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ABSTRACT 
In this paper, we present a new methodology for application 
specific multiprocessor system-on-chip design. This approach 
facilitates the integration of existing components with the 
concept of wrapper. Wrappers allow automatic adaptation of 
physical interfaces to a communication network. We also give a 
generic architecture to produce these wrappers, either for 
processors or for other specific components such as memory IP. 
This approach has successfully been applied on a low-level 
image processing application.  

General Terms 
Design, Experimentation. 

Categories and Subject Descriptors 
C.0 [General]: system architecture, Hardware/software 
interfaces 

Keywords 
Embedded Memory, System-on-Chip, Memory access, 
Memory Wrapper Generation. 

1. Introduction 
Multiprocessor SoCs (MP SoC) are more and more used to meet 
the ever increasing performance requirements of application 
domains such as xDSL, game applications, etc... As these 
systems require heterogeneous processors (for application 
specific optimizations), complex communication protocols, and 
IP or application-specific memory components, this architecture 
generation demands significant design efforts. 
One way to reduce this effort and to comply with the shorter 
time-to-market is to reuse some components. This means that we 
need to adapt specific physical accesses and protocols of those 
components to the communication network that may have other 
physical connections and other protocols. The protocol and 
physical adaptation are made with an interface called wrapper in 

the literature. The integration of several existing components 
makes specification and implementation of the wrapper a major 
design problem. 
To facilitate the design space exploration and to allow the 
designer to try different components or communication 
protocols, we need to generate automatically these wrappers, 
based on parameters given by the architecture (processor types, 
protocols, etc.) and by the designer. The wrapper generation is 
actually done by assembling components caught in a library. We 
defined a generic architecture, which is suitable for most 
components. We implemented unified library components that 
can be used for processor or memory wrapper generation.  
In our approach, we defined the wrapper at two abstraction 
levels. At the first level, we defined an abstract wrapper 
architecture that hides the low level communication. The second 
level corresponds to the RT level where the abstract wrapper is 
implemented. 
This paper presents a systematic approach for existing 
component integration into multiprocessor SoC. Section 2 
presents a multiprocessor SoC architecture and related work. In 
section 3, we describe the basics of our methodology and our 
architectural models at different abstraction levels. In section 4, 
we present generic wrapper architecture as well as its automatic 
generation. Section 5 highlights this methodology applied to an 
image processing application for a digital camera. Finally, 
section 6 concludes this paper. 

2. MP SoC Architecture and related work 
Figure 1 shows an example of a conventional multiprocessor 
SoC composed of CPU, DSP and/or memory or IP components. 
Compared with the design of conventional embedded systems, 
the implementation of system communication becomes much 
more complicated in multiprocessor SoC design, since (1) 
heterogeneous processors are involved in communication, (2) 
complex communication protocols and networks are used, and 
(3) standard memory or IP components need to be connected to 
processors and/or networks [6][7]. To reduce the complexity of 
a design, most of current system design methods adopt design 
reuse [2][3][4][5]. In such design methods, system architecture 
specification consists of heterogeneous modules in terms of 
communication protocols and abstraction levels interconnected 
through a set of abstract ports called also logical ports. 
The key issue is then to adapt the physical interface of these 
components to the logical interface. Wrappers have been widely 
used to solve this problem for simulation and/or synthesis 
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[4][8][9][10][13]. In the simulation step, a BFM (bus functional 
model) encapsulates a memory functional model with a cycle 
accurate interface [4][8]. In [9], a wrapper for mixed-level 
cosimulation between FIFO channel and cycle-accurate models 
is presented. In system synthesis, a protocol transducer is used 
to adapt a communication protocol of IP to the communication 
protocol of on-chip bus [1][3][4]. 
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Figure 1: a typical Multiprocessor SoC 

In [1], a communication wrapper is automatically generated 
from a VHDL package that implements the communication 
protocols (rendez-vous based on CSP model). [15] addresses the 
problem of external memory interfacing between a datapath and 
a memory. The internal architecture of this interface is 
composed of two main parts, one is memory dependent, and the 
other one is datapath dependent. This interface is optimized for 
aggressive scheduling of memory operations. Palmchip [17] 
provides a shared memory processor that corresponds to high 
performance configurable memory controller subsystem for a 
DDR SDRAM. This controller can be configured with DMA 
buffers. The DMA buffer matches transfer speeds of the on-chip 
bus with the controller by means of a FIFO. In this approach, an 
architecture template of this memory controller can be 
configured only on the AMBA bus, CoreFrame and Mbus, but it 
can’t be used for different specific bus structure. This wrapper 
template architecture does not support large bus architecture and 
several cores and IPs. 
Our contribution is (1) the introduction of a generic wrapper 
architecture that can be applied to several types of components 
and (2) the definition of a method to generate automatically 
these wrappers. 

3. Models used in our SoC Design Flow 
This work is an extension of the work presented in [12] and [14] 
to cover wrapper generation. In [12], an automatic generation of 
processor wrapper was detailed. [14] describes the automatic 
generation of memory wrapper in order to interconnect different 

memory IPs to a communication network. The wrapper 
generation in these works is based on two different libraries. In 
order to master the complexity of design, we do need to define a 
common generic architecture for all wrappers and then to build a 
common library.  

3.1 Architectural model at different abstraction 
levels for SoC design 
3.1.1 Virtual architectural model 
The virtual architectural model represents an abstract 
architecture. This abstract architecture is composed of a set of 
virtual modules interconnected through logical wires (Figure 
2.a). Each module may represent a software processor (e.g. DSP 
or a micro-controller executing software), a hardware processor 
(specific hardware) or an existing component in the final 
architecture. The logical wires are abstract channels that transfer 
fixed data types (e.g. integer, real) and may hide low-level 
protocols (e.g. handshake or memory mapped I/O). 
Each virtual module communicates with the others through 
abstract channels connected to its virtual ports. For instance, 
FIFO communication is realized using high-level 
communication primitives. In our design flow, the virtual 
architecture is described using an extension of SystemC.  
The wrapper performs conversion protocol and abstraction level 
adaptation between logical ports and physical ports. 

3.1.2 Micro-architecture model 
The micro-architecture abstraction level gives the detailed RTL 
architecture (Figure 2.b). In this model, existing components are 
encapsulated within an interface (wrapper) in order to 
accommodate the final protocol and to isolate the behavior from 
the communication network. This wrapper adapts protocols to 
the communication network. The communication between 
modules is made through wrappers by using physical wires that 
implement the final protocols. At this level, the time unit 
becomes the clock cycle and the wrapper behavior corresponds 
to a behavioral finite state machine (FSM), where each 
transition is realized in a clock cycle. 

4. Unified Wrapper Model 
The key idea behind this work is to allow the automatic wrapper 
generation based on a common library. In order to achieve this, 
we use a generic wrapper architecture that can be customized 
according to the architecture under design and can be used for 
both processors and memories. 
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Figure 2: architectural models
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4.1 Unified wrapper model 
The generic wrapper architecture is made of two main parts as 
shown in Figure 3.a: the module specific part called Module 
Adapter (MA) and the network specific part called Channel 
Adapter (CA). The two parts are interconnected through an 
internal bus (IB).  
The Module Adapter implements services requested by the 
module. Generating the Module Adapter consists of 
assembling all the basic components that provide services.  
The Channel Adapter implements the communication 
protocol (FIFO, DMA controller, etc) and controls the 
communication between the module and the network. Its 
implementation depends on many parameters such as 
communication protocol, channel size, and port type (in, out, 
master, slave, etc). The CA manages the data transfer between 
the communication network and the internal bus of the 
wrapper. The number of CA is given by the number of 
channels. 
The internal communication bus (IB) interconnects the two 
parts of the memory wrapper (MA part and the CA part). This 
internal bus is usually composed of address, data and control 
signals. The size of this internal bus depends on the bus size 
of the module and the channel size and it is determined for 
each instance of wrapper at the wrapper generation phase. 

4.2 Application to processor 
Processor wrapper (Figure 3.b) is obtained by the 
customization of the generic wrapper model described in the 
previous section. We customize the module adapter part 
which is specific to the processor. In this case, the MA is 
called Processor Adaptor (PA). 
The PA performs channel access selection by address 
decoding and interrupt management. The PA is a master, 
whereas the CAs are slaves. The transfer of data between PA 
and CA is done through an internal bus by using a 
synchronization protocol. To do that, it has four kinds of 
signals: address, data, enable and interrupt. Data signal is bi-
directional and has a generic type whereas the address signal 
is uni-directional. A specific address/data type (e.g. int, short, 
logic vector, etc) of address/data signals is determined for 
each instance of the generic wrapper architecture. Enable 

signals are set/reset by the processor adapter. They select one 
channel adapter and enable it to read/write data to/from data 
signal. Each channel adapter sets its interrupt signal when it 
receives data on its port. 
The processor wrapper frees processors from executing 
communication code and separates computation from 
communication. A good example of processor wrapper has 
been presented in [12], an ARM7 and an M68k wrapper was 
implemented for IS95 and packet routing switch applications.  

4.3 Application to memory 
The generic wrapper architecture can also be used as a 
memory wrapper in order to adapt the physical memory 
interface to the communication network (Figure 3.c). For 
memory module, we customize the module adapter which is 
specific to the memory. In this case the module adapter is 
called Memory Port Adapter (MPA). 
The MPA includes a memory controller and several memory-
specific functions such as control logic, address decoder, 
bank controller and other functions which depend on the type 
of memory (refresh management in DRAM). In addition, the 
MPA performs data type conversion and data transfer 
between internal communication bus and memory bus. In case 
of multiple connections of CA to the internal bus, MPA 
includes an arbiter that manages parallel access. The arbiter 
must give the access permission to only one channel adapter 
at a time. In our model, this is managed by using a fixed 
priority technique. The complexity of the MPA behavior 
depends on the memory used. 

4.4 The unified libraries needed for wrapper 
generation 
Generic wrapper architecture has been defined in the 
previous section. In order to facilitate the wrapper generation 
a library of basic components should be built. This library 
includes several macro-models of channel adapters and 
module adapters. There are three types of CA depending on 
the direction of the channel (in-out, out, in). The in-out CA is 
used during port read operations, the out CA is used during 
port write port operations and the in CA can be used for 
module configuration. The generic architecture allows us to 
use a common library to generate the two types of wrappers. 
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Figure 3: wrapper architecture
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CA can be slave or master. In the case of processor wrapper, 
the CA is used as a slave controlled by the processor adapter 
where it is used as a master that controls the memory port 
adapter in the case of memory wrappers.   
The second element of this library is a generic MA part of the 
wrapper. Depending on the kind of the module, we generate 
either the specific processor adapter or the specific memory 
port adapter.  
In the case of memory port adapters, several memory-specific 
services are implemented, which correspond to physical 
memory modules. We have written generic models of MPA 
associated with several memories (SDRAM Micron 256 
Mbits, SRAM, etc). MPA services such as burst access, type 
conversion, refresh, address decoder are written according to 
the datasheets provided by manufacturers. 
In the case of processor, we have implemented an ARM7 and 
M68K adapters. Our library is limited to two processor 
adaptors for availability reasons, but the generic module 
adapter can support other kinds of processors. 
We also need a second library implementing the components 
of the architecture (processor core, memory). This library is 
composed of processors or memory components and their 
protocols. The processor part contains simulation models and 
synthesizable codes of available processors and their local 
architectures (i.e. processor core, local memory). The memory 
part of this library is made of generic memory codes used for 
simulation and synthesis written in SystemC and VHDL. The 
protocol part contains simulation models and synthesizable 
codes of available communication protocols. 

4.5 Wrapper generation 
As shown in Figure 4, the inputs of the wrapper generation 
flow are composed of processor and memory library, and MA 
and CA library.  This generation step needs also parameters 
coming from a virtual architecture described in a SystemC 
like specification. For instance, CA configuration uses the 
following allocation parameters: read/write, master/slave, type 
of transmitted data, etc. 
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Figure 4: wrapper generation flow 

Parameters used for the MPA configuration correspond to the 
number of ports, the memory bus size, the memory word 
width, the memory interface signals, and the access mode. 
The wrapper generation algorithm consists of customizing the 
generic CA and MA selected from the library by using these 
architectural parameters extracted from the virtual 
architecture. After this, the customized wrapper components 
are instantiated and the entire wrapper is connected to the rest 
of the system. Finally, the output of this flow is an RTL 
implementation. 

5. Memory Wrapper Generation in Image 
Processing Application 
In order to show the effectiveness of our approach and to 
validate the correctness of the memory wrapper, we 
performed a low level image processing for a digital camera 
application [16]. We implemented this algorithm using two 
processors (ARM7) and a global shared memory.  
We performed two experiments in order to prove the memory 
flexibility ensured by the wrapper. In the first experiment, we 
used a dual port SRAM and in the second we used a single 
port SDRAM. In both cases, the memory wrapper is 
automatically generated. In these experiments, we used 
several wrappers for processors and memory, but we detail 
only memory wrappers.  

5.1 Experiment 1: using a double memory port 
At the virtual architecture level, the virtual memory module is 
composed of the SRAM module and its wrapper (Figure 5.a). 
It contains two virtual ports, each one being connected to an 
ARM7 processor. The architectural parameters extracted from 
this virtual architecture, which will be used for the memory 
wrapper generation are: 2 channels composed of 2 FIFOs (32 
words x 32bits) and 2 buffers (1 word x 32 bits), the data type 
is integer, the memory access type is a burst mode of 4 words 
and the memory type is a dual port SRAM of 32 bits. The 
memory bus size and the IB size are 32 bits. 
At the micro-architecture level, we use these parameters to 
customize the wrapper components. In our case (Figure 6.a), 
we instantiate: 
- two CAs, each one is composed of two FIFOs (32 words x 

32 bits) with one controller and one buffer (1 word of 32 
bits), 

- two specific SRAM port adapters. Each one is composed of 
one address decoder and one SRAM controller that 
provides the following services: SRAM control, burst 
access and test operation used during co-simulation, 

- two parallel internal buses of 32 bits. 

5.2 Experiment 2: using a single memory port  
In the second experiment, as shown in Figure 5.b, we change 
the dual port SRAM by a single port SDRAM of 16 bits 
width and we use a classic Read-Write access. 
At the micro-architecture level (Figure 6.b), we modify the 
last architecture of the memory wrapper by using 
- a specific SDRAM port adapter that provides a dynamic 

refresh operation, a classic read/write access, address 
decoder, data type conversion (32 to 16 logic vectors) and 
an arbiter that manages multiple accesses. 

- a shared internal bus of 32 bits. 

5.3 Results 
The automatic generation of these wrappers allows a fast 
design space exploration of various types of memories. We 
generate SystemC model (for cosimulation and soon for 
synthesis). Memory models are also written in SystemC. 
The generated wrappers have been validated with a cycle 
accurate co-simulation approach based on SystemC. Two 
ISSs of ARM7 core (40 MHz) are used.  
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Figure 5: The virtual architecture of the image filtering application 
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Figure 6: RTL generated architecture of the filtering application 

 
We note that there is a small difference in the code size of the 
memory wrapper in the two RTL architecture models. In fact, 
CAs are not changed. Only the MPA is changed (10% of the 
wrapper code). As the SDRAM requires complex control 
signals, the two controllers (SDRAM controller and data 
conversion controller) implemented into MPAs are more 
complex than the one implemented in the SRAM wrapper and 
it explains the small difference in the code size.  

The write latency is 3 CPU (without memory latency) cycles 
whereas the read latency is 7 CPU cycles (send/receive). 
The simulation cycle which corresponds to the processing of 
an image of 387x322 pixels is 2.05×106 CPU cycles in 
experiment one and 2.97×106 CPU cycles in experiment 2. 
Thus, with the assumption that code ratio leads to the area 
ration, we conclude that the first memory wrapper 
architecture is more optimal than the second one. This is due 
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(1) to the first wrapper architecture that supports the parallel 
accesses to the memory through two parallel internal buses 
and (2) to the burst mode used in the first experiment. 
For both experiments, the area cost of the synthesized HW 
memory wrapper (AMS 0.35 µm CMOS) takes less than 5% 
of the overhead in total system area. 

6. Conclusion 
This paper describes the need of wrappers in multiprocessor 
SoC design and the requirement of unified libraries for the 
wrapper generation step. The automatic generation of wrapper 
is made by assembling basic components from a library. A 
generic architecture of wrapper is provided, either for 
processor wrapper or for memory wrapper. It could be 
extended to IP wrapper.  
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