
Unifying Memory and Processor Wrapper Architecture
in Multiprocessor SoC Design

Férid Gharsalli Damien Lyonnard Samy Meftali Frédéric Rousseau Ahmed A. Jerraya
Laboratoire TIMA,
46 av. Félix Viallet

38031 Grenoble cedex (France)
{ferid.gharsalli, damien.lyonnard, samy.meftali, frederic.rousseau, ahmed.jerraya}@imag.fr

ABSTRACT
In this paper, we present a new methodology for application
specific multiprocessor system-on-chip design. This approach
facilitates the integration of existing components with the
concept of wrapper. Wrappers allow automatic adaptation of
physical interfaces to a communication network. We also give a
generic architecture to produce these wrappers, either for
processors or for other specific components such as memory IP.
This approach has successfully been applied on a low-level
image processing application.

General Terms
Design, Experimentation.

Categories and Subject Descriptors
C.0 [General]: system architecture, Hardware/software
interfaces

Keywords
Embedded Memory, System-on-Chip, Memory access,
Memory Wrapper Generation.

1. Introduction
Multiprocessor SoCs (MP SoC) are more and more used to meet
the ever increasing performance requirements of application
domains such as xDSL, game applications, etc... As these
systems require heterogeneous processors (for application
specific optimizations), complex communication protocols, and
IP or application-specific memory components, this architecture
generation demands significant design efforts.
One way to reduce this effort and to comply with the shorter
time-to-market is to reuse some components. This means that we
need to adapt specific physical accesses and protocols of those
components to the communication network that may have other
physical connections and other protocols. The protocol and
physical adaptation are made with an interface called wrapper in

the literature. The integration of several existing components
makes specification and implementation of the wrapper a major
design problem.
To facilitate the design space exploration and to allow the
designer to try different components or communication
protocols, we need to generate automatically these wrappers,
based on parameters given by the architecture (processor types,
protocols, etc.) and by the designer. The wrapper generation is
actually done by assembling components caught in a library. We
defined a generic architecture, which is suitable for most
components. We implemented unified library components that
can be used for processor or memory wrapper generation.
In our approach, we defined the wrapper at two abstraction
levels. At the first level, we defined an abstract wrapper
architecture that hides the low level communication. The second
level corresponds to the RT level where the abstract wrapper is
implemented.
This paper presents a systematic approach for existing
component integration into multiprocessor SoC. Section 2
presents a multiprocessor SoC architecture and related work. In
section 3, we describe the basics of our methodology and our
architectural models at different abstraction levels. In section 4,
we present generic wrapper architecture as well as its automatic
generation. Section 5 highlights this methodology applied to an
image processing application for a digital camera. Finally,
section 6 concludes this paper.

2. MP SoC Architecture and related work
Figure 1 shows an example of a conventional multiprocessor
SoC composed of CPU, DSP and/or memory or IP components.
Compared with the design of conventional embedded systems,
the implementation of system communication becomes much
more complicated in multiprocessor SoC design, since (1)
heterogeneous processors are involved in communication, (2)
complex communication protocols and networks are used, and
(3) standard memory or IP components need to be connected to
processors and/or networks [6][7]. To reduce the complexity of
a design, most of current system design methods adopt design
reuse [2][3][4][5]. In such design methods, system architecture
specification consists of heterogeneous modules in terms of
communication protocols and abstraction levels interconnected
through a set of abstract ports called also logical ports.
The key issue is then to adapt the physical interface of these
components to the logical interface. Wrappers have been widely
used to solve this problem for simulation and/or synthesis

Permission to make digital or hard copies of all or part of this work for
personal or classroom use is granted without fee provided that copies are
not made or distributed for profit or commercial advantage and that
copies bear this notice and the full citation on the first page. To copy
otherwise, or republish, to post on servers or to redistribute to lists,
requires prior specific permission and/or a fee.
ISSS ’02, October 2-4, 2002, Kyoto, Japan.
Copyright 2002 ACM 1-58113-562-9/02/0010…$5.00.

26

[4][8][9][10][13]. In the simulation step, a BFM (bus functional
model) encapsulates a memory functional model with a cycle
accurate interface [4][8]. In [9], a wrapper for mixed-level
cosimulation between FIFO channel and cycle-accurate models
is presented. In system synthesis, a protocol transducer is used
to adapt a communication protocol of IP to the communication
protocol of on-chip bus [1][3][4].

DSP CPU

Wrapper Wrapper Wrapper

MEMORY

Wrapper

C ommunication Network

DSP CPU

Wrapper Wrapper Wrapper

MEMORY

Wrapper

C ommunication network
Figure 1: a typical Multiprocessor SoC

In [1], a communication wrapper is automatically generated
from a VHDL package that implements the communication
protocols (rendez-vous based on CSP model). [15] addresses the
problem of external memory interfacing between a datapath and
a memory. The internal architecture of this interface is
composed of two main parts, one is memory dependent, and the
other one is datapath dependent. This interface is optimized for
aggressive scheduling of memory operations. Palmchip [17]
provides a shared memory processor that corresponds to high
performance configurable memory controller subsystem for a
DDR SDRAM. This controller can be configured with DMA
buffers. The DMA buffer matches transfer speeds of the on-chip
bus with the controller by means of a FIFO. In this approach, an
architecture template of this memory controller can be
configured only on the AMBA bus, CoreFrame and Mbus, but it
can’t be used for different specific bus structure. This wrapper
template architecture does not support large bus architecture and
several cores and IPs.
Our contribution is (1) the introduction of a generic wrapper
architecture that can be applied to several types of components
and (2) the definition of a method to generate automatically
these wrappers.

3. Models used in our SoC Design Flow
This work is an extension of the work presented in [12] and [14]
to cover wrapper generation. In [12], an automatic generation of
processor wrapper was detailed. [14] describes the automatic
generation of memory wrapper in order to interconnect different

memory IPs to a communication network. The wrapper
generation in these works is based on two different libraries. In
order to master the complexity of design, we do need to define a
common generic architecture for all wrappers and then to build a
common library.

3.1 Architectural model at different abstraction
levels for SoC design
3.1.1 Virtual architectural model
The virtual architectural model represents an abstract
architecture. This abstract architecture is composed of a set of
virtual modules interconnected through logical wires (Figure
2.a). Each module may represent a software processor (e.g. DSP
or a micro-controller executing software), a hardware processor
(specific hardware) or an existing component in the final
architecture. The logical wires are abstract channels that transfer
fixed data types (e.g. integer, real) and may hide low-level
protocols (e.g. handshake or memory mapped I/O).
Each virtual module communicates with the others through
abstract channels connected to its virtual ports. For instance,
FIFO communication is realized using high-level
communication primitives. In our design flow, the virtual
architecture is described using an extension of SystemC.
The wrapper performs conversion protocol and abstraction level
adaptation between logical ports and physical ports.

3.1.2 Micro-architecture model
The micro-architecture abstraction level gives the detailed RTL
architecture (Figure 2.b). In this model, existing components are
encapsulated within an interface (wrapper) in order to
accommodate the final protocol and to isolate the behavior from
the communication network. This wrapper adapts protocols to
the communication network. The communication between
modules is made through wrappers by using physical wires that
implement the final protocols. At this level, the time unit
becomes the clock cycle and the wrapper behavior corresponds
to a behavioral finite state machine (FSM), where each
transition is realized in a clock cycle.

4. Unified Wrapper Model
The key idea behind this work is to allow the automatic wrapper
generation based on a common library. In order to achieve this,
we use a generic wrapper architecture that can be customized
according to the architecture under design and can be used for
both processors and memories.

Wrapper Memory
Wrapper

Module M1
implementation

Wrapper

Module M2
implementation

Wrapper Memory
Wrapper

MemoryModule M1
implementation

Wrapper

Module M2
implementation

Wrapper

Module M2
implementation

T1

T2

M1 T3

T4

M2

Memory
Module

T1

T2

M1 T3

T4

M2

Memory
ModuleVirtual

memory

Virtual module M1 Virtual module M2

Virtual
port

wrapper

Physical Communication Network
 (a) Virtual architecture model (b) Micro-architecture model

Figure 2: architectural models

27

4.1 Unified wrapper model
The generic wrapper architecture is made of two main parts as
shown in Figure 3.a: the module specific part called Module
Adapter (MA) and the network specific part called Channel
Adapter (CA). The two parts are interconnected through an
internal bus (IB).
The Module Adapter implements services requested by the
module. Generating the Module Adapter consists of
assembling all the basic components that provide services.
The Channel Adapter implements the communication
protocol (FIFO, DMA controller, etc) and controls the
communication between the module and the network. Its
implementation depends on many parameters such as
communication protocol, channel size, and port type (in, out,
master, slave, etc). The CA manages the data transfer between
the communication network and the internal bus of the
wrapper. The number of CA is given by the number of
channels.
The internal communication bus (IB) interconnects the two
parts of the memory wrapper (MA part and the CA part). This
internal bus is usually composed of address, data and control
signals. The size of this internal bus depends on the bus size
of the module and the channel size and it is determined for
each instance of wrapper at the wrapper generation phase.

4.2 Application to processor
Processor wrapper (Figure 3.b) is obtained by the
customization of the generic wrapper model described in the
previous section. We customize the module adapter part
which is specific to the processor. In this case, the MA is
called Processor Adaptor (PA).
The PA performs channel access selection by address
decoding and interrupt management. The PA is a master,
whereas the CAs are slaves. The transfer of data between PA
and CA is done through an internal bus by using a
synchronization protocol. To do that, it has four kinds of
signals: address, data, enable and interrupt. Data signal is bi-
directional and has a generic type whereas the address signal
is uni-directional. A specific address/data type (e.g. int, short,
logic vector, etc) of address/data signals is determined for
each instance of the generic wrapper architecture. Enable

signals are set/reset by the processor adapter. They select one
channel adapter and enable it to read/write data to/from data
signal. Each channel adapter sets its interrupt signal when it
receives data on its port.
The processor wrapper frees processors from executing
communication code and separates computation from
communication. A good example of processor wrapper has
been presented in [12], an ARM7 and an M68k wrapper was
implemented for IS95 and packet routing switch applications.

4.3 Application to memory
The generic wrapper architecture can also be used as a
memory wrapper in order to adapt the physical memory
interface to the communication network (Figure 3.c). For
memory module, we customize the module adapter which is
specific to the memory. In this case the module adapter is
called Memory Port Adapter (MPA).
The MPA includes a memory controller and several memory-
specific functions such as control logic, address decoder,
bank controller and other functions which depend on the type
of memory (refresh management in DRAM). In addition, the
MPA performs data type conversion and data transfer
between internal communication bus and memory bus. In case
of multiple connections of CA to the internal bus, MPA
includes an arbiter that manages parallel access. The arbiter
must give the access permission to only one channel adapter
at a time. In our model, this is managed by using a fixed
priority technique. The complexity of the MPA behavior
depends on the memory used.

4.4 The unified libraries needed for wrapper
generation
Generic wrapper architecture has been defined in the
previous section. In order to facilitate the wrapper generation
a library of basic components should be built. This library
includes several macro-models of channel adapters and
module adapters. There are three types of CA depending on
the direction of the channel (in-out, out, in). The in-out CA is
used during port read operations, the out CA is used during
port write port operations and the in CA can be used for
module configuration. The generic architecture allows us to
use a common library to generate the two types of wrappers.

Network
side

CPU
side

Channel
Select

Read/Write
FSM

Interrupt
Handler

enable

addr

data

interrupt

CA1

CA2

CA3

In
te

rn
a
l
 B

u
s

Memory
side

Memory
CTRL
(FSM)

addr

CA2

CA3

Data
conversion

Address
decoder

Arbiter

enable
interrupt

data
CA1

In
te

rn
a
l
 B

u
s

Network
side

Network
side

Module
side

Channel
Adapter

In
te

rn
a
l
 B

u
s

Channel
Adapter

Channel
Adapter

Module
Adapter

Network
side

CPU
side

Channel
Select

Read/Write
FSM

Interrupt
Handler

enable

addr

data

interrupt

CA1

CA2

CA3

In
te

rn
a
l
 B

u
s

Network
side

CPU
side

Channel
Select

Read/Write
FSM

Interrupt
Handler

enable

addr

data

interrupt

CA1

CA2

CA3

In
te

rn
a
l
 B

u
s

Memory
side

Memory
CTRL
(FSM)

addr

CA2

CA3

Data
conversion

Address
decoder

Arbiter

enable
interrupt

data
CA1

In
te

rn
a
l
 B

u
s

Network
side

Memory
side

Memory
CTRL
(FSM)

addr

CA2

CA3

Data
conversion

Address
decoder

Arbiter

enable
interrupt

data
CA1

In
te

rn
a
l
 B

u
s

Network
side

Network
side

Module
side

Channel
Adapter

In
te

rn
a
l
 B

u
s

Channel
Adapter

Channel
Adapter

Module
Adapter

Network
side

Module
side

Channel
Adapter

In
te

rn
a
l
 B

u
s

Channel
Adapter

Channel
Adapter

Module
Adapter

(a) generic wrapper architecture (b) processor wrapper architecture (c) memory wrapper architecture

Figure 3: wrapper architecture

28

CA can be slave or master. In the case of processor wrapper,
the CA is used as a slave controlled by the processor adapter
where it is used as a master that controls the memory port
adapter in the case of memory wrappers.
The second element of this library is a generic MA part of the
wrapper. Depending on the kind of the module, we generate
either the specific processor adapter or the specific memory
port adapter.
In the case of memory port adapters, several memory-specific
services are implemented, which correspond to physical
memory modules. We have written generic models of MPA
associated with several memories (SDRAM Micron 256
Mbits, SRAM, etc). MPA services such as burst access, type
conversion, refresh, address decoder are written according to
the datasheets provided by manufacturers.
In the case of processor, we have implemented an ARM7 and
M68K adapters. Our library is limited to two processor
adaptors for availability reasons, but the generic module
adapter can support other kinds of processors.
We also need a second library implementing the components
of the architecture (processor core, memory). This library is
composed of processors or memory components and their
protocols. The processor part contains simulation models and
synthesizable codes of available processors and their local
architectures (i.e. processor core, local memory). The memory
part of this library is made of generic memory codes used for
simulation and synthesis written in SystemC and VHDL. The
protocol part contains simulation models and synthesizable
codes of available communication protocols.

4.5 Wrapper generation
As shown in Figure 4, the inputs of the wrapper generation
flow are composed of processor and memory library, and MA
and CA library. This generation step needs also parameters
coming from a virtual architecture described in a SystemC
like specification. For instance, CA configuration uses the
following allocation parameters: read/write, master/slave, type
of transmitted data, etc.

Channel
AdaptersWrapper generation

Processor cores

Memory
modules

RTL implementation

Virtual architecture
Annotated with parameters

Memory Port Adapter

Channel
AdaptersWrapper generation

Processor cores

Memory
modules

RTL implementation

Processor Adapter

Channel
AdaptersWrapper generation

Processor cores

Memory
modules

RTL implementation

Virtual architecture
Annotated with parameters

Memory Port Adapter

Channel
AdaptersWrapper generation

Processor cores

Memory
modules

RTL implementation

Processor Adapter

Figure 4: wrapper generation flow

Parameters used for the MPA configuration correspond to the
number of ports, the memory bus size, the memory word
width, the memory interface signals, and the access mode.
The wrapper generation algorithm consists of customizing the
generic CA and MA selected from the library by using these
architectural parameters extracted from the virtual
architecture. After this, the customized wrapper components
are instantiated and the entire wrapper is connected to the rest
of the system. Finally, the output of this flow is an RTL
implementation.

5. Memory Wrapper Generation in Image
Processing Application
In order to show the effectiveness of our approach and to
validate the correctness of the memory wrapper, we
performed a low level image processing for a digital camera
application [16]. We implemented this algorithm using two
processors (ARM7) and a global shared memory.
We performed two experiments in order to prove the memory
flexibility ensured by the wrapper. In the first experiment, we
used a dual port SRAM and in the second we used a single
port SDRAM. In both cases, the memory wrapper is
automatically generated. In these experiments, we used
several wrappers for processors and memory, but we detail
only memory wrappers.

5.1 Experiment 1: using a double memory port
At the virtual architecture level, the virtual memory module is
composed of the SRAM module and its wrapper (Figure 5.a).
It contains two virtual ports, each one being connected to an
ARM7 processor. The architectural parameters extracted from
this virtual architecture, which will be used for the memory
wrapper generation are: 2 channels composed of 2 FIFOs (32
words x 32bits) and 2 buffers (1 word x 32 bits), the data type
is integer, the memory access type is a burst mode of 4 words
and the memory type is a dual port SRAM of 32 bits. The
memory bus size and the IB size are 32 bits.
At the micro-architecture level, we use these parameters to
customize the wrapper components. In our case (Figure 6.a),
we instantiate:
- two CAs, each one is composed of two FIFOs (32 words x

32 bits) with one controller and one buffer (1 word of 32
bits),

- two specific SRAM port adapters. Each one is composed of
one address decoder and one SRAM controller that
provides the following services: SRAM control, burst
access and test operation used during co-simulation,

- two parallel internal buses of 32 bits.

5.2 Experiment 2: using a single memory port
In the second experiment, as shown in Figure 5.b, we change
the dual port SRAM by a single port SDRAM of 16 bits
width and we use a classic Read-Write access.
At the micro-architecture level (Figure 6.b), we modify the
last architecture of the memory wrapper by using
- a specific SDRAM port adapter that provides a dynamic

refresh operation, a classic read/write access, address
decoder, data type conversion (32 to 16 logic vectors) and
an arbiter that manages multiple accesses.

- a shared internal bus of 32 bits.

5.3 Results
The automatic generation of these wrappers allows a fast
design space exploration of various types of memories. We
generate SystemC model (for cosimulation and soon for
synthesis). Memory models are also written in SystemC.
The generated wrappers have been validated with a cycle
accurate co-simulation approach based on SystemC. Two
ISSs of ARM7 core (40 MHz) are used.

29

Task Start port

Physical port
Physical data input port
Physical data output port

logical port

S

Pn
Di
Do

Ln

Virtual Memory Module

Memory
 Module

(2 physical port)

Virtual Module 1

T1
A1

Do1

Di1S

T2
Do2

Di2

A2S

channel 1

T3
A3

Do3

SDi3

T4
Do4

Di4

SA4

Virtual Module 2

L4

P2

L3

P1

channel 2
Di1

L1
Di2

Do1

Do2

A1

A2

Di3

Di4

Do3

Do4

A3

A4

L2

Virtual Memory Module

Memory
 Module

(1 physical port)

Virtual Module 1

T1
A1

Do1

Di1S

T2
Do2

Di2

A2S

channel 1

T3
A3

Do3

SDi3

T4
Do4

Di4

SA4

Virtual Module 2

channel 2

L3 L4

P1

Di1

Di2

Do1

Do2

A1

A2

L1
Di3

Di4

Do3

Do4

A3

A4

L2

(a) double port memory (b) single port memory

Figure 5: The virtual architecture of the image filtering application

ARM7 (1) local bus ARM7 (2) local busARM7 (2) local bus ARM7 (1) local bus

FIFO_W_M BUFFER_R_M

CA1

IT
Decoder

PA1

req ackdata_in addr data_out
BUS 1 BUS 2

FIFO_W_M BUFFER_R_M

CA2

IT
Decoder

PA2

nIRQ nRW nBW nM nWAIT ADO DI

req ackdata_in addr data_out

Physical SDRAM port

HW MEMORY
wrapper

data
conversion

16

address
decoder

3232

MPA
SDRAM ctrl

ras cas cs we bs D A

2 banks
SDRAM MEMORY
(SINGLE PORT)

ras cas cs we bs D A

16

CA1 CA2

Internal Bus (Addr, Data, CTRL)

Arbiter

FIFO_W_S BUFFER_R_S FIFO_W_S BUFFER_R_S

A
D

D
R

D
A
T
A

C
TR

L

A
D

D
R

D
A
T
A

C
TR

L

A
D

D
R

D
A
T
A

C
TR

L

HW ARM7
wrapper

FIFO_W_M BUFFER_R_M

CA1

IT
Decoder

PA1

nIRQ nRW nBW nM nWAIT ADO DI

req ackdata_in addr data_out

FIFO_W_M BUFFER_R_M

CA2

IT
Decoder

PA2

nIRQ nRW nBW nM nWAIT ADO DI

req ackdata_in addr data_out

Physical
SRAM ports

2 banks
SRAM MEMORY

(DOUBLE PORTS)

cs rw bs D A

32

address
decoder

32

SRAM ctrl

Req

32

Addr Data

MPA 1
cs RW bs D A

32

address
decoder

32

SRAM ctrl

32

MPA 2

cs rw bs D A cs rw bs D A

Ready Addr Data

32

BUS 1

CA2

Ready

FIFO_W_S BUFFER_R_S

CA1

Req

BUS 2

FIFO_W_S BUFFER_R_S

HW ARM7
wrapper

nIRQ nRW nBW nM nWAIT ADO DI

ARM7 (1) local bus ARM7 (2) local busARM7 (2) local bus ARM7 (1) local bus

FIFO_W_M BUFFER_R_M

CA1

IT
Decoder

PA1

req ackdata_in addr data_out
BUS 1 BUS 2

FIFO_W_M BUFFER_R_M

CA2

IT
Decoder

PA2

nIRQ nRW nBW nM nWAIT ADO DI

req ackdata_in addr data_out

Physical SDRAM port

HW MEMORY
wrapper

data
conversion

16

address
decoder

3232

MPA
SDRAM ctrl

ras cas cs we bs D A

2 banks
SDRAM MEMORY
(SINGLE PORT)

ras cas cs we bs D A

16

CA1 CA2

Internal Bus (Addr, Data, CTRL)

Arbiter

FIFO_W_S BUFFER_R_S FIFO_W_S BUFFER_R_S

A
D

D
R

D
A
T
A

C
TR

L

A
D

D
R

D
A
T
A

C
TR

L

A
D

D
R

D
A
T
A

C
TR

L

HW ARM7
wrapper

FIFO_W_M BUFFER_R_M

CA1

IT
Decoder

PA1

nIRQ nRW nBW nM nWAIT ADO DI

req ackdata_in addr data_out

FIFO_W_M BUFFER_R_M

CA2

IT
Decoder

PA2

nIRQ nRW nBW nM nWAIT ADO DI

req ackdata_in addr data_out

Physical
SRAM ports

2 banks
SRAM MEMORY

(DOUBLE PORTS)

cs rw bs D A

32

address
decoder

32

SRAM ctrl

Req

32

Addr Data

MPA 1
cs RW bs D A

32

address
decoder

32

SRAM ctrl

32

MPA 2

cs rw bs D A cs rw bs D A

Ready Addr Data

32

BUS 1

CA2

Ready

FIFO_W_S BUFFER_R_S

CA1

Req

BUS 2

FIFO_W_S BUFFER_R_S

HW ARM7
wrapper

nIRQ nRW nBW nM nWAIT ADO DI

FIFO_W_M BUFFER_R_M

CA1

IT
Decoder

PA1

req ackdata_in addr data_out
BUS 1 BUS 2

FIFO_W_M BUFFER_R_M

CA2

IT
Decoder

PA2

nIRQ nRW nBW nM nWAIT ADO DI

req ackdata_in addr data_out

Physical SDRAM port

HW MEMORY
wrapper

data
conversion

1616

address
decoder

323232

MPA
SDRAM ctrl

ras cas cs we bs D A

2 banks
SDRAM MEMORY
(SINGLE PORT)

ras cas cs we bs D A

1616

CA1 CA2

Internal Bus (Addr, Data, CTRL)

Arbiter

FIFO_W_S BUFFER_R_S FIFO_W_S BUFFER_R_S

A
D

D
R

D
A
T
A

C
TR

L

A
D

D
R

D
A
T
A

C
TR

L

A
D

D
R

D
A
T
A

C
TR

L

A
D

D
R

D
A
T
A

C
TR

L

A
D

D
R

D
A
T
A

C
TR

L

A
D

D
R

D
A
T
A

C
TR

L

HW ARM7
wrapper

FIFO_W_M BUFFER_R_M

CA1

IT
Decoder

PA1

nIRQ nRW nBW nM nWAIT ADO DI

req ackdata_in addr data_out

FIFO_W_M BUFFER_R_M

CA2

IT
Decoder

PA2

nIRQ nRW nBW nM nWAIT ADO DI

req ackdata_in addr data_out

Physical
SRAM ports

2 banks
SRAM MEMORY

(DOUBLE PORTS)

cs rw bs D A

32

address
decoder

3232

SRAM ctrl

Req

32

Addr Data

MPA 1
cs RW bs D A

32

address
decoder

3232

SRAM ctrl

32

MPA 2

cs rw bs D A cs rw bs D A

Ready Addr Data

3232

BUS 1

CA2

Ready

FIFO_W_S BUFFER_R_S

CA1

FIFO_W_S BUFFER_R_S

CA1

Req

BUS 2

FIFO_W_S BUFFER_R_S

HW ARM7
wrapper

nIRQ nRW nBW nM nWAIT ADO DI

(a) double port memory (b) single port memory
Figure 6: RTL generated architecture of the filtering application

We note that there is a small difference in the code size of the
memory wrapper in the two RTL architecture models. In fact,
CAs are not changed. Only the MPA is changed (10% of the
wrapper code). As the SDRAM requires complex control
signals, the two controllers (SDRAM controller and data
conversion controller) implemented into MPAs are more
complex than the one implemented in the SRAM wrapper and
it explains the small difference in the code size.

The write latency is 3 CPU (without memory latency) cycles
whereas the read latency is 7 CPU cycles (send/receive).
The simulation cycle which corresponds to the processing of
an image of 387x322 pixels is 2.05×106 CPU cycles in
experiment one and 2.97×106 CPU cycles in experiment 2.
Thus, with the assumption that code ratio leads to the area
ration, we conclude that the first memory wrapper
architecture is more optimal than the second one. This is due

30

(1) to the first wrapper architecture that supports the parallel
accesses to the memory through two parallel internal buses
and (2) to the burst mode used in the first experiment.
For both experiments, the area cost of the synthesized HW
memory wrapper (AMS 0.35 µm CMOS) takes less than 5%
of the overhead in total system area.

6. Conclusion
This paper describes the need of wrappers in multiprocessor
SoC design and the requirement of unified libraries for the
wrapper generation step. The automatic generation of wrapper
is made by assembling basic components from a library. A
generic architecture of wrapper is provided, either for
processor wrapper or for memory wrapper. It could be
extended to IP wrapper.

REFERENCES
[1] S. Vercautern, B.lin, and H. De Man, “Constructing

Application-Specific Heterogenous Embedded
Architectures from Custom HW/SW Applications”, DAC
1996.

[2] J.A Rowson and A. Sangiovanni-Vincentelli, “Interface-
Based Design”, DAC 1997.

[3] C.K Lennard, P. Schaumont, G. De Jong, A. Haverienen,
and P. Hardee, “Standards for System-Level design:
Practical Reality or Solution in Search of a question?”,
DATE 2000.

[4] D.D. Gajski, J. Zhu, R. Dömer, A. Gerstlauer, and S.
Zhao, “SpecC: Specification Langage and Methodology,
Kluwer Academic Publisher, 2000.

[5] Synopsys, Inc., http://www.systemc.org/.
[6] D.A Culler, J. P Singh, “Parallel Computer Architecture”,

Morgan Kaufmann Publishers, 1999.

[7] D.A. Patterson, J.L Hennessey, “Computer Organization
and Design-The Hardware/Software Interface”, Morgan
Kaufmann Publishers.

[8] L. Sémira and A. Ghosh, “Methodology for
Hardware/Software Co-verification in C/C++”, Proc. Asia
South Pacific DAC, Jan. 2000.

[9] K. Takemura and all, “An approach to System-Level Bus
Architecture validation and its Application to digital Still
Camera Design”, Workshop SASIMI 2000.

[10] J-Y. Brunel, W.M. Kruijtzer, H.J.H.N. Kenter, F.Petrot,
and L. Pasquier, “COSY Communication IP’s”, DAC
2000.

[11] P. Gerin, S. Yoo, G. Nicolescu, A. A. Jerraya, Scalable
and Flexible Cosimulation of SoC Designs with
Heterogeneous Multiprocessor Target Architectures,
Proc. of Asia South Pacific Design Automation
Conference, Jan. 2001.

[12] D. Lyonnard, S. Yoo, A. Baghdadi, A.A. Jerraya,
“Automatic Generation of Application-Specific
Architectures for Heterogeneous Multiprocessor
System-on-Chip”, Proc. of DAC 2001, June 2001.

[13] S. Yoo, G. Nicolescu, D. Lyonnard, A. Baghdadi, and
A. A. Jerraya, " A Generic Wrapper Architecture for
Multi-Processor SoC Cosimulation and Design ",
CODES/CASHE 2001.

[14] F. Gharsalli, S. Meftali, F. Rousseau and A.A. Jerraya,
"Automatic Generation of Embedded Memory Wrapper
for Multiprocessor SoC", DAC 2002.

[15] J. Park, P. C. Diniz, "Synthesis of Pipelined Memory
Access Controllers for Streamed Data Applications on
FPGA-based Computing Engines", ISSS 2001.

[16] http://www.pixelphysics.com
[17] http://www.palmchip.com

31

	Main
	ISSS02
	Front Matter
	Table of Contents
	Author Index

