans,
Viladecavalls - Barcelona (Spain)

Carles.Rodoreda@eu.sony.com

ABSTRACT
Nowadays, new DSP applications are offering combined and
flexible multimedia and telecom services. VLIW processor
architectures, which include dedicated but inflexible functional
units, are usually tuned to a single specific application. In order to
accelerate a wide range of applications, we propose a VLIW
processor containing a novel run-time reconfigurable functional
unit (RC-FU). Only a few hundred bits and few cycles are
necessary to configure a new coarse-grain operation on the RC-
FU unit. After reconfiguring its internal datapath and micro-
program, the RC-FU can execute a number of look-alike DSP
functions, such as 8-point DCT or 4-point FFT. The RC-FU itself
is a VLIW processor and the configuration contexts are generated
using a high-level synthesis tool. The proposed RC-FU provides
high processing power and can be efficiently tuned to the
requirements of a variety of DSP applications.

Categories and Subject Descriptors
C.1.2 [Processor Architectures]: Single Data Stream
Architectures – RISC/CISC, VLIW architectures.

General Terms
Algorithms, Performance, Design

Keywords
Reconfigurable logic, VLIW processors, Architectural Synthesis

1. INTRODUCTION
Each day, new DSP applications are developed offering yet

more features and support for multiple and emerging standards.
Currently, we are witnessing the convergence of different sorts of
video, audio and telecom application on a single, often portable,
device. Hence, in order to efficiently perform the required
applications, such devices must be equipped with dedicated and
computationally powerful processing hardware. Paradoxically, the

designed hardware must also be highly configurable and
programmable [1].

 Three sorts of processor’s architectures are currently used in
order to execute the current DSP applications, namely,
Application Specific Architectures (ASA), RISC-like
architectures, and VLIW architectures (see Figure 1).

Application Specific Architectures are highly optimized and
tailored for a specific functionality [2]. A large number of
dedicated computational resources are deployed in the
architecture, providing very high computational power. On the
other hand, such architectures are often not programmable and
cannot be easily adapted for the execution of other applications.

RISC-like processor architectures, on the other hand, are
highly programmable and can cope with a broad range of
(irregular) DSP applications, but usually deliver modest or low
performance.

VLIW architectures are located in between these two extreme
architectural solutions [3]. Many commercially available DSP
processors can be placed in this category. The demanded
computational performance can be achieved by including in the
datapath one or more dedicated ASUs (Application Specific
Functional Units). Those ASUs are capable of executing complex
coarse-grain operations, characterized by an instruction latency of
tens of cycles, and processing blocks of data as single atomic
operations. Typical coarse-grain operations are, for instance, 4-
points FFTs, 8-point FIR filters. Coarse-grain ASUs contain
internally a large number of internal fine-grain resources such as
adders and multipliers [4].

Figure 1. Performance vs Flexibility tradeoff
When the coarse-grain operations are implemented in a

dedicated, non-configurable ASU’s internal architecture, only a
limited set of applications can benefit from the computational
acceleration the ASU provide. Modern DSP applications are

Permission to make digital or hard copies of all or part of this work for
personal or classroom use is granted without fee provided that copies are
not made or distributed for profit or commercial advantage and that
copies bear this notice and the full citation on the first page. To copy
otherwise, or republish, to post on servers or to redistribute to lists,
requires prior specific permission and/or a fee.
ISSS ’02, October 2–4, 2002, Kyoto, Japan.
Copyright 2002 ACM 1-58113-562-9/02/0010…$5.00.

RCA

Application
Domain

Pe
rf

or
m

an
ce

+

_

ASA

FCA RCA

narrow
(single application)

wide
(broad range of applications)

FCA

RISC

VLIW
ARCHITECTURES

RCA

Application
Domain

Pe
rf

or
m

an
ce

+

_

ASA

FCA RCA

narrow
(single application)

wide
(broad range of applications)

FCA

RISC

VLIW
ARCHITECTURES

44

continuously evolving in terms of provided standards and
services. While the insertion of fixed custom ASUs in a VLIW
datapath increases the processor performance for a given
application, at the same time it reduces the flexibility and the
programmability of the VLIW processor. If the application
changes, then the processor’s performance drops considerably [1].
Therefore, such a Fixed Coarse-Grain VLIW Architecture (FCA)
would deliver very low performance while moving away from the
original application domain (see Figure 1).

In order to overcome this flexibility-performance dilemma
[5], we propose a novel VLIW architecture containing a Run-
Time Word-Level Reconfigurable Coarse Grain Functional Unit
(RC-FU). Various coarse-grain operations can be reconfigured on
the proposed RC-FU, in order to accelerate cycle budget critical
DSP loops. In this way, a Reconfigurable Coarse Grain VLIW
Architecture (RCA) would provide high processing power for a
wide domain of DSP applications with dissimilar computational
requirements (see Figure 1). The coarse-grain operation will be
available after a run-time configuration step of a few cycles.
During this time, the RC-FU’s internal resources, such as the
controller, the datapath network and the data memories, will be
re-programmed using a few hundreds configuration bits. In this
way, the RC-FU’s instruction set can be adjusted and tailored at
run-time to the requirements of the application code, which is
about to be executed. By reconfiguring the RC-FU coarse grain
instructions, hence the VLIW Instruction Set, the processor will
execute fewer and more compact instructions.

The paper is organized as follows. Section 2 depicts the
current state and the available results on re-configurable VLIW
architectures. In Section 3, advantages and drawbacks of fixed
coarse-grain VLIW architectures will be examined. In Section 4
and 5, the characteristics of the RC-FU will be introduced
together with the integration of functional unit in a hierarchical
VLIW processor architecture. Section 6, describes the
programming paradigm, which has been adopted for the run-time
reconfiguration of the RC-FU instruction set. The experimental
results are reported in Section 7, followed by some conclusions.

2. RELATED WORK
Mihai Sima et. al. [3] have designed a Reconfigurable

Functional Unit (RFU) for a Trimedia/CPU64 VLIW datapath. A
16-cycle coarse-grain 8-point IDCT operation has been
configured on the above-mentioned RFU. The coarse-grain
operation is configured at bit-level and mapped on an ACEX
EP1K100 FPGA from Altera, which is embedded in the VLIW
processor’s datapath. In this way, adders and multipliers bit-level
architectures are re-configured any time a new coarse-grain
operation is configured. Usually, those basic FUs can be re-used
and the reconfiguration of their bit-level architectures is not
strictly necessary.

In the VLIW processor template Lx [1], word-level re-
configuration is possible by customizing the functionality
provided by processing clusters. However, when the application
domain is identified, the provided flexibility is removed and the
hardware is frozen for the final implementation.

The Concise RFU [6], is word and bit level reconfigurable at
run-time. Anyhow, the RFU coarse-grain operations cannot be
executed in parallel with other operations because the RFU is
embedded in a RISC-like architecture. In this case, the ILP is
limited to the acceleration provided by the RFU itself.

In the Chimaera architecture [7], the RFU’s configuration
context is quite big (32x1674 bits). Furthermore, the RFU could
negatively influence the timing of the whole processor, because of
possible long signal propagation paths in the logic circuits
configured in the RFU.

Each of the above-mentioned frameworks has some
similarities with the proposed architecture [5]. Nevertheless, none
of them offers, at the same time, a mixed coarse/fine grained
VLIW Instruction Level Parallelism, small reconfiguration
context (less then 500 bits), low run-time reconfiguration latency.

3. FIXED COARSE GRAIN ASUs
Coarse-Grain ASUs are characterized by an instruction

latency of tens of cycles. They can process blocks of several data
words as single atomic operations and manifest complex
Input/Output activity patterns [4].

In terms of code size, the introduction of fixed coarse-grain
ASUs in a VLIW datapath can be very beneficial. In order to
control an ASU, only a few bits wide command must be encoded
in the VLIW instruction word. On the other hand, the ASU steers
a large amount of fine-grain internal FUs. The program code
compiled for a VLIW architecture containing coarse-grain ASUs
is denser, both in terms of code length and code width, when
compared to a VLIW architecture containing only fine-grain FUs.
The length of the code is shorter because of the higher instruction
level parallelism provided by the ASUs and the code width is
small because the control of the ASU’s internal hardware
resources is not encoded in the VLIW instruction word (compare
architecture and microcode aspect ratio of case a and b in Figure
4). Nevertheless, such a fixed coarse-grain ASU has some
limitations, which could lead to an inefficient hardware utilization
of its internal resources.

The ASU's hardware is fixed, because it is tuned and tailored
for a specific application. Each day, new DSP applications are
developed. This could imply that the coarse-grain operations
provided by the available ASUs do not match any more with the
requirements of a new DSP application. In this case, no dedicated
hardware is exploited to accelerate the application, and the VLIW
processor delivers poor performance [1]. If the coarse-grain
operations are not performed, then a large portion of the datapath
resources could remain idle for long periods during the execution
of the DSP application. Furthermore, those hardware resources
are hidden in the ASU and they are not accessible directly from
VLIW controller.

Once silicon is produced, a modification in the DSP
application may require the design of new coarse-grain ASUs.
Therefore, either new silicon must be produced or the
application's performance decay.

A last, but not least, limitation of inflexible coarse-grain
ASUs comes as a direct consequence of the Amdahl's law [8].
Once that the critical loops are accelerated thanks to the
specialized coarse-grain operations provided by the ASU, other
portions of the code become the bottleneck of the application and
other loops become critical.

4. A RECONFIGURABLE RC-FU
The RC-FU (Run-Time Word-Level Reconfigurable Coarse

Grain Functional Unit) is itself a VLIW processor. The
reconfigurable coarse-grain operations are stored in the RC-FU
microcode memory. The datapath consists of many fine-grain FUs
such as adders and multipliers as well as medium-grain units such

45

as complex multipliers, complex rotators, and butterfly units as
depicted in the bottom layer of Figure 2. Those internal FUs are
partially reconfigurable, for instance, in terms of processing
precision and word-level functionality.

We define a RC-FU reconfiguration context as the total
amount of data (microcode, interconnect, constants) needed to
configure a new coarse-grain operation. The reconfigured
resources are shaded in gray in the RC-FU diagram of Figure 2.
According to which RC-FU internal resource is actually
reconfigured, the configuration process can be divided in the
following steps:

• Controller Microcode: When a new microcode is

downloaded in the RC-FU’s controller instruction memory,
a new coarse-grain operation is available.

• Datapath Interconnect Network: The datapath busses, which
convey data among the internal RC-FU computational
resources, can be re-arranged.

• Internal Data ROMs: According to the configured coarse-
grain operation a number of constants could be programmed
into the internal RC-FU memories.

In order to gain the best performance results, a careful

analysis of the application critical loops must be performed. Once
identified the right functions to be accelerated, the routines are
removed from the application program code and then mapped on
the RC-FU word-level reconfigurable hardware. As a result of this
last step, a number of RC-FU configuration contexts are
generated. They are downloaded at run-time to the RC-FU
architecture. From that moment on, a new coarse-grain operation
is available in the VLIW Instruction Set.

Figure 2. Hierarchical VLIW Processor architecture,
including a RC-FU

In the proposed setup, a new configuration context is
generated by exporting the controller microcode ROM of the
VLIW RC-FU as generated by the high-level synthesis tool A|RT
Designer [9]. The tool can compile a new microcode, given the C
code of a new coarse-grain function, for a VLIW architecture
where the datapath resources have been frozen (the RC-FU
datapath cannot be bit-level reconfigured, nor can the type and the
number of the RC-FU’s internal resources change at run-time).

5. A HIERARCHICAL VLIW TEMPLATE
The VLIW architecture is composed of three layers as

depicted in Figure 2. It is a hierarchical template because the RC-
FU, which is a re-configurable coarse-grain ASU of the top VLIW
processor, is itself a VLIW processor. In this way, given a DSP
application, the traditional HW-SW partitioning problem can be
revisited into a HW-SW mapping problem. The problem is now
defined as how to identify the right hardware layer at which the
software routines are executed.

In the proposed template, the hardware hierarchical
components (see Figure 2) are related to the following software
programming entities:

• Application: the top VLIW processor executes the DSP

application. Irregular code and non-critical loops of the
application are executed by the standard FUs of this
processor, while the critical DSP routines are accelerated by
the RC-FU. The top VLIW processor is responsible for the
correct configuration of the RC-FU.

• Function: the RC-FU VLIW processor executes dedicated
and application specific DSP routines such as 8-point DCTs
or 4-points FFTs.

• Operation: At this level the medium-grain operations are
processed in terms of fine-grain simple additions and
multiplications.

6. RC-FU PROGRAMMING PARADIGM
The instruction set of the RC-FU is relatively simple and

consists of only five different commands. This is a consequence of
the fact that, for the top-level VLIW processor, the RC-FU
internal functionality is not visible and any coarse-grain operation
is encoded with the very same command (see below
“RFU_RUN”).

• RFU_CONFIG: By executing this command, a
configuration word is stored internally in the RC-FU. The
word could be stored either in the microcode memory of the
RC-FU controller or in separate configuration registers, in
order to define the datapath interconnect network and the
content of the RC-FU internal memories.

• RFU_RESET: It resets the RC-FU to a known state.

• RFU_RUN: By executing this command, the last configured
RC-FU coarse grain operation is actually executed. The
latency of the RFU_Run command is, in fact, the latency of
the coarse-grain operation.

• RFU_WRITE / RFU_READ: Input/Output data blocks for
the coarse-grain operation are provided and retrieved using
these two RC-FU commands.

Micro
Code

Memory

FSM

Inst. Reg.
VLIW Communication Network

Register Files

ROML/SALU RFU

Micro
Code

Memory

FSM

Inst. Reg.
VLIW Communication Network

Register Files

BTFCMULTCMULT ROMBTFBTF

MULT ADD / SUB ADD / SUB

ROUNDING UNIT

0 1 0 1 0 1 0 1

MULT MULT MULT

ADD / SUB ADD / SUB

COMPLEX MULTIPLYER UNIT

BUTTERFLY UNIT

To
p

Le
ve

l
V

LI
W

 P
ro

ce
ss

or
R

ec
on

fig
ur

ab
le

C

oa
rs

e-
G

ra
in

 F
U

Fi
ne

 a
nd

 M
ed

iu
m

G
ra

in
ed

 F
U

s

Micro
Code

Memory

FSM

Inst. Reg.
VLIW Communication Network

Register Files

ROML/SALU RFU

Micro
Code

Memory

FSM

Inst. Reg.
VLIW Communication Network

Register Files

BTFCMULTCMULT ROMBTFBTF

MULT ADD / SUB ADD / SUB

ROUNDING UNIT

0 1 0 1 0 1 0 1

MULT MULT MULT

ADD / SUB ADD / SUB

COMPLEX MULTIPLYER UNIT

BUTTERFLY UNIT

Micro
Code

Memory

FSM

Inst. Reg.
VLIW Communication Network

Register Files

ROML/SALU RFU

Micro
Code

Memory

FSM

Inst. Reg.
VLIW Communication Network

Register Files

BTFCMULTCMULT ROMBTFBTF

MULT ADD / SUB ADD / SUB

ROUNDING UNIT

0 1 0 1 0 1 0 1

MULT MULT MULT

ADD / SUB ADD / SUB

Micro
Code

Memory

FSM

Inst. Reg.
VLIW Communication Network

Register Files

ROML/SALU RFU

Micro
Code

Memory

FSM

Inst. Reg.
VLIW Communication Network

Register Files

BTFCMULTCMULT ROMBTFBTF

MULT ADD / SUB ADD / SUB

ROUNDING UNIT

0 1 0 1 0 1 0 1

MULT MULT MULT

ADD / SUB ADD / SUB

MULT ADD / SUB ADD / SUB

ROUNDING UNIT

0 1 0 1 0 1 0 1

MULT MULT MULTMULTMULT

ADD / SUB ADD / SUB

COMPLEX MULTIPLYER UNIT

BUTTERFLY UNIT

To
p

Le
ve

l
V

LI
W

 P
ro

ce
ss

or
R

ec
on

fig
ur

ab
le

C

oa
rs

e-
G

ra
in

 F
U

Fi
ne

 a
nd

 M
ed

iu
m

G
ra

in
ed

 F
U

s

46

An example of code showing how the top layer VLIW
processor steers the RC-FU is given in Figure 3. Once the RC-FU
is configured and initialized, it can be used as a normal coarse-
grained operation, for instance, to accelerate the innermost loop of
a FFT function. Once the cycle budget critical DSP function is
performed, the RC-FU can be configured for the next
computational intensive DSP loop. In order to execute a RC-FU
operation, the input data is transferred to the unit, the coarse-grain
operation is executed and then the output data is read back. A data
dependency exists between these three operations, which lengthen
the execution latency of the innermost loop. Anyhow, the latency
of the loop can be reduced to the latency of the “RFU_Run”
operation, by applying loop folding/unrolling techniques [10].

In order to obtain the required computing acceleration, a
sufficient data bandwidth must be available between the RC-FU
and the Top Level VLIW processor. In this case, a VLIW
architecture with multiple Load/Store FUs would be the best
match for such a data greedy RFU.

Figure 3. Segment of code configuring and executing a RC-FU
coarse-grain operation

7. EXPERIMENTAL RESULTS
A VLIW processor containing a RC-FU (architecture (e) in

Figure 4) has been compared with other 6 VLIW architectures.
The various VLIW processors have been tested according to run-
time performance, code size and silicon utilization.

The architectures pictured in Figure 4 are built using the
following functional resources. The VLIW datapaths (b), and (c),
contain, respectively, a 4-point FFT and an 8-point DCT fixed
coarse-grain ASU, while datapath (d) contain both the two ASUs.
The datapath (e) contains a RC-FU, while (a) is a RISC-like
datapath (1 adder, 1 multiplier). Finally, template (f) is a flattened
VLIW architecture, provided in two flavors: (f ′) medium-grain
(2 CMULTs, 3 BTFs) and (f ″) fine-grain (10 adders, 8
multipliers). The architectures (b), (c), (e), and (f), contain the
same amount of computational resources, even though differently
clustered. Contrarily, architecture (d) contains twice as many FUs,
and the VLIW processor (a) is a stripped down template with no
extra hardware to accelerate the application code.

Two different application kernels have been compiled for the
above-mentioned architectures, namely a 1024-point FFT, and a
SQCIF (128x96 pixels) 2D-FDCT. Finally, both kernels are
combined in the third application. When the two kernels are
combined, the advantages of the VLIW processor containing a
RC-FU are substantial, as shown in Figure 4 and Tables 4 and 5.

Together with the diagrams of the various VLIW
architectures, Figure 4 shows the aspect ratio of a microcode
containing two critical loops demanding different dedicated
coarse-grain operations. The best architecture, for what code
density is concerned, is the one with the smallest microcode.
Architecture (a) does not have to control many FUs and its
microcode is narrow, but none of the two critical loops is
accelerated. Architecture (b) and (c) have a wider microcode but
they can both accelerate only one of the two loops.

Figure 4. The compared VLIW datapaths, and their relative
controller’s microcodes, as compiled for an application

containing two different DSP loops

On the other hand, architectures (d), (e) and (f) can

accelerate both critical loops. Additionally, only architecture (e)
has a compact microcode while the other two require a large
microcode instruction width. Furthermore, architecture (d)
achieves high execution performance by deploying twice as many
hardware resources in the VLIW datapath.

In the architecture (f) the very large instruction set is
constantly available during the whole application, but it is
effectively exploited only during the small portion of code of the
two critical loops. On the contrary, in architecture (e), the
instruction set is tuned at run-time, in order to temporarily match
the requirement of critical loop, which is about to be executed.
The black stripes in the microcode (e) in Figure 4 represent the
code overhead due to the run-time reconfiguration of the RC-FU
and, hence, of the VLIW instruction set.

In the proposed experiment, the RC-FU’s internal datapath
consists of two Complex Multipliers (CMULTs) and three
Butterfly Units (BTFs). The CMULT unit itself consists of four
multipliers and three ALUs. It can be word-level reconfigured in

// Download FFT Radix4 microcode to the RFU

int RFU_ContextBaseAddr=FFT_UCODE_BASEADDR;
int RFU_ContextLength =FFT_UCODE_LENGTH;

for(addr=0;addr<RFU_ContextLength;addr++){
 ucode_addr = addr+ RFU_ContextBaseAddr;
 ucode_instr= RFU_CONTEXT[ucode_addr];
 RFU_Config(addr, ucode_instr);
}

RFU_Reset();

// FFT 1K main loop

for(s=0; s<stages; s++)
 for(c=0; c<clusters; c++)
 for(r=0; r<radixstep; r++)
 ...
 // The 4-point FFT coarse-grain op.
 RFU_Write(RADIX4_INPUT[8]);
 RFU_Write(TWIDDLE_COEFF[8]);
 RFU_Run();
 RFU_Read(RADIX4_OUTPUT[8]);
 ...

m
ic

ro
co

de
as

pe
ct

 ra
tio

VL
IW

da
ta

pa
th

Interconnect

*+

RF 1

ASU

Interconnect

*+

RF 1 RF 2 RF 3

*+ *+

Interconnect

*+

RF 1

ASU ASU

*+

RF 1

Interconnect Interconnect

*+

RF 1

ASU

Interconnect

*+

RF 1

ASU

(d) (e) (f)

(a) (b) (c)
m

ic
ro

co
de

as
pe

ct
 ra

tio
VL

IW
da

ta
pa

th

47

order to perform either a complex multiplication or four MAC
operations. The CMULT is a 3-cycle pipelined unit. The BTF unit
consists of two ALUs. It can be used in order to perform single-
cycle butterfly operations as well as 4-input addition/subtraction
operations. For the given experiment, four different configuration
contexts have been generated. Therefore, the following four
different coarse-grain operations can be configured on the RC-FU,
as reported in Table 1.

Table 1. Some RC-FU’s coarse-grain operations
RC-FU

Coarse-Grain Ops.
Operation

Latency (cycles)
RC-FU

Controller area (bits)
4-point FFT 23 475
8-point DCT 15 275
8-point IDCT 17 325
8-taps FIR Filter 12 225

The RC-FU has eight 16-bit wide input and output ports. The

controller microcode for this particular experiment consists of a
RAM of 20 instructions by 25 bits. The configuration latency, for
the above-reported coarse-grain operations varies from 2 to 4
cycles. Usually, for typical DSP applications, the overhead due to
the RC-FU reconfiguration latency can be neglected. Anyway, if
this is not the case, the critical loops must be restructured, in order
to reduce/hide the run-time reconfiguration latency overhead. This
can be done, for instance, by clustering those critical DSP loops,
which are using the same coarse-grain operation, hence the same
RC-FU configuration [11]. The controller microcode as well as
the RTL VHDL for the RC-FU have been generated using the
architectural synthesis tool A|RT Designer [9].

Before testing the various architectural solutions on the
combined application (FFT + DCT kernels), the FFT and the
FDCT kernels have been tested separately. Both kernels have
been compiled for the proposed seven architectures, and then
benchmarked according to run-time performance and code
density.

When the application is so well defined, as in the proposed
1024-Point FFT kernel (see Table 2), a RC-FU cannot be
exploited adequately. On the contrary, a fixed coarse-grain 4-
point ASU offers the best performance - code density tradeoff. A
flattened architecture is nonetheless the fastest solution, even
though not code-efficient at all.

Table 2. Results for a 1024-point FFT kernel
 Performance (cycles) Microcode

Area (bits)
 4-point FFT Application Area
(e) RC-FU 23 33’589 7420
(b) 4-point FFT 20 29’749 4685
(f ’) CMULTs, BTFs 20 29’749 7395
(f ’’) ALUs, MULTs 18 27’290 8712
(a) No acceleration 55 91’213 7384

The same considerations, as already mentioned for the 1024-

Points FFT, can be derived for the FDCT application kernel (see
Table 3). The coarse-grain fixed 8-point forward DCT (c) is the

best tradeoff, while (f ″) is the fastest. Still, the RC-FU is not
successfully exploited.

Table 3. Results for the SQCIF 2D-FDCT kernel

 Performance
(cycles)

Microcode
area
 (bits)

 8-point DCT Application Area
(e) RC-FU 15 53’952 7334
(c) 8-point DCT 12 44’736 6713
(f ’) CMULTs, BTFs 12 44’736 10875
(f ’’) ALUs, MULTs 10 38’592 12887
(a) No acceleration 31 103’104 6780

Conversely to what said above, when the two kernels are

combined in a single application code (see Figure 4 and Table 4
and 5), then the architecture including a RC-FU offers the best
performance - code tradeoff. It is almost as fast as the flattened
architectures (f ′) and (f ″) but its application code is much more
compact.

The architectures (b) and (c) cannot speed up both loop
kernels, hence delivering poor performance. Architecture (d)
delivers good performance but deploys twice as many resources as
in the RC-FU and exploits them poorly (only one of the two
ASUs is active at a time).

Table 4. FFT + 2D FDCT kernels: combined performance

 Performance (cycles)
 4-point

FFT
8-point
DCT Application

(e) RFU 23 15 87’568
(b) 4-point FFT 20 31 132’853
(c) 8-point DCT 55 12 135’949
(f ’) CMULTs, BTFs 20 12 74’485
(f ’’) ALUs, MULTs 18 10 65’882
(d) RADIX4 + 1DFDCT 20 12 74’485
(a) No acceleration 55 31 194’317

Table 5. FFT + 2D FDCT kernels: code density
 Microcode Area (bits)
 Width Length Area
(e) RFU 86 173 15246
(b) 4-point FFT 85 164 14233
(c) 8-point DCT 85 198 17106
(f ’) CMULTs, BTFs 145 126 18270
(f ’’) ALUs, MULTs 182 119 21599
(d) RADIX4 + 1D-FDCT 109 126 15234
(a) No acceleration 60 236 14160

The microcode width of architectures (e), (b), and (c) is

almost the same, but the VLIW architecture containing an RC-

48

FU delivers a much higher performance. In general, the higher the
number of critical loops requiring different coarse-grain
operations and the more advantageous will be to include an RC-
FU in the VLIW processor’s datapath.

8. CONCLUSIONS
A novel coarse-grain run-time reconfigurable FU (RC-FU)

for a VLIW template has been proposed. The RC-FU can be
configured to implement a number of DSP functions, typically
used in multimedia and telecom applications. The configuration
context needed to configure the RC-FU is very modest and can be
downloaded in few cycles. Yet, a variety of DSP functions can be
implemented only acting on the word-level configuration and on
the interconnection of the RC-FU’s internal resources. The novel
RC-FU is itself a VLIW architecture, whose configuration context
can be generated using an architectural synthesis tool.

The proposed processor architecture combines some of the
characteristics typical of RISC and CISC architectures, for what
Instruction Set design is concerned.

Formerly CISC (Complex Instruction Set Computer)
processors were designed to provide an extended set of complex
operations that were internally translated in a micro-program
made of yet simpler operations. This approach revealed soon its
advantages but also its drawbacks. Many of the complex
operations added in the instruction set were rarely used,
increasing with no actual benefit the complexity of the processor's
control unit. On the other hand, the fast and simpler RISC
(Reduced Instruction Set Computer) processors are lacking
efficient hardware support for telecom and multimedia
applications, loosing in code density and performance.

The proposed hierarchical VLIW processor architecture
could combine the advantages given by the two above-mentioned
classic approaches. A VLIW machine with modest instruction
level parallelism (RISC-like architecture) is enhanced with a
complex RC-FU (Run-time reconfigurable coarse-grain
Functional Unit). The complex coarse-grain operations executed
by the RC-FU are described by means of micro-programs, just
like in CISC architectures. But, the RC-FU micro-program as well
as some characteristics of the RC-FU internal hardware
architecture are run-time reconfigurable, allowing a high

exploitation of the RC-FU internal hardware resources while
executing a large variety of telecom and multimedia applications.

9. REFERENCES
[1]. Paolo Faraboschi et al, "Lx: A Technology Platform for

Customizable VLIW Embedded Processing”, ISCA 2000,
Vancouver, British Columbia Canada.

[2]. Marco Bekooij et. al. “Power-Efficient Application-Specific
VLIW Processor for Turbo Decoding”, IEEE ISSCC 2001

[3]. Mihai Sima, at. al. "An 8x8 IDCT Implementation on an
FPGA-augmented TriMedia", in proc. of IEEE Symp. on
Field-Programmable Custom Computing Machines (FCCM),
California, May 2001

[4]. Natalino Busá, et al. “Scheduling coarse grain operations for
VLIW processors”, Madrid, Spain, 2000, ISSS.

[5]. Reiner Hartenstein “A Decade of Reconfigurable
Computing: A visionary Retrospective”, in Proc of Design
Automation and Test in Europe (DATE) 2001.

[6]. Bernardo Kastrup et. al “ConCISe: A Compiler-Driven
CPLD-Based Instruction Set Accelerator” in proc. of IEEE
Symp. on Field-Programmable Custom Computing Machines
(FCCM), California,April 1999

[7]. Zhi Alex Ye et.al. “CHIMAERA: A High-Performance
Architecture with Tightly-Coupled Reconfigurable
Functional Unit”, ISCA2000, Canada

[8]. G. Amdhal “Validity of the single processor approach to
achieving large scale computing capabilities”, in proc.
AFIPS 1967 Spring Joint Computer Conf. Atlantic City, N.J.
(USA) pp. 483-485

[9]. Adelante Technologies, http://www.adelantetech.com
[10]. Ramlakan Gupta et. al. “Synthezising a Long Latency Unit

within a VLIW processor”, 14th Inter. Conf. on VLSI Design
2001, India, pp 460 -465.

[11]. Rafael Mestra et. al. “A framework for reconfigurable
computing: task scheduling and context management”, in
IEEE Trans. On VLSI Systems, vol. 9, no.6, pp.858-873

49

	Main
	ISSS02
	Front Matter
	Table of Contents
	Author Index

