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Abstract
In this paper we describe the Fixed-points Addition and Relaxation
(FAR) based placement technique. Fixed point is a pseudo cell
connected to a movable cell. By introducing fixed points, the
placement can be maintained in a force equilibrium state and fur-
ther transformed into another equilibrium state. By relaxing some
of the previously introduced fixed points, we can partially or com-
pletely collapse the current placement in order to reposition the
cells, or incrementally perturb the existing good solution to fulfill
additional requirements. We apply the FAR-based approach to glo-
bal placement for total wire length minimization, and to incremen-
tal placement for Buffer Site Generation (BSG). For global
placement, our experimental results show that the FAR method
achieves 54.4% CPU speedup and total wire length comparable to
that achieved by the constant force based approach [1]. Experi-
mental results indicate that to accommodate buffers in specific
regions, FAR is able to perturb incrementally a given solution in a
well-controlled way. 

1. Categories and Subject Descriptors
J.6 Computer-Aided Engineering - Computer-aided design (CAD)

2. General Terms
Algorithms.

3. Introduction
Placement is a critical step in the physical design of VLSI circuits.
The quality of a placement solution determines whether the desired
objectives - such as area, timing, or congestion - can be achieved.
Due to placement’s importance in the design flow, placement algo-
rithms have been researched continuously for over three decades.
Numerous placement techniques have been proposed and proved
effective in practice. These include simulated annealing [8](Tim-
berwolf), min-cut [9][10], force-directed and quadratic place-
ment[1][2][3]. Typically, a placement task is divided into two
steps: global and detailed. In global placement, relative locations
of the cells are determined but some overlapping and illegal cell
positions are tolerated. In detailed placement, positions of cells are
legalized and optimized. In a different category are incremental
placers, which transform the existing placements to accommodate
the incremental changes in the netlist or attempt to fulfill addi-
tional requirements. The quality of such placers is measured by
how close the obtained solution is to the initial one.

In VLSI circuit design, to achieve timing closure and to handle sig-
nal integrity problems, buffer insertion is considered essential.
Many papers postulate that buffers must be planned in the early
design stages. In [4][5][7], buffer block planning methodologies

were proposed to meet the buffer demand. But as indicated in [6],
buffer block planning has two intrinsic drawbacks: (1) The
planned buffer blocks might not be usable due to congestion. (2)
Good buffer sites may not be found in the existing buffer blocks.
To overcome these two drawbacks, we formulate a new buffer
planning methodology called Buffer Site Generation (BSG). The
goal is to transform a given placement incrementally, in order to
introduce enough buffer sites at the locations required by the
buffer insertion algorithm.

In this paper, we describe the Fixed-points Addition and Relax-
ation (FAR) placement technique. Fixed points are pseudo cells
connected to the real cells in the netlist in order to keep the existing
placement in a state of equilibrium. By introducing and relaxing
the fixed points, the existing placement can be maintained in force
equilibrium state and perturbed into another equilibrium state
according to specific requirements. The FAR-based approach can
be applied to global or incremental placement problems. We com-
pare global placement formulations using fixed points and constant
forces [1]. To test FAR in the incremental placement context, we
applied it to solve the Buffer Site Generation (BSG) problem.
Experimental results show that the FAR-based placer is very effec-
tive and efficient in solving both global and incremental placement
problems.

Since our method can be viewed as a series of gradually resolving
cell overlaps, the most relevant previous works are [1][3]. [1] pro-
posed constant density-induced forces to maintain force equilib-
rium state and evenly distribute the cells. In [3], an Attractor-
Repeller(AR) model was formulated to eliminate overlapping.  AR
has hard constraints on the distances (Target Distances) between
cells and uses fixed dummy cells (attractors) to pull the cells out of
the dense area. We will show that fixed points generalize the idea
of constant forces and can be used to maintain and perturb the
existing placement, as well as to constrain the movement of cells
during incremental changes. In our formulation, the hard con-
straints on the distances between cells [3] can be removed.

The rest of the paper is organized as follows: In section 2, a tradi-
tional quadratic formulation is briefly reviewed. In section 3, the
fixed points addition and relaxation concepts are detailed and
related to quadratic placement. In sections 4 and 5, FAR based
approaches are applied to global and incremental placement prob-
lems. Experimental results are given in section 6, followed by the
conclusions in section 7.

4. Quadratic Placement Preliminary
Let n denote the number of movable cells in the circuit and 

the coordinates of the center point of a cell i. A quadratic place-
ment problem minimizes the cost function, which is a summation
of the squares of interconnection lengths as shown in EQ1:

(EQ1)

The circuit connectivity is modelled by a graph. Cells correspond
to vertices, and nets are modeled as edges. Multi-pin nets are mod-
eled by cliques. Each edge in the clique connecting cell i and j con-
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tributes two weighted quadratic terms,  and

in x and y direction respectively.

Let  denote the coordinate vector .
EQ1 can be rewritten in a matrix form[1]:

(EQ2)

To minimize cf, we must solve a system of linear equations:

(EQ3)

Traditionally, quadratic formulation is also referred to as a force-
directed approach. If we model movable cells and fixed input/out-
put (IO) pads as objects, and nets as springs, the netlist forms a
system of objects connected by the springs with different strengths
(weights). Minimizing EQ1 is equivalent to putting the system in
force equilibrium state. In this state, the force applied on each
movable cell by all the connected springs is equal to zero. 

It is well known that placement obtained by simply minimizing
EQ1 results in excessive overlapping among cells. To eliminate
overlapping and to evenly distribute the cells, an additional con-
stant force based on density was introduced in [1]. There, place-
ment was obtained by solving a sequence of modified linear
equation systems as follows:

(EQ4)

In EQ4,  is the vector of forces which are assumed to remain
constant while solving EQ4. The force equilibrium state is main-
tained by the constant force  and connections among the cells
and IO pads.
In [2], a partitioning technique and formation of additional con-
straints were proposed. In [3], fixed dummy cells in the sparse area
were introduced to pull the cells out of the dense areas.

5. Fixed Points Addition and Relaxation
In this section, we begin with definitions relevant to fixed points
and force equilibrium state, followed by the discussion of Fixed-
points Addition and Relaxation (FAR) in the context of quadratic
placement. 

5.1  Fixed Points and Force Equilibrium State
Definition 1: A fixed point p(x,y) is a dimensionless pseudo cell
positioned at (x,y) on the chip plane. We use H(p) to denote the cell
connected to p.

Definition 2:  A connection of a fixed point p, denoted by ,
is a directed edge from H(p) to p. We use FL(p) and FS(p) to

denote the length and strength of   respectively.

Definition 3: A force introduced by the fixed point p, denoted by
, is the attracting force applied on H(p).

. If more than one fixed point is con-

nected to a cell i,  is used to denote the total force intro-
duced by all these fixed points.

Figure 1 gives an example. The fixed point p(8,8) is connected to
its host cell m(0, 2). The length of p is 10. Suppose the strength of

p is 1 then the attracting force  is equal to (8, 6). Since p is

the only fixed point connected to m,  is also equal to (8,6).

Definition 4: An intrinsic connection  is a connection between

real cells. We use to denote the intrinsic connection from

a cell (or IO pad) i to a cell (or IO pad) j. Each  has a
weight associated with it. 

Definition 5: An intrinsic force is the force arising from to an

intrinsic connection . We use  to denote all the intrin-
sic forces applied on the cell i by i’s incident intrinsic connections,

and  denotes the intrinsic force caused by the connection

.  = . For example, in figure 1, m

has only one intrinsic connection  with the cell n.

=  = = (-2, 2).

Definition 6:  A constant force  is the force externally

applied on cell i.  does not depend on the location of the
cell i.

Definition 7:  A cell i is in a force equilibrium state if  +
 +  = 0, otherwise, the cell i is in disequilibrium.

A placement is in force equilibrium state if and only if all the mov-
able cells are in equilibrium state.
In figure 1, the cell n(-2,4) is in force equilibrium state because

 +  +  = 0 +  +  + 0 = 0.

5.2  Fixed Points Addition
Fixed points are added to the existing placement for the following
purposes:
(1) to achieve the force equilibrium state; 
(2) to perturb the placement towards a specific direction; 
(3) to constrain the cells with different flexibility to remain around
their neighborhoods. 

We present the following two theorems related to the point (1)
above:
Theorem 1: Any given initial placement with fixed IO pads and
movable standard cells can be transformed into a force equilibrium
state by adding one fixed point to each movable cell.

Theorem 2: Any initial placement can be transformed to a force
equilibrium state in an infinite number of ways.
proof: we omit the proof due to the space limitation.

The fixed points used to keep a current placement in force equilib-
rium state are called the Controlling Fixed Points (cfp). To trans-
form a placement into force equilibrium state, theorem 1 tells us
that we need only to add one controlling fixed point per cell. Theo-
rem 2 says that we have the flexibility of choosing different combi-
nations of lengths and strengths for each fixed point as long as the
attracting force cancels out the intrinsic force induced by the con-
nections.

Once all the cells are in the force equilibrium state, more fixed
points can be added to perturb the current placement. These fixed
points are called Perturbing Fixed Points (pfp). The addition of
new fixed points will result in unbalanced forces acting on cells
and thus will cause redistribution of cells towards the new equilib-
rium state. 

The third category of fixed points are the Constraining Fixed
Points (cnfp). These points are used to constrain the movement of
cells. Suppose that initially a cell i is in a force equilibrium state.
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Fig. 1: An example of a fixed point and force equilibrium state
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We can add a fixed point p with strength FS(p) at i’s force center.
At this moment, the cell i is still in equilibrium state, because the
added fixed point does not apply any extra force. Now we perturb
the current placement. As a result, the cell i will be relocated from
its original position. But the movement of the cell i depends on the
magnitude of FS(p). The larger FS(p) is, the harder for the cell i to
be moved from its original position. In the extreme case, if FS(p) is
infinitely large, the cell i is fixed and will not be allowed to deviate
from its original position. So we can choose fixed points with dif-
ferent strengths and apply them to movable cells to achieve proper
mobility requirements.

5.3  Fixed Points Relaxation
Fixed point forces can be relaxed (adjusted) for different purposes:
(1) To improve the timing or congestion objectives, the existing
placement can be partially or completely collapsed;
(2) To satisfy the cell mobility requirements.

The fixed points relaxation can be considered as a kind of pertur-
bation. Instead of introducing new perturbing fixed points, we can
adjust the existing fixed points. For example, controlling fixed
points can be relaxed to expand or collapse the current placement;
and constraining fixed points can be adjusted to satisfy different
mobility requirements for different cells. Relaxation is equivalent
to adjustment in our context. A fixed point p is relaxed when its

strength FS(p) changes while its location  remains
unchanged. The strength can increase or decrease depending on the
specific relaxation requirement.

6. FAR Based Global Placement
In this section, we first compare the fixed points to the constant
forces in the context of quadratic placement and prove that the
fixed points are a generalization of the constant forces. FAR-based
global placement will be discussed after the comparison.

6.1  Fixed Points vs. Constant Forces
The constant force CF introduced in [1] can be used to maintain a
force equilibrium state and to perturb the current placement. We
compare the fixed points to the constant forces in the following
categories:

(1) Controllability. Fixed points control the placement better than
constant forces do. Using fixed points guarantees that in the force
equilibrium state all the movable cells will be located in the bound-
ing box formed by the fixed points and the fixed IO pads. But for a
constant force, the final location of a cell can be anywhere, possi-
bly very far away from chip boundary. The phenomenon will be
demonstrated in experimental results section.

(2) Determination. Since a fixed point is directly related to a posi-
tion on the chip, it is much easier to determine a good fixed point
than an appropriate constant force. For example, if we want to
move a cell i to a new location(x, y), we need only to put a fixed
point p at (x, y) and connect it to the cell i. Then we choose an
appropriate strength FS(p) to reflect how much we want to attract i
to (x, y). The larger the FS(p) is, the closer i is to (x, y) in the equi-
librium state. To determine an appropriate direction and magnitude
of a constant force is not trivial. 

(3) Flexibility. The following theorem characterizes the flexibility
of the fixed points as related to the constant forces. 
Theorem 3: Fixed point is a generalization of a constant force.
Proof: A fixed point p is able to mimic the constant force

applied on a cell i by using an infinitely large length FL(p)

= and infinitely small strength FS(p) while making

 = = . Since FL(p) is infinitely

large, the movement of a cell i within the chip’s boundary has no

effect on , thus  =  =  does
not depend on the position of a cell i and remains constant. #

6.2  Applying FAR in Global Placement
As in [1], we will call the process of entering a force equilibrium
state from a disequilibrium state, a transformation. In our work, we
divide one transformation into two stages. The first stage is to
transform the present placement, which either was obtained from a
quadratic solver or was an initial placement, to a force equilibrium
state by introducing one controlling fixed point per cell. The con-
trolling fixed point p for a cell i can be derived from the intrinsic

force . After we decide the strength FS(p), we can obtain

the corresponding =  and

where  and  are the coordinate vectors of p
and i respectively. In the experiments, FS(p) is inversely propor-
tional to chip size. In the words, the bigger chip size is, the more
freedom cells are given to move. The reason for introducing one
controlling fixed point instead of keeping all the previously added
fixed points is to minimally disrupt the original cost function. One
fixed point introduces two extra quadratic terms, and a large num-
ber of fixed points might dominate the original cost function.

The second stage is to add perturbing fixed points in order to elim-
inate overlapping and to finish the transformation with a quadratic

solver. We apply the same density concept as in [1]. Let  and

denote the width and height of a cell i, and W and H denote
the width and height of the chip. In [1], a density at a location (x,y),
D(x, y), has been defined as follows: 

(EQ5)

In EQ5, N(x, y) is the total number of cells which cover the point
(x,y), and ave is the quotient of the total cell area and the placement
area. 
In [1], the following constant density-induced force has been intro-
duced:

(EQ6)

In EQ6,  and denote position vectors  and 

respectively. For a cell i located at (x, y),  = . In
[1], the forces acting on each cell are scaled such that the maxi-

mum  is equal to the force of a net whose length is

. K is a user-defined constant controlling the overall

strength of . In our current FAR implementation, we use

scaled  as a perturbing force to eliminate overlapping. In
other words, we install perturbing fixed points at infinite locations

such that each force  is independent of the position of the
cell i.

Global placement begins with the matrix C and vector d in EQ1
determined from the netlist structure. In consecutive transforma-
tions, C and d are updated according to the introduced controlling
fixed points and perturbing forces. We use BiConjugate Gradient
Stabilized and preconditioning method to solve the quadratic pro-
grams. Transformations are carried out until the stopping criterion
is fulfilled. In our implementation, we terminate the placement
iterations when the cells are evenly distributed. 
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7. FAR Based Incremental Placement
In this section, we first discuss the buffer site generation problem
and then apply our FAR-based approach to solve it.

7.1  Buffer Sites Generation(BSG) Problem
Suppose that after obtaining the initial placement results we dis-
cover that buffers have to be inserted on some nets. If there is no
empty space to place the buffers at appropriate locations, we have
to modify the existing placement such that the buffers can be
inserted in positions that are valid for the purpose they serve. The
BSG problem is to transform incrementally the existing placement
to introduce enough buffer sites at appropriate locations as
required by the buffer insertion algorithm. The minimal placement
transformation does not necessarily constrain all the cell move-
ments in the same degree. Instead, different cells might have dif-
ferent mobility requirements. For example, timing-critical cells
could be perturbed as little as possible. If the topology of a net is to
remain intact, we can limit the mobility of the cells incident to it.
In our BSG implementation, we use the cell mobility distance to
denote cell i’s maximum allowable deviation from its original posi-
tion.

The incremental placer imposes a global bin structure on a chip.
For each bin b, we define:
(1) A(b) is the chip area covered by b.
(2) CA(b) is the total cell area in b.
(3) CCA(b) is the total chip area covered by all the cells in b. The
difference between CA(b) and CCA(b) is that CA(b) is the summa-
tion of the cell areas while CCA(b) denotes the total chip area. It’s
possible for CA(b) to exceed A(b). But the maximum CCA(b) is
A(b).
(4) COR(b) is the cell occupation ratio defined as CCA(b)/CA(b).
COR(b) reflects how evenly the cells are distributed in b.
(5) BS(b) is the buffer site supply in b. It denotes the buffer-usable
blank space in terms of number of buffers in b.
(6) BD(b) is the buffer site demand in b. It is the result of buffer
insertion.

For each cell i, we have the following definitions:
(1) M(i) denotes the cell’s i mobility distance, which expresses the
maximum allowable deviation from its original position during
incremental placement.

(2) is the actual deviation after incremental placement. Let

(x,y) and  denote the cell i’s present and initial locations

respectively. .  and   denote

the projections of   on x-axis and y-axis, respectively.

Based on the definitions above, Buffer Site Generation
(BSG) problem is formulated as follows:

Given a placement P, incrementally transform P to P’ such

that  is minimized while for

each bin b in P’, the following constraints are satisfied:

(1) BS(b) >= BD(b).

(2) CA(b) < A(b).

(3) COR(b) > cor_constant.

and for each i in P’:

(4)  and .

7.2  Applying FAR to BSG
Our FAR-based approach provides an efficient way to solve
the BSG problem. The added controlling and perturbing fixed

points can be used to minimally perturb the existing placement
while keeping the global placement structure. The constraining
fixed point relaxation can be exploited to reflect a cell’s mobility
requirement. 

First, for each cell i we introduce one constraining fixed point
cnfp(i) at i’s initial position and with an initial strength
FS0(cnfp(i)). FS0(cnfp(i)) is determined by EQ7:

(EQ7)

where N(i) denotes the set of i’s adjacent cells and  is the

weight on an intrinsic connection . S(cnfp(i)) captures the
maximum force possible generated by the movement of i’s neigh-
boring cells. FS0(cnfp(i)) depends on how strongly i’s neighbor

cells might be perturbed, which is measured by , as

well as i’s mobility distance M(i). The stronger the expected per-
turbation is, the larger FS0(cnfp(i)) is. On the other hand, the larger

the mobility of a cell i is, the smaller its FS0(cnfp(i)).  is a user-
defined parameter to control the overall constraining strength. The
location of cnfp(i) is fixed throughout the incremental placement
while FS(cnfp(i)) is dynamically adjusted to penalize those cells
which move beyond their mobility distance. In the current imple-
mentation, we scale FS(cnfp(i)) by a factor _cnfp_scale each time
when i exceeds its mobility distance. 

As in the global placement, we have one controlling fixed point for
each cell to guard the global placement structure, and we use the

density induced forces as perturbing fixed points. To

derive , we modify EQ5 and take into account the buffer
demand in each global bin b as expressed in EQ8:

(EQ8)

After scaling  as in the global placement, we further refine

 to make it consistent with i’s mobility requirement. If a

cell i is already beyond its mobility distance,  is set to zero.
For cells still within their mobility distances, we use the constraint

of EQ9 to adjust their  while keeping the directions
unchanged.

(EQ9)

In EQ9,  measures how far a cell i is from a
mobility distance violation. Intuitively, the constraint in EQ9 says

that  cannot be too large to be cancelled by cnfp(i) within i’s
mobility distance. 

BSG, as the global placer, proceeds through a sequence of transfor-
mations. Each transformation is divided into the following five
steps: (1) transform the current placement into an equilibrium
state; (2) adjust strengths of the constraining fixed points; (3) insert
the density-induced perturbing fixed points; (4) determine the
transformation by solving the linear equations; (5) evaluate the
result.

8. Experimental Results
We build FAR-based placer using data structure of Capo[10]. The
linear equations system solver is Laspack from [12]. MCNC
benchmarks from [11] are used for experiments. Experiments are
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carried on 850Mhz Pentium III processor with 256M memory.
CPU times are reported in seconds. 

8.1  FAR-Based Global Placement
In the following experiments, we denote [1] based approach as CF
and our approach as FP. Cliques model multiple-pin nets. Each
edge in a clique has the weight 1/(k-1), where k is the degree of a
net. In the CF implementation all the density-induced forces

 are scaled such that the maximum  is equal to the

force of a  long net. W and H are the chip’s width and
height, respectively. In our current implementation, the strength of
the controlling fixed points ranges from 0.01 to 1, depending on
the chip size. The larger the chip is, the smaller the strength is. The

scaled is used for perturbing fixed points. The difference
between the CF and FP is that in FP we use fixed points instead of
constant forces to maintain the force equilibrium state. 

First, we show that FP has inherently better placement controllabil-
ity than CF because it captures the chip geometry. Figure 2 shows
the results of one transformation of the same netlist performed by
CF and FP. Figure 2a depicts the initial force equilibrium state for

the benchmark biomed. We set K = 0.1 to scale the  for CF
and K = 0.2 for FP. This means that our density-induced forces are
twice as strong as those used in CF. Figures 2b and 2c depict the
placements after one transformation performed by CF and by FP,
respectively. The smaller rectangle in the figure 2b shows the real
boundary of the chip. The quadratic solver places a large fraction
of cells outside the chip boundary. This is so, because the constant
forces are not related to the chip’s geometry and do not change for
changing cell locations. Figure 2c shows the placement performed
by FP. Even though in FP is twice as strong as in CF, FP is
still able to control the global placement structure very well. 

Secondly, we show the results on the MCNC benchmarks. Global
placement terminates when the current solution occupies more
than 85% of the chip area or a predefined MAX_iteration is
exceeded. In our experiments, MAX_iteration is set to be 30. We
developed a legalization procedure to fit cells into rows and a sim-
ple swapping-based detailed placer to evaluate the relative quality
of placements from CF and FP. We compare the total wire length,
which is measured by summing the half perimeters of bounding
boxes for all the nets, after legalization and after detailed place-
ment. The reported CPU times are only for the global placement.
We set K = 0.05 for CF and FP. 

In table 2, we observe 54.4% CPU speedup of FP over CF with
comparable total wire lengths. CPU efficiency comes from the per-
formance of the linear equation system solver and from the fact
that fixed points are reflecting the chip’s geometry. Experiments
indicate that FP is generally more solver-efficient than CF. Table 1
gives the CPU times of CF and FP for one transformation. FP has
controlling fixed points with strength 1. The average speedup for

one transformation is 59.1% and the maximum speedup is up to
70%. 

8.2  FAR Based Buffer Site Generation
For BSG, we start from an initial placement with a total area of
buffer site demand equal to 10% of the chip area. The size of a glo-
bal bin is chosen to accommodate roughly 100 standard cells of
average width. Then for each global bin we collect the buffer site
supply information, and we introduce randomly a mismatch
between the supply and demand. We generate randomly the cell
mobility distances M(i) and express them as fractions of a user-
defined maximum mobility distance MAX_MOBILITY. In the
experiments, we set MAX_MOBILITY to be twice the average
cell width. For experiments we selected 4 large circuits in MCNC
benchmark set. Table 3 shows BSG statistics of all the test cases.
The column labeled GBS shows the global bin structure imposed
on the chip. #BS, #BD and #BM are the numbers of the total buffer
supply, buffer demand, and buffer mismatch, respectively. #BM is
obtained by summing the buffer mismatches (BD(b) - BS(b)) for
those bins where (BD(b) - BS(b)) > 0. #BBM is the number of bins
with buffer mismatch.

In experiments, the strength of controlling fixed points and  in
EQ7 are set to 1; the mobility violation penalizing factor
_cnfp_scale is set to 2; and K = 0.05. The transformation termi-
nates whenever (1) the predefined parameter max_iteration has
been reached; or (2) all constraints in BSG formulation have been
satisfied. The distribution parameter cor_constant is set to 0.95 in

circuit CF(s) FP(s) imp%

biomed 4.5 2.17 +51.8

industry2 10.1 4.68 +53.6

industry3 10.7 4.87 +54.5

avqsmall 22.5 7.7 +65.8

avqlarge 30 8.9 +70

Average +59.1

TABLE 1. CPU time for one transformation 

CF i( ) CF i( )

K W H+( )⋅

CF i( )

CF i( )

CF i( )

Figure 2a: initial equilibrium state for biomed

Figure 2b: after 1 transformation using constant force[1], K = 0.1

Figure 2c: after 1 transformation using fixed points, K = 0.2

α



the experiments, and the maximum number of iterations is set to
20.

Since CF does not have a direct capability of constraining a cell’s
movement as shown in figure 2, the experiments below are per-
formed only on FP. Table 4 shows the results for BSG using FAR.
#bm and #mv denote, respectively, the percentage of buffer mis-
matches and mobility violations left by the incremental placer. In
20 iterations, on the average, 89.2% buffer mismatches can be
eliminated with only 0.57% mobility violations. We believe that
efficiency is possible because fixed points are intrinsically control-
lable. By choosing appropriate fixed points to guard and perturb
the given placement, the cells will not suffer dramatic disturbances
and the overall placement structure can be maintained. SD is the
value of the cost function, . In the

last column we list the CPU times in seconds. 

We have also compared the FAR-based incremental placement to a
flow in which buffers are pre-placed according to the results from
the first run R1 of the placer, and the placement is restarted taking
these buffer sites into account. We use the difference between R1
and the result of the second run R2 to compute the total cell devia-
tion SD’ in the fifth column of table 4. From the ratio SD/SD’ in
the sixth column it can be observed that the placement does not
converge. A small disturbance in the early stage, in this case
caused by pre-placed buffer sites, might lead to a very different
result. On the other hand, FAR-based incremental placement is
able to minimally perturb the initial placement, and the cell posi-

tion deviation is on the average only 3.1% of the pre-place-and-
restart flow. 

9. Conclusions
We described the Fixed-points Addition and Relaxation (FAR)
based placement technique. FAR can be applied to solve global
and incremental placement problems. Experimental results indi-
cate that FAR is stable and efficient in minimizing the total wire
length and is able to accommodate buffer sites at desired locations. 
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#bm #mv SD(m) SD’(m) SD/SD’ CPU

biomed 2.2% 0.34% 0.16 3.8 4.2% 38.59

industry3 15.2% 0.44% 0.69 30 2.3% 137

avqsmall 10.9% 0.65% 0.38 8.1 4.7% 155

avqlarge 15.1% 0.85% 0.46 41.8 1.1% 205

average 10.8% 0.57% 3.1%

 Table 4: Experimental Results for FAR based BSG

circuit #cells #nets #row

WL after legalization [m] WL after simple opt [m] CPU[s]

CF FP %imp CF FP %imp CF FP %imp

primary2 2907 3029 28 4.17 4.18 -0.2 3.44 3.45 -0.3 43.6 24.6 +43.6

biomed 6417 5742 46 5.98 5.75 +3.8 4.48 4.23 +5.6 142 31 +78.2

industry2 12142 13419 72 23.9 19.1 +20.1 16.7 14.4 +13.8 486 213 +56.2

industry3 15059 21940 54 50.8 51.1 -0.6 40.7 42.7 -4.9 250 131 +47.6

avq.small 21854 22124 80 10.9 11.3 -3.7 7.47 7.40 +0.93 771 527 +31.6

avq.large 25114 25384 86 12.5 12.2 +2.4 8.12 8.25 -1.6 903 277 +69.3

Total +54.4

TABLE 2. CF vs. FP in global placement for total wire length minimization

GBS #BS #BD #BM #BBM

biomed 7x8 639 535 348 12

industry3 12x12 1426 1126 734 33

avqsmall 14x14 2614 2166 1354 52

avqlarge 15x15 2934 2555 1597 64

TABLE 3. Test cases for BSG

SD mx i( ) my i( )+( )∑=
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